
Progra,nniing Manual

I

I

I

PRE.PACI

This document describes an Autocode for the Manchester

University Atlu Coaputer. which has been de•iped and i•pleaented

~, the •taff of the Computing Machine Laboratory.
Thanka are due

to 11r. c.v.n. Porrincton for drafting and editing this docunent and

to Mrs. B. Duncanson and Mi•• Carol Clegc for preparing the copy.

R.A. BROOKER

J.s. ROHL

February. Ig63.

CONTENTS

I. INTRODUCTION

Example of Atlas Autocode program; Blocks and routines; Phrase

structure notation.

2. THE BASIC LA.'iGUAGE

Symbols of the language; Names; Delimiters; Types& Functional

dependence; Declaration of variables; St~ndard functions; Ariti1-

metical expressions; Integer expressions; Arithmetic assignments&

Labels, jumps, and conditional operators; Cycling instructions;

Some simple input and output instructions; Miscellaneous notes.

3. STORAGE ALLOCATION ANO THE BLOCK STRUCTURE OF PROGRAMS

The stack; Storage allocation declarations; Block structure of

program.~; Fixed variables and dynamic storage allocation; Array

functions; The address recovery function; The renaming of variables

within a block.

,t. ROUTINES

s.

Basic concepts; Formal parameters and actual parameters; Function

routines; Store mapping routines; Scope of names; Permanent

routines and library routines; An example of a complete routine;

Own variables; Functions and routines as parameters.

INPUT AND OUTPUT ROUTINES

Basic input routines; Basic output routines; Captions; Other

input/output routines.

6. MONITOR PRINTING AND FAULT DIAGNOSIS

Fault monitoring;

Fault trapping&

label tracing.

Compiler time monitoring; Run time monitoring;

Fault diagnosis; Query printing; Routine and

T. PRESENTATION OF COMPLETE PROGRAMS

Job descriptions& Corrections to programs.

8. COMPLEX ARITHMETIC

Declarations; Standard functions; Arithmetic expressions1

Arithmetic instructions; Data; Conditions; Routines and functiou.
I

HALF-WORD OPERATIONS AND LIST PROCESSING FACILITIES

Operations on half-words; Conversion to integer or!!!!• List•;

List processing facilities; Nests.

THE USE OF MACHINE INSTRUCTIONS

Stack structure; Stack instructions; Machine code fonnats;

Example; Use of B-lines.

APPENDICES

I. PHRASE STRUCTURE NCYl'ATION

2. LIST OF STANDARD FUNCTIONS AND PERMANENT ROUTINES

3. NUMERICAL EQUIVALENTS OF BASIC AND COMPOUND SYMBOLS

4• LIST OF MONITORED FAULTS

X Ilr.t'RO

Wbich de1

Tile atat1

aatu.re oj

descrilte

in which

recopisa

equiYale11

• special

peraanent

'coapUed

T

involved

7•ax+ I

whic~ are

Bach such

••t lty twc

XOOO paira

are calcula

1(1'1 - axt

Tiu

•tat ... nta

la encountt

atateaent.

lt ... t N

I INTRODUCTION

All ATLAS AUTOCODB PROGRAJI C•uiata ef a aeriH of STATBJlllffS

which descri•e in alce•raic notatien the calculatioa to lte executed.

The atatements are ef two kinds, declaratiYe atateaents pvins the

aature of the quantities involved, and iaperatt•e stateaenta which

descri•e the actual operations t• •e performed on the■, and the sequence

in which they are t• •e carried out. The atatements are not imaediatelJ

recopisa•le lty the co•puter and ■ust first N converted into an

equivalent sequence •f •asic MACHINE INSTRUCTIONS. This is done •Y

a special translation prosra■ called a COMPILER which 1• held

per1111nently availa•le in the machine. Hot until the presra• hu •"n
'coapiled' can it ae executed.

The followinc example cives a seneral idea of the principles

involved in writinc a prop-am. We wish to fit a straipt line

'f a ax + • to sets of data of the fora XI, na ll, Y2J --, Xn, Ya

whic~ are to •e punched and presented on a data tape in this order.

lach such set is to be terminated •Y the num•er 999999 and the final

1et lty two such num•ers. Each set 1• asaUJ11ed to contain less than

1000 pairs. For each set the quantities

a= nfX1Yi - fXifYi

nfXi:a. - (fXi)&

It a fY1 - afXi

n

... .a. a. •
c = fYi - 2(afXiYi + ltfYi) + a fXi + 2altfX1 + n•

are calculated, the last lteinc the sum of the squares of the deviations

f<n - an - •>,,_ •

I.I

The tollowinc is the fonnal procram for this calculation. The

atateaents are to~• iaterpreted in the written order unless a atate■ent

11 encountered which transfer■ control to another specifically laltelled

atatement. In 1eneral each statement 1• writtea as a new line, othenriae

it ■ust •• separated fro■ the pre•lous stat-ent •Ya ae■i-colon.

,Jtegin

,!:!!! a, Jt, c, x, y, xx, xy, YYJ intecer n, 1
arra;t x, Y (IzIOOO)

n = I

2: read (X(n))

if X(n) .,. 999 999 !!!!!! -> I

3s read (Y(n))

D = n + I; -> 2

Is n = n - IJ x a OJ y a OJ xx • OJ yy • OJ xy • O

cycle 1 = 1, I, n

X a X + X(i); y = y +
2

XX = XX + X(i) J yy a

xy = xy + X(i)Y(i)

repeat

Y(i)
a. yy + T(i)

a= (n•xy - x•y)/(n•xx - x•x)

i. =- (y - a•x)/n

c = yy - 2(a*xy + i.•y) + xi•a~ + 2a•i.•x + n•i.A

newline

print (a, 2, 3)J space; print (Jt, 2, 3); space; print (c, 2, 3)

read (X(I))

unless X(I) = 999 999 ~ -► 3

stop

end of proITT"am

Users of Mercury Autocode will note some new features, 1UUMtly

I. Explicit declaration of all quantities.

2. The nestin~ ·of brackets in arithmetic formulae and the oltliptory ue

of Jtrackets as a subscript notation.

3. Explicit use of a J11Ultiplication sip where this 1• necessary

to avoid amDiguity.

~• The use of multi-letter identifiers.

5. The underlined delimiter words, e.~. c;tcle

BLOCKS AND ROUTINES

Complete precrams are &enerally split up into a nUJlllter of

■elf-contained unit■ called ROUTINES, and each routine may Jte further

aplit into a number of BLOCKS. A detailed description of their

censtruction and use is deferred until later, Jtut the earlier sectiou

it is sufficient t• note that the Autocode statement• Jtetween Jtep•

and end cons-ti tute a Jtlock. We note however, that when a ltlock

PIIRAsB ~

de■cript

PDeraI,

an Autoc,

117 a par·

•ext aec1

pneral t

define a

Ud in an

•1nce s 11

•tnactve

2

•

PHRASE STRUCTURE NOTATION

Atlas Autocode is a PHRASE STRUCTURB LAM'GUAGB and to a.aist in it•

description we ao .. tiaea ha•• resort to phrase •tructure aotation. la

ceneral, whenever a name appears in square ~rackets in the descriptiea •f

an Autocode atate11ent, we mean that in an actual statement it would ~e replaced

~, a particular element of the clasa defiaed ~Y the DU1e. For example, 1• the

next sectien we defiae [NAME] and [EXPR] to deDote a ceneral na•e and a

pneral expression respectively, and with these definitions we could p oa to

define a function of a sinsle varialtle ~1

[NAME] ([EXPR])

and in an actual procram this 11ipt ~• replaced ltJ

s(x + 7 -2)

1ince c is a na .. , and x + y -2 1• an expreaaion. Purtber note• oa phrase

1tructure notation will lte found in Appendix I •

2 THI ■ASIC LANGUAGB

SYMBOLS OF THE LANGUAGE

Prop-ams are preseDted to the coaputer as a lensth of perforated

paper tape which is scanned lty a photoelectric tape reader, the input

uait of the machine. The prop-am tape is prepared on a Flexowriter

keyltoard machine, the keys of which are enp-aved with the followin1

aymltols:

ABCDEFGHIJKI.MNOPQRSTOVWXYZ

abcdefitbijklmnopqrstuvwxyz

Cl tJ 'I

0123456189

= > < I • i , • ' & • I + - _ I C > C 1 ?

A •ack-spacinc facility allows underlininc and also the formation of

compound characters

e.c. cycle r > < -> i 9

We also make use of a vertical arrow 1'which lty convention is punched

as t that is an asterisk superimposed on a vertical Jtar.

. .!!Q!! All SPACES and UNDERLINED SPACES in a procram are icnored when the

prop-am is read into the machine. Thus they may be used freely to aa■ist

leciltility in the written form of the prop-am.

liJ\1.IBS

These are used to identify the various operands, functions aad

routines which appear in the prop-am. A name consists of one or

more letters, possibly followed lty one or more decimal dicits, and

possibly terlllinated lty one or more primes('),e.c.,

x i Alpha aIO TEMPI y'' lt3'

Underlined names and ~ixed names such as RK2ST are NOT allowed.

There are certain names,e.g., loc,sin,exp,print, read etc.

which have a standard meaninc, (the PERMANENT routines), ltut all other

names must be declared before any reference is made to the• (see ltelow).

In future a ceneral name will ~e denoted lty [NA1tm].

DELDfITERS

These are a preassiitned set of eym-als and underlined word•,••'••

+ - •IC , > > ~ ->; r
cycle repeat integer real if .!!!.!!, caption coment

(Note that-> consists of two symlM>ls, - followed ~l ►)
Unlike names whose aeaninc can lte defined lty the user, deliaiten

ha•• fixed a~solute meaainp in the lancuace. An Autocode proll"aa

c•nsists entirely •f nastes and constant• separated lty delillitera.

nns
C

real and

repreeent,

a ie held

IHat those

(ao that t

•aod1fica

section on

Th,

diattncuisl

the numlter

auabe.rs re.i

PrCl

the use of

arttJuaeuc •

l'U1fcTIONAL l

Fune

funetton fol

With

iltle to 1

Alld a(i)

TION C

ill -
re -

tbe1

r•

Calculati•n• are perfor.ed on two principal types of operaDd,

!!!! and integer. (Later on we shall introduce complex). Both are

repre1ented lty floatinc point nWDlters (in the for• a.8 t--) where

a i• held to a precision of ~o ltinary dicits and It is an 8-Jtit iatecer)5

~ut those of integer type are kept in an unstandardised fona

(ao that the least sipificant 2~ !tits can lte used directly for

l-110dification. The precise method of storace is descrilted in the

aection on machine instructions).

The locations in the computer store holdinc numlters are

diatinguished ~Y assi1P1inc names to them (see later), and reference t•

the number is made by civini the appropriate name. Both real and intecer

numbers referred to in this way are called varia~les and denoted ~1 [YAR].

Proi;rams will consist mainly of operations on~ operands,

2.2

the use of inter.er operands being cenerally confined to countinc and aultscript

arithmetic.

FUNCTIONAL DEPENDENCE

Functional dependence is indicated •Y writing the name of the

function followed by the list of ari.uments in parentheses.

e.g. sin(2•x/a) arctan(x,y) TEMP(i) a(IO, IO)

lach ar&tUment can ~e an EXPRESSION (see below).

Within a block all names must be distinct, and it is not

possible to have a function with the same name as a scalar. 11:lus

a and a(i) or f and f(x) would NOT be allowed to appear in the

1aae •lock.

DICLARATION OF V ARIADLES

The names of variables used in a ~lock are declared at the head of

the ~lock

e.g. integer 1, j, k, 1, m, n, o, p, q, r, s, t

real a,•• c, d, e, f, &, h, u, v, w, x, y, z

Illich will •e familiar to Mercury Autocode users.

Other examples are

integer I, max, nlin

real t, Temp, VOL I, VOL 2

tM effect of these declarations ia to allocate storage positions (ADDRESSES)

t. the named varia•les, and any su•sequent reference to one of the declared

-• will then ~e take~ as referrinc to the numaAr stored in the anorooriat•

OD• dimensional arrays of element• aay N declared lty ■tatements sacb u

array a,lt(O 1 99), c(IO I 19)

which reserve• space fer three array• of!!!! varialtles a(i), lt(i), c(1).

In the first twe the aultscript ruu fro• o to 99, aad in the third froa

10 to i:9.
To refer to a particular element of an array one aipt write

c(IO + 1)

It is the computed value of the arcument, which aay II• a ceneral integer

expression (see later), which determines the particular ele111ttnt.

Two dimensional arrays are declared in a similar way

e.g. arraz A(I120, 1120), 11(019, 0149).

This defines and allocates storage for a 20 X 20 array A and a 10 X

array B. To refer to a particular element,one write•, for exa■ple

A(I,I) A(i-I, j+I) a(9,2K+I)

ahould an array of integer elements•• required, the declaration 1•

qualified by integer

e.c. integer arraz TYPE (1150).

50

Storage allocated by the above declarations has dynamic aipiflcance, 1.e.

they are implemented at run time and not at compiler time. Consequently,

the arguments in array declarations need not lle constants ltut aay N ceuval

integer expressions. The significance of this will be explained in the sect

on ltlock structure and dynamic storace allocation (see later).

STANDARD FUNCTIONS

The following standard functions are availaltle and may lte used

directly in arithmetic expressions (see next section) without for-1

declaration&

sin(x) cos(x)

arctan(x,y)

radius(x,y)

:fracpt(x)

intpt(x)

int(x)

mod(x)

parity(n)

tan(x) log(x) exp(x) sq rt(x) _,
(= tan (y/x))

(::s (XA + 'r)Jt.)

(:a fractional part of x)

(• integral part ef x)

(::s nearest integer to x. 1.e. intpt(x+.5))

<=- lx l)
(• (-I)~)

The arguments in the altove functions •Y N general expresaiou, exc .. t

that the argument of the last IIIU8t •• of type intepr (see later).

A complete list of standard functiou 1• ciYen ln Appendix 2.

ARITHMETICAL D:Pf

A 1eneral

•fa eequence of

thua

C±?] [OP.Ii

All [OPERAND] is a

an [OPERATOR] is

baaples of expre

IOTB8

A(i-I,J)

z + loc(I

LENGTH•

aq rt (x(

a • lt/C *
(x + J +

2.5 Xl It

e • lx-11
(I + x) f

llultipl1cat1o

_.traction and d

tile fifth example

Aa exponent 11

ffence over tl

+ z) to the (i

antlaltle to r1

Talent to the

Thus it :

are

exallJ

ezpoae1

1 ■J'llltol j I

•• ..

aore atr1c1

[DPal • I
[Dl'll').

...

ARITHMETICAL BXPRESSI01'S

A seneral arithmetical expression 1• denoted~, [SXPll) and coui■t•

•ta aequence of operands and operator• po■•i~ly preceded~, a alp ■JIINl,

thua

[±?] [OPERAJml[OPBRATOR][OPERAND][OPBRATOR) •••• {OPERAND]

Aa [OPERAND] ta a [VAR], [CONST], ([EXPR]), l[EXPR]I, or [PUNCTIOR]••, aad

an [OPERATOR] is one of+ - • / t (The asterisk denotins -lti,llcatioa)

lxaaples of expressions are

~

A(i-1,j) + A(i+I,j) + A(i,j-1) + A(i,j+I) -,tA.(1,j)

Z + loc(I + cos(2•(x/a + y/~ + z/c)))

LENGTH* BREAJYl'H * HEIGHT

sq rt (x(1)2. + ,ot + zui')
a * i.;c * d/e

(x + y + z)/(a +i.+ c)

2.5 xI ~ • (c + d)e

e = lx-yl + .00001

(I+ x) t (a-I)(I-x) t i.

I. Multiplication and division take precedence o•er addition and

1ai.traction and division takes precedence over multiplication. Thu■

the titth example means a * (lt/c) • (d/e).

i. An exponent is denoted~, t [OPERAND] and e:x:ponentiation takes

precedence over the other operations. Thus the last example 111eana

((I+ x) to the (a - 1))((1 - x) to the ~). A special s:,altGl, auper■cript.11.,

11 aTailai.1e to represent squares as in the fourth example, and 1•

tqUiTalent to the pair of sy.ibols t 2.

a. l[EXPR]I is interpreted as the positi•e macnitude of the

(IXPR]. Thu• it 1s equivalent to 11od([EXPR]) •

4- Constants are written in a atraipt forward notation, e.s.,
2.538 I .25 IT .:z8cr-I I.a7

ft• laat two exaJiples mean respectively

I.T28 and 10 000 000

Practional exponent• are uot allowed in floatins poi•t constants. Th•

-,.C:ial •111"1 ½ aa:, 1te aaed in constant• and is equi ••lent to the

,air et •ya•ls .5

•• Or, -,re strictly, (see Appendix I)

[IXPR] • C±?l [EXPR']

[BXPR'] • [OP.BRABD] [OPBllATOR] [BXPR'], [OPBRAlfD]

5. All explicit 1111ltiplication •icn is not required when the operand•

are uniquely separa•le. In the •••~nth example it 1• the quantity

2.5 • xI • • • (c+d) ••that is coaputed. Rote that an explicit

■ultiplication sip is necessary to denote • • (c+d) as •<c+d) would

•• interpreted as referrinc to a function • of arcument c + d.

6. A full stop. may •e used instead of an asterisk to denote multiplicatiea

whenever there is no posi•ility of confusion with a decimal point. Thu•

in the aDOve examples it is possi•l• to write

LENGTH. BREAIYI'H. HEIGHT

•••/c.d/e

2.5 xl•. (c+d)e

The only time when an asterisk must •e used is when 11111ltiplyinc two ceutant1

to,ether.

Thus 2•5 means (2) x (S)

2.5•3.8 means (2.5) x (3.8)

2.5.3.8 is meanincless

INTEGER EXPRESSIONS

An [EXPR] is an inte~er [EXPR] if all the [OPERAND]'• are

scalars, array elements etc. declared to •e of type inte~er, intecer

constants or into~cr functions. Thus if we assume that x is a.!!!!

varia~le, and i,n,j,k(I),k(2) are integer varia•les, the followinc

are inte~er [EXPR]'s.

NOTES

n•(n-I)/2

i + j + k(2) + int(x)

j t k

int pt (n•(n-I)/3)

1. All ca~.culations on inte~~:r: [EXPR]'s are done •Y tloatins

point operations and the result is destandardised at the end.

2. Exponentiation is performed •Y repeated multiplication,

i.e. j t k = j x j x -----(to k terms). Thus the result is exact.

3. The value of the [EXPR] is assumed to N intesralJ this will

in ceneral ~e true (if the ranee is not exceeded) except in

division when the result JULY IHt non-intep-al. No check is aade for

this case so that the function 'int pt' or 'int• •hould •e used.

4• Since the aachine can hold necative powers of 2 and since

the accumulator liTes an exact dividend if the numerator is a

multiple of the d1vi•or, the first [EXPR] in the exall})les civu

ARITHME

hamplea

~

the comp\l

It the 1.

integer,

e,

M.Bl!:LS1 JU

No.

ia require,

tn the seq1

htiatied.

8DIPLE LAD'S .7 Wl"iting 1

lty a Colon.

9acond1tiona

llllat

tine II:,

[JL\IIB]([

?] hclica

.5

1tan.t•

ARITHMETIC ASSimlMENTS

'l'he general arithmetic instruction is

[VAR] "" [EXPR]

Examples are

X(p, q) =I+ 2 cos(27(x+y))

a a(~+ c)/(d + e) + P

i = i + I

The action of the general arithmetic assicnment is to place

2.6

the computed value of the [EXPR] in the location allocated to the leh••• (VAR].

If the l.h.s. is a~ [VAR], the r.h.s. [EXPR] may n of type!.!!! or

integer, aut if the I.h.s. is integer then the r.h.s. 11\lSt be an inte5er [BXPR].

e.~. if y had ~een declared!:,!!! and i intepr then we could write

y = i but not i = y even if we knew that y bad an intecer value.

LABELS, JUMPS AND CONDITIONAL OPERATORS

Normally instructions are obeyed sequentially, lmt frequently it

11 required to transfer control to some instruction other than the next

in the sequence, or to obey an instruction only if certain condition• are

satisfied. The following facilities are provldedl

81!.tPLE LAIJELS Ally instruction can ~e labelled

~Y writing an integer [N] before it, separated

~Y a colon. More than one label is permitted.

Unconditional jump instructions are written aa

-> [Kl

YEt'TOR LAUELS

These are used to provide for a

aalt1-1ray switch. With reference to the

diae::rnm the instruction

•> A(i) will jump to A(I), A(2) or A(3)

ACCOrdinc as i = I, 2 or 3.

A fault is signalled if the value of i

in any way to a la~el not set.

fte ceneral form of the la~el is [NAME]([lf])t

Ill ran,e must Jte declared at the head of

of the fora

where

(-?] indicates that the intecer•

-> IO

IOs

-> s

switch A(I 1 3)

A(I)l

A(3)1

-> A(i)

I

CONDITIONAL LABELS

Another kind of multi-way switch 1•

illustrated •Y the accompanyinc diacr&lll.

Here the condition at the places indicated

are tested in turn and control passes to the

instruction followinc the first to De successful.

If none is satisfied a fault 1• sipalled.

.!!!! ... 5, 6

The ceneral form of the la•el is [N] .£!!! [COND]s

where [COND] denotes the ceneral 6 ~ X > Is--
condition defined in the next section. A

simple label [N]z may •e used in place of

the last alternative in which case control

passes directly to the followinc instructions

if it r eaches tha t point.

NOTE All labe ls are local to the •lock containinc the■ and

may only refer to labels within the •lock (see later).

A CONDITIONAL OPERATOR of the form

!,! [COND] ~ OR unless [COND] .!!!!!!
may De written before any unconditional instruction (includinc s

jump instruction).

The [COND] phrase takes one of the forms

[SC]~ [SC]~ [SC] --~ [SC]

or [SC] .2!: [SC] .2!: [SC] --- or [SC]

or just [SC] by itself ••

Here [SC] denotes one of the followinc 'simple' conditions

[EXPR][~][EXPR] or [EXPR][,J[EXPR][p][EXPR] •r ([COND])

where[~] denotes one of the comparison symDOls a,>?<~
IF (or unless) the condition 1s satisfied the instruction is o•eyed,

otherwise it is skipped and control passes directl7 to the next

instruction.

Examples of conditional instructlona and conditional laltel• are

_!! X < 0 ,!!!.!!! X :a mod(y)

.!,! 0 ~ x < I ~ 0 ~ 1 ~ I ~ -> I

~ (y > I ,2!: 1 < - I) !!!!! X ? 01

Alternatively, conditional operators 1118.J appear Al"'.l'Bll unconditional

1utructions, in which case they are written

,!! [COND] OR unless [COND]

e.s.x • o !! lxl < .ooo 0001

-> I unless z > R ~ z • o

•• or, 110re strictly, (see Appendix I)

CYCLING Il

TilE

instruction

In the above

traversed n

Afte.

following .!!l

The r.h.s. q t

l.h.s. must l

The initial 11

... t be a pos

the :1.ni tial vi

is travc

State!!

be repl

It ls c

•tage 1

ctory ex

tions ar,

read(aI)

to read :

CYCLING INSTRUCTIONS

These are pairs of statements which allow a ~oup of

instructions to be obeyed a fixed number of times.

e.g. cycle i = o, I, n-I

reeea!

In the above example the instructions between cycle and reeeat are

traversed n times with i successively ta.king the values 0,1, ••• ,n-I.

After the final cycle, control goes to the statement

following rereat.

The r.h.s. quantities may be general integer [BXPR]'s and the

l.h.s. must be of inteiaer type.

The initial value, increment, and final value must be such that

final value - initial value

increment

IIUSt be a positive integer or zero otherwise a fault is indicated. It 1•

the initial values of the three expressions which are relevant and the

cycle is traversed at least once. Cycles may be nested to any depth.

!!'!! Statements such as cycle x = .z,.1,1 are NOT allowed,and

lhould be replaced by an equivalent permissable form.

e.g. ,«!Y~le i = 2,1,10

X = eli

where i has been declared intcr;er and x ~.

801.!R SIUPLE INPUT AND OUTPUT INSTRUCTIONS

It is convenient to introduce some input and output instructions

at this in order that the reader may complete his study of the

example. Strictly speakinc, the input and output

are calls for the appropriate routines and as such a

fonal description of them will come later.

llamples of the instructions to read in decimal nwnbers from a data tape

read(aI) read(VOLI, VOLZ, TEMP, 1) read(X(K))

first of these reads the next number on the data tape into aIJ the

reads the next four nwnbers into the named variables, and JnaY

Ued to read in any number of individual numbers. The third is

the same form as the first, but the particular variable depends

the computed value of the argument; thus if K was three, the nwuer

2.8

Yi

array A(l:IOO) J !nteger i

cycle i a 1,1,100

read (A(i))

repeat

The rules for preparing data tapes are given in the section on

Input and Output

To print decimal numbers, instructions of the following fona may 1te used

print (x + y. cos(z), 2, 7)

print fl(A, 5)

The first of these prints the value of the expression in fixed point

style with two digits before the decimal point and seven after. The

second prints the value of A, standardised so that I< IAI < 10 in

floating point style i.e. as a fixed point number and a decimal exponent,

with five dit;its after the point. A could •e replaced •Ya general

expression. The following instructions 111ay be used to facilitate the

progratnming of page layouts:

newline

space

The first causes subsequent information to ~e printed on a fresh line

and the second causes a space to be left on the current line.

The above instructions are more fully described in the section on input

and output.

MISCELLANEOUS NOI'ES

1. With the instructions so far described the reader should be a•le to

construct proi:rams of the level of the introductory example i.e.

programs consisting of a single •lock delimited •Y •epn and ~e_n_d ___,...., __

2. end of program is the formal end of the prortram and appears after the

last Witten instructionJ its action is to terlllinate the readin, of the

program and to start o~eyin~ it from the first instruction.

3. The instruction stop can appear anywhere in the progra11 and signifiea

the dynamic end of the program; its action is to terminate the

4• The delimiter comment allows written comments to •e inserted in a

program to assist other users in understandin, it. The information

following comment up to the next newline or semi-colon is ipored

•Y the computer.

5. It has been noted earlier that all spaces and 11J1derlined spaces in a

program are ignored and that Autocode statement• are terminated by a•••
colon or a newline. If a line is terminated_, the delimiter£ then the

followinc newliae character is ignored ~1 the conpu.ter, thus a •in1l•

statement may extend over several lines of the prillted pace. It is not

3 STORAGB

THB STAC

aaauae the:

a fuller de1

Bach

Ued to hold

1"1Uuain1 of a

lecation i.e.

In t}

have aJ

ALLocJ

The de

real -
Ulustr.

•

3 STORAOB ALLOCATION AND TH!: BLOCK STRUCTURE OF PROGRAMS

THB STACK

In order to illustrate the principle• ef •torace all•cation, we

u11.111e the tollowinc simplified picture of the data store (the •tack),

a fuller description lteinc civen in the •ection en the use of aachine iutructiou.

I I . . .

Each cell represents a ,f.8 ltit word in the computer store and can lte

ued to hold either a !!!,! or an integer varialtle. At an:, tiae durtnc the

runinr ot a procx-am, the stack pointer, St, points to the next availaltle

lteation 1.e. 1 t contain• the address of the next free word.

In the examples that follow, sincle shaded cells represent location•

allocated, and doultle shaded cell• represent location•

Illich hold information essential to the co111piler, such aa array dimension•

11d eririns, and are not of importance in the context of this section.

C.111 which are allocated to varialtles are indicated lty the presence of the

GB ALLOCATION DECLARATIONS

The declarations which allocate atorace space are

real integer array inte;er array

the stack mechanism we consider the followin1 examples

ltegin

!.!!! a, It, c; integer 1, 11ULX

array A(I: 2, I: 2), x(I: 3)

the aJtoye declaration• the stack picture would lte u ltelow

a It C i max

11 the position of St ltefore ltecin and St2 it• position after the

An:, further declaration advances St lt7 an appropriate aaount,

---~P~r_o_cr._a_■ is reached when St re•ert• to StI.

BLOCK STRUCTURE OF PROGRAMS

This ia illustrated •1 the followinc ex&J11ple:

lte(in

!:!!.! a,e,c

a • I; • = 2

C • a+•

1te1in

~ a,e,d

a "" 2; d = I

• "" C

C • 4
end

a= a+e+c

end

The stack picture aaaociated with the altove ltlock i• civen ltelows

Stl St2 St3
J,
~ • It C - a It d

J,
I I . . .

I 2 3 4 5 6 7 8 9 IO

ltefore the first~ St is at StI, and 1110ves to St2 on enterinc the

first ltlock. After the aecond 1te,1n St ia at St3 and reverts to St2

when~ is reached. At the aecond .!!,!!, correspondinc to the first

lte~in, St assumes its oripal position, StI.

In the diap-aa, positi•n• 3, 4, 5 correspond to the

of the outer ltlock, and 8, 9. IO to those of the inner ltlock.

instruction c = a+lt, the value 3 is left in positien 5J while

of the inner ltlock le&Ye the values 2. I, 3, 4 in the poaition.s 8, IO,

respectiYely. The last instruction of the outer ltlock leaves the Yalue

7 in position 3.

n
•• It 01

takea t ,
inner ltJ

in the c:i

Fut
•ectton ,

Will lte 1

x. BlocJ

any c
a. Hames

and i

3. Label1

ltetwe~

•• The 01J

Which

contro

l'IDD VARI.i!

Varialt

U are thoa1

t••• those J

<••· 11

... lte deter

•• cenera1

.t~icance

la this

).3

Thus the •aria•lea a,• of the inner alock do not conflict with

a,• of the outer alock, while a reference to c in the inner alock 1■

takea to refer to the •ar1a•le of that na■e declared in the outer •lock.

le aay that a,• are LOCAL Da•es to the inner •lock and c is a NON-LOCAL

uae. We also note that the inforaation store~ in the varia•lea of the

inner •lock 1• lost when the alock is left, and that we could not refer

in the outer •lock to a variaale declared in the inner •lock.

Futher details of the structure of prop-allS will •e elven in the

■ection on routines, and for the present the followtnc notes on •lock■

will •e sufficient.

1. Blocks JU.J contain any number of sua-blocka and •locks aay be nested to

any depth.

2. Names declared in a alock take on their declared meaninc in the •lock

and ia any aub-alocks unless redeclared in the sua-alock.

3. Labels are local to a block and transfers of control are only po■ai•l•

•etween statements of the same •lock.

•• The outerJ110st block of a prop-am la terllinated •Y end of prop-am,

which causes the process of compilinc to be terminated and transfer•

control to the first instruction of the prop-am.

FIXED VARIABLES AND DYNAMIC STORAGE ALLOCATION

Variaales declared by~ and integer are called FIXED VARIABLES,

u are those locations which are double shaded in the stack pictures

1••• those holdinc the links, array parameters, array function par•meter•

etc. (see later). This is ~ecause the amount of storace space required

can ae determined at compiler time. Array declarations, however, aay

ba•e 1eneral integer expressions as the parameters and hence have dyna•ic

aipificance. For example one micht have a declaration such as

array A,B(Ism, I1n), x(I1n)

In this case the apace allocated will depend on the computed value■

of• and n and cannot~• determined at compiler time.

Owinc to the dynaaic aipificance of the atorase declaration• it

is customary to put the■ at the 1te1innin1 of a ltlock laefore the fir•t

instruction statement. If they are not put at the ••&11Ulin1 it ah••ld N

remomltered that storace will lte allocated each time a declaration ia

reached, without the stack pointer lteinc reset

••I• bc,t~

inte,;.~ n

I: read(n)

arra7 x(Isn)

-►I

end

In the a.ove example, the stack is advanced and x(i) redefined

each time the loop of inatructiou is traversed, which would al■oat

certainly ae undesiralale. To define an array in teru ef a varialale

parameter, one could write

llc,-:in

integ;er n

U read(n)

1tett!,!!

array x(lin)

end

->I

end

In this case the atack pointer 1• reset to its oricinal value

each time the inner ltlock 1• left.

ARRAY

The

alloca

declar,

atora11

iaporta

Y&rialtJ

ADH

locatio1

•ector ;

Array

•1 suits<

e.,.

inteito1
'

declaratl

•
The par

Aa an e

ta eo11e w

Y&riable

•ector x(!

a(o) woulc

1a •J: + J:

oorrupond

ARRA.Y FUNCTIONS

Th• declaration• of the previou• ••ctions define varia•lea and

allocate atorap space for the■• In this •oction we introduce a

declaration which defines variables as the aua••r• contained in

atorace locations that have already !teen allocated. This 1• of

i•portance in comntnicatinc ltetween routines and in rena'ldnc

varialtles (see later).

An exa■ple is

arra;i fn X(s,p)

which defines X(i) as the real nualter in the •tora1e

location whose address is civen •Y • + i.p. Thu• it defines a

Yector X(i) in terms of an oricin a and a dimension parameter p.

Array functions may define rectan111lar arrays with any numlter

•f sultscripts.

e.c. arrat fn Y(a,p,q)

defines Y(i,j) =!.!,!!number in address (s + i.p + J.q)

array fn Z(s,p,q,r)

Z(i,j,k) .! ~ number in address(a + i.p + J.q + k.r)

inte;er array functions may •e defined •Y prefixinc the

declaration •Y into~!!:•

••I• int~~ arraz fn M(s,p)

The parameters in array functions may be ceneral inte~er exprea•iou.

As an example, assume that 100 stora~e locations have lteen allocated

in some way, and that the startini address is stored in inte;er

variable sI. Then to define tho contents of these locations as a

Yector x(i), one could write

array fn x(sI,I)

x(0) would then correspond to the numlter in address sI, x(I) to that

ia sI + I etc. If it is desired that the first location should

correspond to x(I), the declaration would lte written

array fn x(sI - I,I)

If we had wanted to define a I0 x I0 matrix, stored row ~y row

r~tber than a vector, we could have written

array fn A(sI,I0,I)

and A(O,o) would correspond to address sI.

array fn A(sI - I0 - 1,10,1)

would define a 111atrix in the availa~le space whose first element

waa A(I,I).

To define the transpose of the altove matrix we could write

array fn B(sI - II,I,I0)

'lhen a suuequent reference t~ B(i,j) would cive the saae storace

lecation as a reference to A(J,i) of the previous declaration.

It shou f f ce

THE ADDRESS RECOVERY FUNCTION

The a•solute address of any varia•l• 1• not 1enerally known ia

an Autocode procrame, •ut it may ae oatained •1 ••an• of a •tandard

function.

••i• a a addr(A(O,O))

3.6

Thi• places the addre•• of A(O,O) into the varia•l• •• The arcument

aay ae any variallle, ~ or inte1er, and the result 1• an inte1er

civin& the absolute address of the atora1• locatioD allocated to that

variallle.

The address recovery function is used in conjunction with the array

function in co111JDun1catinc lletween routines (see later).

It may also be used in connection with the renanin1 of varialllea ••

in the next section.

THE RENAMING OP VARIABLES WITHIN A BLOCK

We illustrate this with an example. Suppose we want to define and

allocate stora,e for pairs of~ variallles x(i), y(i) so that they

are in succesive locations. The array declaration will only define

a vector or matrix array stored in the conventional manner, ao we

adopt the followinc device

be~in

interer s

array a(ll2000)

s a addr(a(I))

array fn x(s - 2,2), y(s - I,2)

The first pair of num•era could then ae referred to either as

x(I), y(I) or a(I), a(2) , the second •Y x(2), y(2) or a(3), a(•> etc.

Since the array declaration is for 2000 variallles, up to 1000 pair•

x(i), y(i) can be accoJDOdated.

As another example, suppose we have defined a matrix A and allocated

atorace for it •Y the declaration

arra7 A(IIIO,IIIO)

aad we wiah te defiae the firat colUJ1J1 of Au a vector, then we ceuld

write

array fn y(addr(A(I,I)) - 10,10)

wbic~ define• y(i) ,:.!:!!! nW1ller in address (addr(A(I,I)) - IO + 10.1)

4f ROU'I -

•ach •f

Bach r o,

and the:I

fte inti

Ndn a11

'print•,

exactly

written J

to evalw

••11111.nc
ftia ldgb

.!:

.!
7

roatt

1ea1.

ftt

'pol71

1ae to

4 ROUTINES

MSIC CONCKPl'S

A larce prop-aa 1• uauall:, made up of aeveral routines

each of which represents •oae characteristic part of the calculation.

Such routines may-• called in at several different point• 1n the prop-aa,

and their design and use 1s a fundamental feature of the lancuace.

The introductory example conaiated of a aain -lock only (delimited-:,

~epn and end of prop-am) although it 1118.kes reference te the routine• 'read',

'print•, 'newline', which are permanent!:, availa-le in the machine. In

exactly the same way however, the user may call in routines which he ha•

written hiJ11Self in Autocode lancnage. Consider for exaaple a routine

to evaluate

:, • a(O) + a(I)x + ••• + a(n)x"'

u1UJling the coefficients to -e stored in consecutive(.!:!!!,) locations.

Tb11 llight take the form

routine poly (real name y, ~ a, ,!:!!! :z:, inte;er n)

array fn a(s, I); integer i

y = a(n)

cycle 1 = n - I, -I, o
y a x.:, + a(i)

repeat

return

end

Tbia routine will 1te EMBEDDED and used in a main routine aa Ulu•trated

••erleaf.

The routine is called in -Y the main routine whenever the

11M 'poly' appears. The first reference to 'poly' would cause the poly

routine to evaluate

U = -(O) + -(I)z + ••• + -(m)zm
and the second would cause it to evaluate

V a C(20) + c(2I)x:z. + • •• + c(30)x.A.
0

itecin

real u, Y, s, XJ integer m

array lt(o1 5), c(o150)

routine spec poly(!.!:_~) name y, addr •• .!:!!,,! x, inte,er n)

poly (U, b(O), z, m)

poly (Y, c(20) , x2.., IO)

routine poly (real name y, addr s, .!:!!,! x, integer n)

body of

poly

routine

end

end of program

The parameters in the routine specification and routine

heading are the FOIUiLU. PARAMETERS and the parameters in the call sequences

are the ACTUAL PARA1,1ETERS, precise definitions of which will lte given

in the next section.

The body of the routine may lte considered as a ltlock

delillited by routine and~• and the concepts of stora1e allocation,

and non-local names etc. apply to routines in exactly the same manner u

for ltlocks. In fact a block may lte considered as lteini an open routine

without paramoters.

Any number of routines may lte emltedded in the main routine

in the above fashion and they are referred to as SUBROUTINES of the aaia

routine. If the body of a subroutine occurs before any reference to it

in the main routine, the routine specification may lte omitted, ltut lty

convention it is usual to place all the sultroutine specifications amonc

the declarations at the bead of the u1n routine and the ltodies at the

4.2

u I an,

Jrow eacJ

ltloc.t (1

••ltrouu

aanner.

Pl'Osr•••

hierarch!

I

1

r -
a:

rt -
~

ro -

rot -
end -rou -
end -
rout --
end -
end -

al

We define the TEXTUAL LEVEL of the llody of the main i.1ook

u I and of each aui.routine (i.e. within the subroutine ltody) as 2.

low each subroutine ia naically the same in atructure ••the-in

-lock (which is essentially a routine without parameter•) and a

•u~routine may define and use it• own su~routines in precisely the •a­

unner. The textual level within these su~routines would .. e 3, and the

procression may continue to any depth.

The JllOSt &eneral fona of a complete proll"am 1• thus a nested

hierarchy of routines. A typical routine layout 1• ahoYD lHtlows

routine A(•, -, -) routine headinc

integer -, -, -
real -, -, --
array -, -, - declarations of local

working space and specification•

routine s2ec Ill(-, -, -) of sularoutines used.

routine SJ!OC 82(-, -. -)
routine s2ec Im(-, -, -)

} ltody of routine.

routine BI(-,-,-)

end

routine B2(-, -, -)

end

subroutine headings and bodies

routine JIN(-, -. -)

end -
end en of routine

fte picture is to i.e treated recursively i.e. it also applies to the

subroutine, and the whole routine milht itself i.e euedded

• a au-routine of a still larger routine.

FORMAL PARAMETERS AND ACTUAL PARAMETERS

The parameters of a routine are the pieces of inforaation

(variables, addresses, routine names) which tell it what to do

on the different occasions when it is used. The fonnal parameter• are

the names by which this information is referred to inside the subroutine

itself. The actual parameters are the expressions which are substituted

in place of the formal parameters whenever the routine is called in.

For each type of formal parameter there is a permissible form for the

actual parameter, as shown in the following tablez

formal parameter type

i;ca1 nm::1.a
integer

corresponding actual parameter

name of an iw;e~ variable

ruune of a ...u:ll varia~le

any expression (which will be

evaluated as for an integer
_____________________ a_s_s __ i.~ent

&AAl:
addr

routine t:,pe i.e. routine

[RT]

real fn

integer fn

real map

integer map

ditto (but for a ~1.l nssi

The name of any into~ or !:!!!!
variable (including an array

element). The actual address of

the variable is handed

arameter ro er

In some cases it is required te

pass on

and the actual parameter

the name of the routine, which

must be of the same type as tbt

formal parameter

parameters which

type to those of the formal

parameter. AD example

a later section

!!Q!! An~ parameter is equivalent to an intepr parameter in

the ltody of the routine. '111e difference relates to the correspondiDI

actual parameter. Thus an~ parueter replaced lty x

&Ja interu parameter replaced lty addr(x).

4.4

I

1

Dl

•4
t11

Th

th

ea:

l"e1I

Wbt

d.)'11.

Olli~

Jn the polynomial example descri~ed earlier, the formal parameter 1

11 an output parameter and the actual parameter must therefore~• a

..... The formal parameters is the address of the fir■t coefficieat

a(O) and the statement array fn a(s, I) esta~lishes the ■tore aappiac

tuction as a(i) =~number in address (s+I.1).

The parameter x may be replaced by an expression the value of which 1•

the parameter proper, similarly for n. [The parameters s, x, n are

called by VALUE; they correspond to local locations in the poly routine.)

The statement end is the formal or written end of the

nutine while return is the dynamic end, i.e. it is the instruction

which r eturns control to the main routine. Where the formal end is also the

dynamic end as in the present example the return instruction can ~e

Ollitted; in this case end serves for both purposes.

Another example of a routine is given below:­

routine mat mult (~ sI, s2, s3 integer m, p, n)

integer 1, j, k; real c

array fn A(sI, p, I), B(s2, n, I), C(s3, n, I)

cycle 1 = o, X, m-1

cycle j = o, x, n-x

C = 0

cycle k = o, I, p-X

C = C + A(i, k)B(h, j)

repeat

C(i, J) = C

repeat

repeat

end

forms the product of an m x p matrix stored in location sl onwards,

stored in s2 onwards, and places the resulting

a x n matrix in s3 onwards, all three matrices being assumed stored row

A typical call sequence might be

mat mult (H(X, I), x(I), y(X), 201 20, X)

ION ROUTINES

When a routine has a sin~le output value only it may

a FUNCTION ROUTINE.

,C. The polynomial routine may be recast as a function routine as folloo:-

real fn poly(~ s, !!!.!, x, integer n)

array fn a(s, I)J integer 11 !.!!! y

y "' a(n)

cycle i en-I, -I, o

y = y.x + a(1)

repeat

!.~"" y

end

Here the(!.!!.!) result must ~e assicned iJ11J11ediately before exit.

The specification is given by

real fn spec poly (~ s, !!!!, x, integer n)

and the routine might be called in ~y an assipment statement such as

y = a.h + 2h. poly (c(O), I/x, 16)

An example of an integer function is &iven below. It

selects the index of the maximum element x(k) in a set x(m), x(m+I)

••• x(n) n > m stored in consecutive locations, assumini x(O) is stored

in address sl.

inte~er fn 111ax(addr sl,

.!2!!.~r:cr 1, k

arrai fn x(sI, I)

k = m

if n = m then-> I

~_ycle i = mtl, I, n

g x(i) > x(k) then k = i

rcp~at

!:result

end

= k

integer m, n)

and a call sequence might be

y =I+ mod(z(max(x(O), 50, IOO)))

NOTE The delimiter result must be used as the l.h.s. of the assicnmnt

statement signifyin, the dynamic end of the function routine. It dou

NOT correspond to a store location and cannot ~e used in any context

other than the above.

STORE MAPPING ROUTINES

Finally, store mapping functions may be defined by writin1

real map or integer mae before the function specification and headiDlt

e.g. real maE X(inte~er 1, j)

result= s + i.n - i.(i-I)/2 - n + j - I

end

This defines a real triagular matrix of n columns, 1

X ■l

e.g,

., t

appe

scop -

of an

in a .

it is

is eml

the re

store

Which

textua

name 11

The pe1

Clear1,

'log',

-teria

In gene:

permane1

PBRMANEi

addr• et

These ro1

Siven

I

I ■ay appear on the l.h••• of an as•irnment atate111ent

••I• X(i-I, j+l) • [BXPR]

•• n would pro•a•ly •• local to the routine in which •uch a •tatement

appeared.

SCOPE OF NAMES

In &eneral all names are declared at the head of a routine

either in the routine headin& or •Y the declarations integer,.!:!!!, array,

array fn, switch, and the various routine specifications.

Therefore they are local to that routine and independent

of any names occurring in other routines. However, if a name appears

in a routine which has not been declared in one of the above ways, thn

it is looked for in the routine outside i.e. in the routine in which it

is embedded. If it is not declared in that routine it is looked f•r in

the routine outside that and so on until the main •lock is reached. The

1tore mapping function of the last section is an example of a routine

which uses non-local names.

Now the 111ain block is itself embedded in a permanent block of

textual level zero which contains the PERMANENT material, so that if a

name is not found in the main •lock it is looked for amon, these.

The permnnent names may in fact be redeclared locally at any level, lm.t

clearly it would be unwise to assign now moaning to such routines as

'log', 'print', etc. This outer block also contains supervisory

aaterial for controllin, tho entry to and exit from the main block.

In general, the only non-local nnMcs used in a routine will •e the

permanent names.

PERMANENT ROUTINES AND LIBRARY ROUTINES.

The permnnent names include the standard functions, sin, 101,

addr, etc. and the •asic input/output routines read, print etc.

These routines are used in a programme without declaration and without

the necessity of insertin, the routine bodies, since these are

,enianently available at level zero. A full list of the permanent routine•

11 civen in Appendix 2.

In addition to the permanent routines, there will exi•t LIBRARY

routines which will •e permanently stored on magnetic tape. These

Ullrary routines may ~e automatically incorporated into a user's

Jl'OP'U •Y means of a library routine declaration.

e.c. li~rary routine spec least squares (~ sI,s2,inte1er ■,a)

!H appropriate routine is then automatically inserted into the

tncrme at the current level i.e. the naJle 1• local to the routiDe

•talninc the li•r&rY dec1aratt~•-

AN EXAMPLE OF A cmtPI.ETE ROtrrnm

routine spec lino fit(~ s, integer n, real na• a, a., c)

The routine takes n pairs of nwnbers Xi, Yi stored in a onward•

and forms the quantities

a= n[>XiYi - [>Xi.fYi

n[>Xi~ - ([>Xi)°'-

b = [>Yi - a[>Xi

n

c = fYi~ - 2(afX1Yi + bfYi) + a~fXi~ + 2abfXi + nit~

[cf introductory example]

ro\ltine line fit(~ s, integor n, real name•• a., c)

real x, y, xx, xy, YY• intc~er i

Y.L~!n X(s, 2), Y(s + I, 2)

X = OJ y = Ot XX = Ot XY = Ot yy a 0

czcle 1 = o, I, n-1

x = X + X(i); y = y + Y(i)

xx = x~ + X(i)a..J yy = yy + Y(i)a.

xy = xy + X(i) Y(i)

!.£e.~
a = (n.xy - x.y)/(n.xx - x.x)

b = (y - a.x)/n

C = yy - 2(a.xy + b.y) +
.1..

xx.a + 2a.b.x + n.bca.

return

end

The stack picture associated with the routine above ia

given below.

fStI 8t2

s n a C :x XX X i s 2 s+I 2

links

When the routine is entered the stack pointer ia advanced froa

Stl to St2. The first two locations are used by the compiler and tbe

other• c

declara1

laltelleci

D&med va

tour loc

tbe rout:

declarat:

dependtna

return ta

tile intor

119Chanics

The

ether• correspond to the formal parameters of the routine, and the

declarations in the Dody of the routine. We note that the locations

laltelled a,lt,c in the diagram will contain the addr"lsses of the

aamod varialtles, since they correspond to output parameters. The last

four locations correspond to the array fn declarations in the ltody •f

the routine. The altove are the fixed variables of the routine; any array

declarations in the routine would cause St to be further advanced lty an &JIOWlt

dependin: on the current values of the parameters in the declaration•• When

altove routine, the stack pointer reverts t• BtI and

tile information between StI and St2 is lost. A further description of the

stack is 1iven in the section on the use of machine

We see from the aDove description of the stack that when a

left the information stored in the local variables of the

lost, and no further reference may De made to it. In some

es it may Ito desirable to retain some of this information and -e altle

refer to it on a subsequent entry to the routine. This 1118.Y lte

prefixin~ the relevant declaration lty ~,

own real a, b; own array A(I:IO)

The effect of ot'ln is to allocate storage space for the named

of the store which is not overwritten when other

called in. This is done at compiler time and hence does not

dynamic significance; as a consequence, an own array statement lllUSt

parameters which are inte~er constants.

IONS AND ROUTINES AS PARAMETERS

This ls illustrated ay the following example involvinc a

library inte~ation routine

routines ec inter;rate (real name y, ~ a, b, integer n, real f n t)

integrates a function f(x) over the range (a , a) •Y evaluatinc

• (f(O) + 4f.,f(I) + Zf(2) + ••• + 4f.,f(2n-I) + f(2n))(lt-a)/6n

f(i) = f(a + .51.(1,-a)/n)

routine is required to evaluate f(x) and details of it

to the library routine. This is done •Y means of the

type [RT] as defined earlier, and the body of the routine

routine integrate (real name y, real•••• inte1er n, real fn f)

real h; inte,er i

real fn spec f(!:!!_! x)

b = .5(11-a)/n

1 = 0

cycle i ~ o, 2, 2n-2

y = y + 2f(a + i.h) + 4f(a +(i+l)h)

repeat

y ~ (y - f(a) + f(11))h/3

end

How consider a prograJll!De to evaluate

1

z = J exp(-y)cos(a.y)dy
0

for various values of 11 read from a data tape, the last value 11einc

followed lly 1000, using the integer value of n nearest to 1011.

llegin

library routine spec intecrate (real name Y,!!!!, a,11,integer n,real ta
real z, b

real fn spec aux (.!:.!!! y)

comment Simpson rule intecration

:uread (11)

if 11 = 1000 ~ stop

integrate (z, o, I, int(lOII), aux)

newline

print (b, 1, 2);space;space;pr1nt (z, 1, 4)
-► l

real fn aux(~ y)

result= exp(-y) cos(a.y)

end

end of program

Note that the names given to the auxiliary reutine and its

parameters need not lie the same in the lillrary programme and the

main programme, llut they must correspond in type.

The function routine 'aux• in the allove example is an example

of a routine referrinc to a non-local name b.

5 INPUT --=
BASIC:

Th

■0111e examp

Th,

TJtj

read. This

inatructton

aatonat1ca1

Thil

ebanne1 and

lllaieh may be

A nUt

the fj

dig

It sho

Pl'OgraJnJ

ted lty 1

If ind.:I

•.c.
Tlaia 1•

(aJ

•lace 11

10

! f)

5 INPUT AND OUTPUT ROUTINES

BASIC INPUT ROUTINES

The input of data is handled by permanent routines,

1ome examples of which were given in an earlier section.

The •asic input instructions are:

routine spec select input (integer i)

This selects an input channel from which subsequent data 1•

read. This channel remains selected until another 'select input'

instruction is encountered. If no channel is specified, channel Ota

automatically selected.

routine spec read ([VARIABLE])

This reads a decimal numbers from the currently selected data

channel and places it in the location specified by the [VARIABLE]

which may be either a real name or an integer name. The routine reads

IDabers in either fixed or floating point form.

e.g. -0.3101 18 7.I32a-7 3.1872.a Lf.

A number is terminated by any character other than a decimal

digit, the first decimal point, or an exponent. An exponent consists

of a followed by an optional number of spaces, an optional sign, and

tilt decimal digits. It is terminated by the first symbol which is not

a deci111al digit. Spaces and newlines precedin~ nwnbers are ignored, ltut

all other symbols cause the routine to signal a fault. A fault is also

an integer variable is not intecral.

It should be noted that a single space is sufficient to

that no spaces are allowed within the mantissa

part of the exponent (c.f. constants appearing

the programme where all spaces are irrelevant and numbers are

ted •Y the following name or delimiter).

If individual numbers are separated only by spaces or newlines,

can lte read by the call

read ([VARIABLE LIST])

e.g. read (a,i,X(i))

This is treated as if it were a series of calls

read (a)J read(i); read (X(i))

hence the subscript of X(i) takes the value just

to 1.

The read routine 1s an exception to the general form of a

, since it may have an indefinite number of real names and

Another pcrm:mcnt :Input routine is

routine spec r end symbol (intetzcr name 1)

This reads the next symbol (single or compound) from the

selected channel, converts it into its numorical equivalent

and places the result in the specified inte~er location. A taDle of

numerical equivalents and a description of the formation of compound

symlaols is given in Appendix 3.

!!Q!!. Erases are ignored completely on input to the computer and

therefore do not exist as a character inside the machine.

BASIC OUTPUT ROUTINES

The basic permanent output routines are:

routine spcc select output (inter:cr 1)

which corresponds to the 'select input• routine . Again channel O is

selected unless otherwise specified.

routine sp~c print fl (~ x, inteqer m)

routine .spec print(~ x, inte~er m, n)

The :first of these prints the value of X'. (which mat of Cour••

lte any [EXPR] in floatin~ point form standardised in the rani:e [I, xol,
with m decimal digits after the decimal point. The number is preceded ~1

a miaus sign if negative, and a space if positive.

The second routine prints the value of x in fixed point form Yitl

m digits boforo the decimal point and n after. Insicnificant

than one iJJUT1ediately before the decimal point are suppres3ed

sign or space precedes the f irst di~it printed. If lxl ~ 10 then extra

digits are included before the decimal point, the effect lteinr to spoil

any vertical alignment of the printed pace.

It should be noted that no terminating characters are included

lty the aklove routines. Terminating characters should lte included_, tht

user by means of the permanent routines given belbWl

routine spcc newline

routine spec space

routine srec spaces(integer n)

r uutine tab

The first of these resets the carriage of the appropriate

printer (or punches the newline character), and the second cause•

the printer to skip a character position. If a number of successive

spaces are required, the third routine may lte used ••I• spaces(S) •

The fourth routine causes the printer to move to the next

talt settinc or punches the tab character.

Another permanent routine is

the

•pac

8yml;

1
und

'WOUl«i

Pl"1ntc

Ir

The

t

1

J

,
ilty

;tth

tber

llU

ra

ll

There 1~ a special facility for printtnc captions,

e.&. caption ~~~~TABLE~OF~TJn.lP}IIAGAINST~VOL;

Thi• prints the in:fonuLtion after caption up te, aut not includinc,

the terminating symbol 'newline• or 'semi-colon'. Since spaces and underlined

•paces are icnored on input and, is a terminatin& symbol, the compeund

•JlUOls - t Sare used Within the caption statement to denote 'space,'

'underlined space', and 'sel!l.1-colon' respectively.

Thus

newline

cnpt1on A~=~~• print (y,I,3); newline

cnption B - = -- ; print (z,I,3); newline

would be printed as

A"" I.712

B = -2.389
To enn•le a caption to appear in the same vertical alignment on the

printed progra.rrrne pa~e and the output pn~e, the followinc device can lte us~J

newline

cnption c

TABLE~OF~TE?ilP~AGAINST-VOL

C7nW.R INPUT / OUTPUT ROUTINES

Input and output of birulry information is performed ay the routines

routine spcc read •inary (inte,er name 1)

routine spoc punch binary (intecer 1)

The first reads the ne.""Ct row of holes on the tape as a ltinary nwger

and places it in the nam~d vn.riable. The second punches the seven

1 .. t significant binary digits of the intec::ral part of the integer

holes on the output tape. In t.oth eases the

must have been desipated 'binary' in the jolt

The following two routines a.re useful in constructinc special purpose

integer fn spec

routine spec

The 1Dstruction

p = next symbol

next symbol

skip symbol

the numerical equivalent of the next simple or compound symltol o•

named varialtle without 110ving on the data tape.

tbe information is still available for a sultsequent read instruction.

tile HCond routine skips a syaltol on the data tape and is equivalent to

read •vmltol ln)

6.1

6 MONITOR PRINTING AND FAULT DIAGNOSIS

FAULT MONITORING

There are two types of fault which can 1le detected ~y the Compiler,

tirstly those which can be found during compiling and secondly those which

•ecome evident durin~ the running of the compiled program. To aid

the programmer in correcting these faults information is automatically

printed out where a fault occurs.

COMPILER Tilil.E UONITORING

During compiling an outline of the program is produced in which the

~eginning and end of each routine are printed ap.inst the physical

line number. This cives a broad outline of the program as an aid in

finding the faulty instructions and also correlates each routine with

its routine number, for uso in tracing faults found at run time (see later),

Also all faults during compiling are monitored. Those to which a line

number can be attached, such as NAME NOT SET, are preceded ay it, while

those which can only be found at the end of a routine such as TOO FEW

REPEATS are monitored after the END. Finally at the end of each routine

all the non-local variables except the reserved names are printod out.

Although these do not necessarily indicate a fault, they may indicate a

name which should have been declared locally. A typical program monitor

might be

I BEGIN

z6 NAME NOT SET

55 LAilEL 7 SET TWICE

70 BEGIN ROUTINE POLY r:: 24
115 NAME NOT SET

II5 REAL QUM'TITY IN EXPR

180 END OF 24
LAllEL 18 NOT SET

NON-LOCAL VARIA1lLES

A

TEMP

SI

:i:82 END

The alK>ve should~• aelf-explana~ory. It indicates that the procraa

started at line I and finished on line 182. These are physical line1

and include all ltlank lines on the print-out.

lines 26 an4

•n• •tateineJ

Which statea

which they 8

Appendix -f. t

RUX TIME MON

Durin1

lloth It,- the c

lbr example,

root o:t a no!

faults connec

The at

•pectf,-ing tb,

l'or example

line numbe

ot the fix,

A :full 1:

The ai.ove

IUIJUeJ

the aj

r

lines 26 and 5S and two in line 115. Since there may ~e 110re than

•n• atatefflent on a line, it is not possible to tell ■pecifically

which statement is involved ~ut the faults are printed in the order in

which they are discovered. A full list of faults is given in

Appendix• together with a brief description of their nature.

RUN TIME MONITOR~

During thG runninc of a program certain faults may 1H, detected

"°th ~y the compiler and by the machine and its supervisor program.

For example, the supervisor program detects the case where the square

root of a negative argument is being requested and the compiler detect■

taalts connected with switch instructions and ,!!!.! instructions.

The standard procedure is to print out a line of information

1pecifying the fault followed by a list of the FIXED variables used.

for example

ALL TESTS FAIL

ROUTINE 38 LINE II7

FIXED VARIABLES

•

•
•
•

instruction in line 117 routine 38
0. line number g1 ves the line in the whole program not in the routine),

of the [COND]' s on the labels were satisfied. Then follows a

of the fixed varialtles of the routine.

A full list of run time faults appears in Appendix 4.

The above standard monitoring procedure involving the tel"Dlination

.. program, may prove inconvenient. For example, if a program has

of sets of data, rather than stop if the accumulator overflows

so large as to be out of the machine's

), in the middle of one set, it •Y 1te preferable to restart on

6.2

The usor may write a set of instructions in his main

program (at label I) and label them, for the accumulator overflow

case, with

fault (I) :

The action taken by the machine is first to print out the nature

of the fnnlt, then to test whether the appropriate fault label has

eeen set; if it has it then obeys the instruction labelled and carries

on; if not it gives the standard fault monitoring.

label nwnhers are given in Appendix 4.
nie relevant fault

FAULT DIAGNOSIS

There are many program faults which manifest themselves only in

wrong answers, and the following facilities are incorporated to aid users

in tracking down such faults.

QUERY PRINTING

All arithmotic instructions, including complex, may be followed

•Ya query(?).

a z:: b(i) + C ?

After obeying such an instruction, the value of the l.h.s. is printed

out in floating point style with ten significant figures. The compilin1

of the query print instructions may be controlled by the statements

compile queries

ignore queries

The first instruction causes the subsequent queries in the program to

be compiled, until an ignore queries statement is reached where subsequent

queries nre ignored.

ROUTINE and LABEL TRACING

There are two tracing facilities available, the routine trace and

the label trace. In the areas where the routine trace is operative it

causes the routine number to be printed out each time it is entered.

The correspondence between routine nwnber and its name can be found fl'Oll

the projp"ain outline produced during the compilation.

may appear

Thus a print-oat

RI R5 R3 R2 RX RS R3 R2 •••••••••••••••••••

The label trace facility allows the flow of the program to he followed

in eater detail. For ever si le instruction ob d th

number 1

[COND] ii

the SWitc

It the la

appear

R:

As With qt

lty the ine

number is printedJ for every.!!!! the value of the la~el at which the

[COND] is satisfied is printed} for every switch it is the value of

the switch that is printed. Thus a print-out might appear

-> 3 ~I-> 4 -> 6 switch 3 -> 7 -> 8 -> 9 ••••••••
If the label and routine trace are both operative the print-out might

appear

RI -> 3 test I-> 4 -> 6 RS switch 3 ••••••••••
Al with queries the areas in which the traces are operative are delimited

lly the instructions

compile jump trace

stop Jump trace

compile routine trace

stop routine trace

7 PnESENT!t.TION OP' COMPLETE PROGRAMS

JOB DESCRIP'T'IONS

The running of progrnms on the computer is controlled •Ya superviaor

program held permanently in the machine. The supervisor accepts

co~plete prograJ'.!'ls as a series of tapes(progran and data) and a

JOB DESCRIPl'ION which J11&Y •e in a separate tape or included with the

program or data. A full description of the syste• is pven elsewhere•••

and in this section we ~ive examples to illustrate the general

principles of job descriptions.

We give first an example of a progra~ with its data on the

aame tape.

JOB

(Title)

COMPILER ATLAS AUTOCODE

OUTPUT

O LINE PRINTER 5 BLOCKS

l TELETYPE 2 BLOCKS

STORE 30

co:.1Plfl'INO 1.5 l!INUTBS

end of proe-ram

DATA

•• Howarth, D.J., Payne, R.B., Sumner, F.H., ''The Manchester Univen1

Atlas Operating System. Pa.rt 2l Users' Description" Computer Jo

OCtoller 1961.

NOTES

l. Thi

1'o a cc

IJe info

the pro

2. Tho ,

program

1be ltloc

output t

ltlock).

altsence ,

C

"
3. The s

upper lim

the progr1

time of tJ

terminated

following

S1'

COi

4- A progi

that in thE

5. •••z is

on the tape

A SI

separ,

COMP

(Tit

begi1

end o:

•••z

~
1. The title identifies the program. The first ff!fl character• rill

•ea code to identify the particular organisation and the rest will

•e information of an arbitrary form to identify the programmer and

the program within the organisation.

2. The OUTPUT information says that reference to channel o in the

pror;rnm means the line printer and channel I means a Teletype punch.

'lbe •lock numbers give an upper limit to the numaer of alocks of

output that is to be permitted on each device (~<>96 characters per

•lock). If the limit is reached the prograa is tenrlnated. In the

aaaence of an OUTPUT section the following is assumed

OUTPUT

O ANY .I BLOCK

ANY indicates that any of the output devices may •e used.

3. The STORE and COMPUTING sections are optional. SI'ORE ctves an

upper limit on the numaer of 512 word main store •locks used by

the program and data, while COMPUTING gives a limit on the runnins

t ime of the program. If either limit is exceeded, the program is

terminated. If the above information is not present, the

following is assumed

STORE 20

COMPUTING 4 SECONDS

4. A program. tape is always assumed to be on prortram channel o so

that in the above case, the data for the problem is also on channel o.
5. •••z is an end of tape marker and indicates that all the information

on the tape has been read.

A second common form of complete program is a program tape

and a separate data tape. In this case the program type might be

COMPILER ATLAS AUTOCODE

(Title I)

begin

end of program

•••z

The dntn tapo. which this time includes the jolt description,

Jai&ht llte

J'OB

(Title 2)

INPUT

o (Title l)

SELF= I

OUTPUT

O ANY IO BLOCKS

STORE 20

COMPUTING 30 SECONDS

DATA

□ •••z

The INPUT description gives the relevant prop-an a• lteing

channel O (the program channel) and SELF• I indicates that the data

tape is to be read as channel I. Thus an instruction 'select input (I)'

would be required in the program.

CORRECTIONS TO PflOGRAMS

It is possible to insert corrections automatically in

a program by reading in a correction tape, which is designated

channel IS in the job description.

The availalltle instructions are

delete line [N]

replace line [N] _£l

end of correction

end of corrections

The line numbers refer to the physical line numbers of

the original program.

A correction tape might lte as below

DATA

(Title)

replace line 30 .!l
a= a•x - b

z = cos (a)

delete line 35
end of corrections

8 C<

of co

are•·
imagti

that C

DECLAR

For exi

causes :

200 for

then the

Would dei

•f the mi

of stort11

Ul>ARD l

Th

arg(

conj(

8.1

8 COMPI..EX ARITHMETIC

As indicated previously, facilities exist for the manipulation

of complex aB well as~ and integer quantities. Complex quantities

are stored as a pair of real numbers in consecutive locations (the real and

illla.ginary parts respectively). The address of the complex quantity 1•

that of the real part.

DECLARATIONS

All quantities must ~e declared at the •ectnnin1 of the routine.
For example

real RI, R2, R3

COT!lplex z

complex array P(I1IO), Q(I1IO,I:IO)

causes 3 locations to N reserved for RI, R2, R3, 2 for z, 20 for P and

200 for Q.

Similarly if sI were the starting address of the matrix Q altove,

then the declaration

complex array fn for R(sI - 20, IO)

would define a complex vector R(i) whose elements were the first column

of the matrix Q. Note that the user noed only •e aware of the method

of storing complex numDers for evaluating the origin (here sl - 20)

of an array. The other parameters (in this case IO) refer to elements

rather than locations and the factor 2 is automatically taken care of.

STANDARD FUNCTIONS

The following standard functions are added to those previously

Shen

re(z)

im(z)

arg(z)

conj(z)

(real part of z)

(imaginary part of z)

(argument of z)

(complex conjugate of z)

8.2

The argument z may uo any [EXPR] (in the complex sense u descri•ed ••low)

The functions

sin, cos, tan, log, exp, sq rt, mod

may also have complex [EXPR]'s as argument• and they are interpreted in

the normal fashion.

For example if

zax+!Y

then exp(z) • exp(x)(cos(y) + ! sin(y))

The functions

arctan, radius, frac pt, int pt, int

are meaningless if their arguments are complex.

ARITID.tETIC EXPRESSIOUS

The arithmetic expression [EXPR] is still of the fora

[:t?][OPERAND][OPERATOR][OPERAND][OPERATOR] •• •• •• •• [OPERAND]

•ut [OPERAND] is now expanded to be

[VAR],[CONST],([EXPR]),l[EXPR]l,[FUNCTION] or i

Here 1 is a delimiter denoting the i (or j) of complex algebra notation.

Examples of this more general expression are

NOTES

(v.conj(I) - I.conj(V))/(!2)

(ZIZ2 + Z2Z3 + Z3ZI)/Z3

Y(I,2) + sin(conj(Y(2,I)))

RO(I + !2QOd)

i

I. When a complex number is written out explicitly (say x + !Y),

then it is regarded as 3 operands (x,! and y) connected ~7 the two

operators+ and (implied)•• Thus if the •rackets were oaitted

from the denominator in the first example it would mean

((V.conj(I) - I.conj(V))/!)2

ARIT -
The 1

•ut c·
examp:

NO'l'ES

I. Ju

instruc·

Jlc,wever,

convert 1

ftlue is

X

re(z)

Ued on

ex&mpl

re,

ARITTIMETIC INSTRUCTIONS

The form of tho instruction remains

(V,\R) • [BXPR]

wt [VAR] now includes complex scalar• and complex array el ... nt•• Por
example

NOTEs -

Z = ZIZ2/(ZI + ZZ)

Y c o + .!,2rf•c

A(p.q) c 2sin (Zrz)

R c RI + re(Z)

P = ~(V.conj(I) + I.conj(V))

l, Just as.!:!!! quantities ,nay not appear on the r.h••• of an inte5er

iutruction (except as arguments of int(x) or intpt (x)), so complex

quantities may not appear in~ or integer inatructiona.
lc,wover • the functions

ro(z), im(z). tn<>d(z), arg(z)

COn.ert from corylcx to ~ quantities and may therefore appear on

the r.h.s. of a ~ instruction. In fact any fu.nction whose

regardless of its arguments aay lte used in a!!!.!,

Thus if X and Bare~ then

X = B + im(Y) is valid

re(z) and im(z) are actual locations in the store and can therefore

l.h,s. of an instruction (whose 110de 1• then real). -
re(z) a sq rt (2)

re(y) a S +1• (zI)

8.3

..

However, JDOd(z) and arg(z), even though they do define z, are not lecatiou

in the •tore and cannot~• used on the l.h.a. If a complex quantity

ia being evaluated ~y moans of the evaluation of it• modulus (m) and

argument (n), the assignment is done by

z ~ m•(cos(a) + ! sin(a))

or z u m•exp (_!a)

When the functions

sin, cos, exp, mod

appear in a co~plex instruction, a test ta made to see whether the

arguments are~ or complex, and the appropriate method used.

~. Howover, when the functions

sq rt, log

appear in a complex instruction, then arguments are regarded as complex.

Consequently, in a complex instruction, the evaluation of sq rt(-~)

!2i and does not cause the machine to atop as it would in a real

instruction.

DATA

complex numbers on a data tape are punched using similar conventions as

for real numbers. For example

Within the number spaces may only appear immediately ~fore or immediatt

after +1 or-!•

They may be read by the usual read instruction

e.g. read (zI,z2,z3)

8.

r
CONDITiom

It

of note I

R0trl'INES A:

S11

quanu ties,

Foraa.1 para

COaplo.x nam

1be rou

a(O).

comp:

come_;

COlll.2]

~cle

y - 1

re,ee!

resul

end -

,..

CONDITIONS

In conditional oporators, [EXPR]'s must ~e !!!,!. (In the sense

of note I of t he previous section). Hence the following are legitimate.

g arg (z) ~ •12 ~ -► 3

3 case lzl ► I l

ROUTINES AND FUNCTIONS

Since routines and functions are allowed to operate on complex

quantities, the parameter types have been expanded to include

roraal parameter type

COlll)lcx name

Actual parameter type

name of a complex variable

any expression (which will be

evaluated as if for a complex

aasignment)

The routine types [RT] have also been expanded to include complex fn

complex map. As an example we will rewrite the function routine for

Ille polynomial

a(O)+a(I)x+ •••••••• a(n)x

nix and the coefficients a(i) to be complex.

comelex fn seec poly(~ s, complex x, integer n)

complex fn poly(~ a, come~!! x, _!nteger n)

complex array fn a(s,I)i integer 1, comElex y

y = a (n)

cicle i m n-I, -I, 0

y = y.x + a(1)

repeat

result = y

!!2

9 HALF-WORD OPERATIONS AND LIST FROCESSING FACILITIES

OPERATIONS ON UALF-wonos

In the previous sections we have regarded the ~8-~1ts of a word as a

single entity, as a numoer in fact. There are many applications in non­

numerical work where we can conveniently regard the 4-8-bits •plit int•

a number of independent entities and even into single digits.(We will tn

these cases consider the 48-bit words as two 24-bit words often called

half-words)• For example, characters are represented lty their numerical

equivalents (see Appendix 3) in the ranee o - X2T • Since this number can

ltft represented in T hits it is possiltle to pack three such character• to a

word. For example a D c could lte packed

a h C

(~1uooofolm@ffibool

i.e. •6070 5430.

Facilities are provided for performing operations on 24-bit words, to

pack and unpack information so stored, and for manipulation in list

structures etc. These are very similar to those used in the Compiler Compiler,

the system used to write the Atlas Autocode Compiler.

The scheme embraces the B-lines of Atlas which are elven the special

OI, ~2, ~3 •••••••••••••••
The restrictions on the use of B-lines described in the section on machine

instructions must be observed. Thus only tJIX - tJ59 are generally available

to the user. Theso are 'global' variables and do not have to be declared nor

handed down fro~ one routine to another as a parameter.

1• assurned to •e one octal place up from the end.

For local variables we may use the least significant half of an

integer type variable. (This is due to the method of storinc an inteGer

quantity. As explained in the section on machine instructions, the inte,er
~ -I).

10 is atored as 8 x(IOx8) i.e.

03000000 00000.120

and if the least si(P'lificant half is interproted in the same way aa a B-11

it has the value .10.

If for example K, MIN, I3, 12

have been declared inte~er quantities then we can refer to their least

significant halves as aK, aMIN, aI3, aI2. In the particular case of the

names aI3, al2 ••••• we can •-breviate them to a3, cr2 ••••• This facilitJ

is peculiar to the names II, 12, 13 ••••• etc. which JIUSt still be decl

Half-wo

[H
and [H-EXPR]

C±'
Where [H] den<

[B] 1• definec

[H­

and [B-VAR] as

tJ[N

"(lf] describes

bal:t of .!.!!.!!!"£!
the ZJ-ltit wore

that this addrE

•/2, [CONST] an

instructions an

parenthesis.

aega tion opera t,

Changod to o•s ,
'Ille half-word 01

+, -.
'!heir operators

I. The operator

operators) a

from left to

al + c

interpreted

(((((c

If any other

uao o:t bracke

The operation

the rieht of

operators +, ~

Ci••• a resul1

3.5 • 41

information

Half-word operations are effected by the instruction

[H-VAR] "" [H-EXPR]

and [H-EXPR] is defined as

[:!;_?][H][HO][H] •••••••••••••• [H]

Where [H] denotes a half-word operand and [HO] a half-word operator

[BJ is defined as

[H-VAR),[CONST],[OW),([H-EXPR])

and [H-VAR] as

tJ [N) ,a[NAME] ,a([H-EXPR])

~[M) describes the B-lines and a[NAJim] the least sicnificant

llalf of inte,..~ [NAJ,IE]'s as descri~ed previou•ly. a([H-EXPR]) denotes

the 24-bit word in the address given by the value of [H-EXPR]. Note

that this address will not in genoral lte intep-al but will take the fora

1/2, [CONST] and [OW] have the moo.nings described in the section on machine

iutructions and ([H-EXPR]) has the usual significance of an expression in

parenthesis. In addition each half-word operand [H] may be preceded by a

•cation operator(-) which causes the operand to be negated (i.e. all I'•

Changed to o's, all o's to I's) before it is used.

operator [HO] is defined as

+, -, *, t, &, .Y, /, ►, ~. (+)

!Mir operators are described in detail below but note

The oporntors have uniform precedence (c.f. ordinary arithmetic

operators) and are ap~lied to successive partial results in order

from left to right. Thus

al+ a2 - a3 & a4, .Y a5l6.125

interpreted

(((((al+a2)-a3) & 04,) .Y aS)/6.125)

If any other interpretation is required it must be indicated by the

use of brackets which have the usual over-ridinc precedence.

The operations are carried out on all 24-bits includinc the three to

the richt of the binary point.

have their usual meanin~s. • denotes multiplication

result with the decimal point three places up frou the least

end. Thus

3.5 • 4.5 yields 15.75
be lost at the least significant end, the exact

t is rounded by the addition n~ TIT~ T-~---•~-- A ,

9.J

/ den•tea division and ci•e• a quotient with the deciaal point three place■ up.

•• !, t (Called 'and', 'or' and 'not equivalent' respectively) are logical

operations which are performed between each pair of correspondtnc dicit■ 1•

parallel. For any pair of di&its the result is Cf.ven ~y the followiDC ta~lea

Thus

i.e.

IIIGllld

i.e.

O & I= O

I & 0 a 0

the operation

o Vo= O

0 VI= I

I V O = I

I V I == I

•00000031 & •00000055

000 000 000 000 000 000 OII 001

& 000 000 000 000 000 000 IOI IOI

give 000 000 000 000 000 000 00I OOI

*0OOOO0II

OtO=O

O_EI•I

It O • I

I ,E I a O

The operators• and ◄ refer to left and right shifts respectively

(n•te that ► must not be confused with->, the arrow sip)

l'hese shift the digits up or down circularlyJ i.e. digits which are shifted

~ver the top reappear at the bottom.

l'hus if al = *0707 0707 then a2 = al ◄ 3

and a3 =al ► 2

sets

sets

Cl2 ::a *7070 7070

a3 a •6161 6161

These instructions allow us to unpack informatioa packed in the

escribed at the beginning of the section. Thus if al contains a, It, and c

i.e. 1! al= •6010 5430

then a2 = al & *0037 6000 > 7

sets a2 to •oooo 1420, the numerical equivalent of b.

The operation(+) refers to the chaining of information and is

described later (see section on lists).

The form of the conditional operators is expanded to allow

[H-EXPR][~][H-EXPR] as a form of [SC]. For example a conditional instruct

may lte

!! '31 ~ al+I0 ~ ->I0

or !! tl3+tJ-i , IOO0 ~ al = al+I

CONVERSION TO INTEGER OR REAL

The definition of [EXPR] has been extended to include [H-EXPR] u
ILll alternative form, thus

=

constants. If an
1

as part of an (EXPJ

•icn1~icant half o:
to £!!! the result

iaed. Note however

~its being assumed

With the treatment '

[BAME]= [EXPR'].

that is to say the J

permit constants whJ

Quite often in

•►sections which m:

tile total of all the

is 1

er the largest po.!:

teful of storacre a

A list consists

• J?air of half-wor

ormatton and the s,

in inverted commas

if

and

t might appoar:-

C
to

a chain. In cenera

nd half of the :

It is to this type

i• set to the adcb:

the chain, aI(+)

the lists are circ

C+)I ~ a(aI+i).

If an [H-EXPR] app~ars in place of an [EXPR] (or within parentheses

an [EXPR]) it is converted to 48-bit form ay civing it a most

half 0300 0000 if it is +ve, 03I7 7777 if it 1s -ve. To convert

result is then simply standardised, otherwise it is left unstandard­

• Note however that all 24 Dits are preserved, the three least si&:nificant

~eing asswned to be zero or in some way relevant. This is consistent

of the instruction i = 2.5, which is recognised as

1 = [EXPR']. Strictly speaking the [EXPR'] should be an 'integer' expression,

result should be an exact inte&er. The checks applied, however,

t constants which are a multiple of I/8.

Quite often in non-numeric work, the data WlY ae divided into

1ections which may have a length which varies over wide limits but where

the sections generally is much more constant. The straii:bt­

is to allocate storage for each section aig enough to

the largest possible length which may appear. However, this is vory

ful of storar;e and the idea of a gg has been developed to overcome this.

consists of a number of full-word re~isters which may be considered

half-word registers. The first half-~ord contains useful

tion and the second the addross of the 'next' word in the chain. 'Next'

commas since the actual location of the 'next' word may be anywhere

it

and

~ indicates an 'information' word

□ the linking addresses,

Ui
to utilise AI.L the working space as all words may be linked

deal with CIRCULAR chains, i.e. chains in which

word contains the address of the first word.

type of structure that the operator(+) refers. Thus

address of (often shortened to 'if aI points to') a

the chain, al(+)l points to the next, and al(+)Z to the one after.

lists are circular, in the above aI(+)S.:: al. Again from the nature of

(+)I,: a(aI+i).

traversed in one direction (the direction of 'the

LIST PROCESSING FACILITIES

The Autocode contains a number of facilities for forminc and manipulatiDI

liata. All the operations make use of a central or znain chain, whose

address is kept in ~89

A lar&e area of tho store is initially chained up in thia way and it

is assumed that while reiisters may be 'borrowed from and returned to it,

it is novcr exhausted.

Lists are referred to by.!!,!! [H-VAR]. Thus.!!!! al is the list whose

address is given by al. The main chain then is effectively_!!!! ~89. Empty

lists are characterised by havin~ this address zero.

For setting up lists initially the instruction

sot up list [H-VAR]

is provided. It creates an empty list for use later on. To do this, of course,

it merely sets [II-VAR] = o. (In fact for example al= O could be writtea

and it would have the samo effect. The above format is essentially to

increase readability of pro~runs).

Items can then be added to this list by the instruction

~ [H-EXPR] to list [H-VAR]

For the first variable to be added the instruction causes the [H-BXPR] t• N

evaluated and placed in the next word in the main chain• and then the word 1'

detached and made into a circular list of one word.

Thus the instructions

sot ltp list al

Arld ~IO to 11s~ al

would result inn chanr:;e from

to

location•

li•t, al I

[

A ceueque1

1POuld cause

[

JIOTES

I. In list -
•• The word

(which c.

in Which

A nuab«

iutruct1on

E

ris

Items ma:

The [B-VAR:

On travers1

order in wh

Sa this latt

~

corres1

•

location of the main chain, which ia then detached and added to the

li1t, al ~einc updated in the proce••• The liat then appearas-

~~10 I) t··~
t

ed.

~
A ceuequent

add 10 to list al

would cause list al to become

10

cd
111'!S -
I, In!!!! [H-VAR], the [H-VAR] always points to the laat word added •

The words are added in such a way that on traverainc the chaia

(which can only be done in one direction), the iteu are ■et in the order

in which they are entered.

A number of items can~• added at the same time ~Y meau of the

~ [H-EXPR-LIST] to list [H-VAR]

lllere [B-EXPR-LIST] is defined as a series of [H-EXPR]'a •eparated ~Y comuas.

set up list al

~ PIO, ~+IS, IO to list al

rise to the same list as above.

lteJD8 may be placed in a chain in another way and the resulttnc chain

called a NEST. In contrast to a list the nest bas the followinc properties.

The [B-VAR] always points to the first word added.

On traversing the nest, items are encountered in the reverse

order in which they are entered.

II this latter property which is important in nests. It is a 'fir•t-

set up nest a2

the correspondinc listinc instruction, sets a2 • o.
lJ the instruction

yp,0 1 µ
i

act

However a followinc instruction, say,

~ <r4 + 15 to nest a2

results in

where a2 is unchanged and the consequent

add 10 to nest a2

results in

H~10l
t

all
where the i tem added is inserted immediately after the itea at the head ot

the chain (i.e. the one whose address is in a2) and where a2 does not chanp.

The instruction

add [H-EXPR-LIST] to nest [H-VAR]

adds a series of [H-EXPR]'s to the nest.

There are two instructions for retrieving infonsation stored in liat•

and nests.

withdraw [H-VAR] from list [H-VAR]

sets [H-VAR] to the value of the FIRST item entered in the list and

returns the word which contained it to the main chain. For example,

considering the list al previously ~uilt up, the instruction

withdraw IJ5 from list al

sets /JS to the value of tJIO and contracts the list to

•am\J orde.r

The corres

Yi

sets [H-VA

word it us,

wi·

••ts IJ5 to

and .further

the REVERSE

NOTES

I. The two

difference 1

the differen·

aet the [H-V,

the Chain anc

2. I:f the 1 :1

or ~ to 2

Lists

OJ

• effect is

•u~ order in which it was entered.

The corresponding nesting instruction

withdrnw [B-VAR] from nest [H-VAR]

set• [H-VAR] to the value of the~ item entered and returns the

word it used to the main chain; for example•

withdraw PS from nest a2

aets ~5 to 10 and contracts the nest to

and further withdraw orders cause the intorma tion to 1te retrieved in

the REVERSE order to which it was entered.

NOTES -
1. The two operations are exactly the sam~ physically; it is the

difference in entering information in a list or nest which results in

the different order in which items are withdra'Wll. The action is to

aet the [H-VAR] to the information in the next word after the head of

the chain and return that word to the main chain.

a. If the list or nest contains only one word. withdrawing a word sets

aI or a2 to zero. It is impossible to withdraw information from an

epty list or nest and any attempt to do so will cause trouble.

Lists or nests may be deleted by

delete list [H-VAR]

or dolete nest [H-VAR]

is to break open the list or nest and return it to the main

to the following diagram

lete list P4 would result in

10 TJIE US!_OF MACHINE INSTRUCTIONS

STACK STRUCTl!RE

10.1

Machine instructions can be used in routines either to make an

inner loop more efficient or to effect some operation which cannot easily

be done otherwise. It is essential however, before using such instruction•

to krow how data is stored in the stack. We shall assume from here

that the reader is rensonably familiar with the logical structure of the

machine, that is with the basic order code. We shall illustrate the

use of machine instructions by recoding the inner loop of the routine

'line fit' described earlier. The local data of the routine is stored

as follows:

Bd

0 I 2

s

3 6 7

n C X

8 IO I2 13 l

XX X i s 2

~,-________ _.,\ V I\
LINKS l floating point numbers._ ____]

unstnndnrdised floating point integers

0

17

Here Bd refers to the B-line associated with the routine, and corresponds

to the textual depth of the routine in the proc;ramme in which it is

embedded. If (sny) this is 2 then Dd.:: D2. The addresses 2, 3, 4, • • • •••
associated with s, n, a, etc., arc assigned of course at compiler time.

The coefficients s, 2 and s+l, 2 of the array functions are evaluated at

run time however when these stater.tents are encountered. All the above

qunntities nrc referred to as the 'fixed' variables. There are no

local arrays involved in this routino. ngo always points to the next

available location in the stack. Bd points to the old position of B(JO

before the routine was called in. The previous contents of Bd (if any)

aro stored in (Drl,½) and the control numhcr link in (Bd, O). The

location (Dd, I) is used in test instructions while (Dd,3/2) holds the

number of fixed variables in the routine.ngo is advanced from its original

7alue to the value shown Rd+ I7 iremediately on entering the routine.

The unstandardised integers are obtained by adding o.8
version with the add instruction 0330.

ll ~r,._
as 8 .(10.8 J, i.e., as

03000000 OOOOOI20 in octal form

ITACK INSTRUCTIONS

The following autocode formats involving the stack pointer (BgO)

re available

!.! repres

must bo 1 ,

fault is j

MACHINE CO

We shnll nt

I. Where

written in

(and termina

function digl

to the addres

(preceded P<>s

located 3 pla,

in octal notat1

The eff

•et the address

The format

·1■ similar to (I)

number. This co

any sigt

00.

notation.

The format

to plant a s1

ent location nf • - --

••

.!! represents the contents ot ego. In the last instruction the [KAME]

~ust bo local to the routine containing the instruction, otherwise a

fault is indicated.

MACHINE CODR FORMATS

We shall now describe somo 'machine code' formats.

I. Where there is no symbolic address involved an iutruction 1•

written in the form

[FD],[N],[Nl,[±?l[CONST]

(and terminated as usual by; or newline). Here [FD] refers to the

function digits, [N] to the Ba and Bm digits, and [+?)[CONST]

10.2

to the address part. This last is written as a constant in the usual way

(preceded possibly by a sign) bearing in mind that the binary point 1s

located 3 places from the right band end. Thus

0I0I, 80, 2 1 2.5
04064002 00000024

is equivalent to

in octal notation •

The effect of this instruction in the above routine would be to

Ht the address s in B8o.

2, The format

[FD],[N],[N),[cn]

ii similar to (I) but here the address part is written as an octal

llllllber. This consists of an• followed by up to 8 octal digits,

any significant zeros. Thus •0041 is equivalent to the 24

00410000

The format

C±?l[CONST]

to plant a standardised 4-8-bit floating point numher in the

location of the prograta111e.
,,..._ ,. ___

plants a pair of 24-bit words, each simil~r to the address part of (I),

in the current location.

The format

[OW],(OW]

plants a pair of half words, each similar to the address part of (2).

address.

6.

We now have three instruction formats which use a symbolic

[FD],[N], - ,[NAME]

Here the [NAME] must refer to an integer (or~),~• integer name,

real name. In the case of an integer or~ name, the resulting

instruction is as follows

(FD],[N], d, p

10.3

where (Bd, p) is the 'address' of the name, Bd being the B-line pointinc

to the appr~priato section of the stack, and p being the address relative

to the origin of that section. Thus an instruction

0324, 0 1 -, X

appearing in the routine under discussion would be translated as

0324, o, 2, 7

The effect would bo to put x in the accumulator. In case of inteGer !!!!!
and real n~me the symbolic instruction always corresponds to a pair of

instructions, thus

0324, o, -, a

0101, 99, 2, 4.5
0324, o, 99, 0

is translated as

If the [NA.J,O:] refers to an unstandardised floating point integer then••

may wish to select the integral half for use in a &-line.

done by writing a before the [NAME]. Thus

0101, 80, -, as

is equivalent to

0101, Bo, 2, 2.5

This can be

If '

Pail

[X]z

Corre

this ,

puts an

8. Fi

a more

programr

where ag

actual a,

With the

0.5 it a

the value

1• set up

If• were an integer name then the in8truct1on would corresponcl to the

pair of instructions

0101, 99. 2, 2.5
0101, 80, 99, 0.5

T. In the instruction format

[FD],[N],[N],[H]I

[M]z refers to a simple label. It is replaced -1 the control num'IHtr

corresponding to the label. We may refer to labelled constants in

this way. For example

•
•
•

141 •03, •0000012

puts an unstandardised 10 in the accumulator

8. Finally, we have a special purpose format, the use of which requires

a mre detailed understanding of the operation of the translated

programme.

[FD],[N], -, [-?][N][NA.ME][,:tCONST?]

where again the [NAME] can lte preceded by er if necessary• Here the

actual address is obtained by selecting a particular address associated

11th the [NAME], adding to it the [±CONST] if present, and finally adding

0.5 if a is present. The particular address referred to is specified by

[-?][N]. It is obtained by looking up a property list which

the compiler for each name quantity. The significance of the

cussed earlier,thus

can be o~tained in this way is explained elsewhere.

we may refer to the storage layout of the routine

0101, 80, -, IcrX

the origin of the X vector in B8o. Here X was defined as the

2). However, in the following version of the 'line fit'

routine line tit(~•• inte1er n, real naae a, 11, c)

!:!!,! x, y, :xx, xy, yy

X • OJ y a OJ XX a OJ xy • OJ yy a 0

OIOI, 80, -, as

0101, BI,-, an

0124, 81, 81, -2

2S 0324, Bo, 8I, 0

0320, 0, -, X

0356, 0 1 -, X

0324, 80, 81, 0
0362, 80, 81, 0

0320, O, -, XX

0356, O, -, XX

0324, 80, 81, 0

0362, 80, 81, I

0320, o, -, xy

0356, o, .. , xy

0324, Bo, 81, 1

0320, o, -, y

0356, o, -, y

0324, 80, 81, I

0362, Bo, 8:r, I

0320, o, -, yy

0356, o, -, yy

02J.:4, 127, 81, IS

0122, 81, o, 2

012:r, 127, o, :ii

}

Ii a= (n.xy - x.y)/(n.xx - x.x)

11 = (y - a.x)/n

load• into B8o

load n into B8I

fora 2n - 2

X(i) + X -> X

~
X(i) + XX: --> XX

X(i)Y(i) + xy --> xy

Y(i) + y --> y

Y(i)~ + YY -> YY

!! 'B8I a o• then-> I

B8I = B8I • 2

--> 2

1 1 c = yy - 2(a.xy + b.y) + xx.a - 2a.11.x + n.11

end

VSB 0-t_

those &

Which ar

emlteddin1

tars it

deep.

'I

by certa1

every auti

of the tyJ

Al

Therefore

US! OF B-LINES

The user of aachine 1natruct1ona IIU•t take care to avoid uains

those B-lines which are used by the ayste~. These are

BI, B2, B3, ---

which are associated with routine• of textual depth I, 2, 3, etc. The

eueddinc of routines within each other would not normally extend very

far1 it would 1-e a very complicated prograJ1 indeed that ran to IO

deep.

The extracode sequences use BgI - Bg7. Bg8, B99 are only used

~J certain extracodes ~ut on the other hand they are used DJ almoat

••ery autocode instruction and indeed ~y certain 'aachine• instructions

of the type 6.

Also B6o - B79 are used 1ty permanent &l\d li~rary routine••

Therefore the user should con.fine himself to BIO - B59.

10.6

Al.l

APPENDIX I PHRASE STRUCTURE NOTATION

In describing Atlas Autocode we use aquare ~rackets round an

entity to d~note that it represents a class of entities and JOaY ~e replaced

by any member of the class. We call an entity in square brackets a PHRASE.

For example we could define a decimal digit by

PHRASE [DIGIT]= O,I,2,31 ~,5,6,T,8,9
whero the comm.~s are interpreted as meaning 'or'. Thus there are ten different

things which can be called [DIGIT], and when we refer to [DIGIT] elsewhere

we menn that any of tho ten will be legitimate.

We can then build up from this basis and describe, for example,

a signed digit as

PJIB,\SE [SI~:I:D DIGIT] = +[DIGIT], -[DIGIT]

Th~re arc many phrases in which a particular component may appear

an indefinite n11m1>cr of times (for example an integer 111ny have any nwnber

of d'gits), and n special qualifier* is used in a phrase to indicate that

it appears nt least once, but may be repeated any number of times.

Thus, havinr, defined [DIGIT] we mny define an integer and call it [N] by

~IRASE [N] = (DIGIT*]

There arc also places where a phrase JIUlY or may not appear and t he

qualifier? is used. For example a name in Atlas Autocode may be formally

defined by

PlffiJ\SE [N,\UE] =- [LETTER•][DIGIT•?](PRDm•?]

PiffiASE [LETICR] = a,b,c,d,c,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x, y,1

A, n,c,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,1

and Plllt\SE [PRIME] = '

The Atlas Autocode language iJ recut"sive and phrase definitions mny use

themselv{.s. For oxnr.:ple wo may define a 'list of names separated by Co11111U1

PlffiASE [l'l'Al.lE LIST] = [NAME][,](NAME LIST], [NAME]

Thus C is a [NAME LIST] since it is a [NAME],

b,c is a [NAME LIST] since b is a [NMIB] and c, a [NAME LIST] I

a,b,c is a [NAME LIST] since a is a [NAJ.IE] and lt, c, a [NAME LIST] etc.

Note that if a comma is a component of a phrase it must appear in squar e

ltrackots as above, to distinguish it from the comma which separates the

alternatives of a phrase.

Tho qualifier• also indicates recursiveness and a [KAME LIST]

could be defined as

PHRASE [NAME LIST] = [NAME][,NAMB•?]

wher~ PHRASE [,NAJ.IE] a [,][NAJdE]

Gi ven 1

a llowoc

we can

Tho [SS.

its Olm

the unco

thoy may

unless [1

Note tha1

These ar e

but t hose

F

complete 1:

definod a~

FC

In the rou

the [NM,IE)

• function

Brooker,

Computer

Brooker,

''The Co1

(ed. Go<

Al.2

Givon tho phrases of tho lant:tJage it is thon possible to describe all the format•

allowed in a progrnm. For cxnmple, if we introduce the phrase [TYPE] as

l'JIRASE [TYPE] = intei;;or, ~• complex

we can then define the format for tho scalar declarations as

FORMAT [SS] = [TYPE)[NA1,tE LIST][S]

Tho [SS] indicates that it is a source statement which means it appears on

its own in an Autocode program.

In Atlas Autocode there is a further typo or CLASS of format,

the unconditional instructions [UI], which have the special property that

they may bo preceded by the conditional operators!!, [COND] .!!!.£.!! and

unless [COND] then.

A list of the phrases and formats of Atlas Autocodo follows.

Note that some phrases ([S],[CONST],[NAME] and [TEXT])aro not formally defined.

These arc defined by special built-in routines which we will not consider here,

llut those interested may refer to tho references given below.

Finally we should point out that some of the definitions are not

rigid. For example, the arithmetic assignment statement is

as

FORMAT [UI] = [NAME](APP] = [EXPR]

routine which deals with this format, tests are made to ensure that

does in fact describe a variable, and is not, for exam~le,

1 function.

Morris,o. and Rohl, J.s.,

Co111p11tcr Journal, Vol. 5. No. I.

''Trees and Routines'',

Maccallum, I.R., Morris,D. and Rohl,J.s.

" The Compiler Compiler'' 3rd Annual Review of Automatic Programming

(ed. Goodman), Pergamon Press.

PHRASES AND FORMATS OF ATLAS AUTOCODE

PHRASE [EXPR] -
PJffiASE [EXPR'] -
PHRASE [OPERATOR] Ill

PHRASE [OPERAND] -
PHRASE [APP) =

PHRASE [EXPR-LIST] -
PJffiASE [TYPE] ...
PHRASE (QUERY) ""
PHRASE [NAME LIST] ..
PHRASE [ARRAY LIST) =r

PHRASE [ARRAY FN LIST] ""

PHRASE [OOUND PAIR LIST]n

PHRASE [OWN ARRAY LIST]=

f±?][EXPR'], [H-EXPR]

[OPERAND][OPERATOR][EXPR'],[OPERAND]

+, -, *, I, i, ., NIL

[NAME] [APP], [CONST), ([EXPR]), I [EXPR] I,!
([EXPR-LIST]), NIL

[EXPR][,][EXPR-LIST],[EXPR]

inte~er, .!:.~, complex

?

[NAME][,][NAME LIST], [NAME]

[NAME LIST]([BOUND PAIR LIST])[,][ARRAY LIST],

[NAME LIST]([BOUNO PAIR LIST])

[NAME]([EXPR][,][EXPR-LIST])[,)[ARRAY FN LIST],

[NAME]([EXPR][,][EXPR-LIST])

[EXPR]t[EXPR)[,)[OOUND PAIR LIST],

[EXPR]: [EX:PR]

[NAME LIST]([CONSTANT BOUND PAIR LIST])[,][OiVN ARIAf

[NAME LIST]([CONSTANT BOUND PAIR LIST])

PHRASE [CONSTANT BOUND PAIR LIST]=[N]:[N][,][N]:[N),[N]:[N]

PHRASE [COND] = [AND-C],[OR-C]

PHRASE [AND-C] C: [SC)~ [AND-C],[SC]

PHRASE [OR-C] Cl [SC].£.! [OR-C],[SC]

PHRASE [SC] = [H-EXPR] [COMP] [H-EXPR], [EXPR] [COMP] [EXPR][COMP](

[EXPR](Cm.1P)[EXPR], ([COND])

PHRASE [COMP] "" =, ~. >, ~. <, ~

PHRASE [RT] n routine, inte~er ma.2, real ma.e,

real fn, com~lex fn

PHRASE (FPP] Cl ([FP1']), NIL

PHRASE [FP] = [FP-DELIMITER][NAJ,1'E]

PHRASE [FP-DELIMITER] n [,?] inteccr name, [,?] real name, [,?] co

(,?] integer, [,?] ~. [,?] complex, [,?]

[,?][RT],[,]

PHRASE [N-LIST] i:a [N][,][N-LIST],[N]

PHRASE [SWITCH LIST] = [NAME LIST]([-?][N]:[-?][N])[,][SWITCH LIST],

[NAME l,IST]([-?][N]: [-?l[N])

PHRASE[-] ...
PHRASE [ALPHA] "" er

PHRASE [H-EXPR] ... C±?lCH-EXPR']

I[± CONST]

[CJ

[COR.REcTI<

[UI]

(UI]

I (R-EXPR'] •

I [NEG] •

I [R] •

(HO] •

-
I C.!!!! or .!!!!!] •
I [R-EXPR-LIST] •

--
[C0RRECTIOK] a

[NEG?][H][HO][H-EXPR'],[NEO?][H]

(-)

[H-VAR],(CONST],(OW'],([H-BXPR])

+, •, k, !, Z,, -, /, ►, •, (+)

~(N], a[NAME], a([H-EXPR])

!!!!, nest

[H-EXPR][,][H-EXPR-LIST],[H-BXPR]

C±l[CONST]

delete line [N], replace line [Kl_&, end of [CORRBCTION]

corrections, correction

• (NAME][APP] = [EXPR][QUBRY?]

a

•

•
• ----
•
•

-

[NAME][APP]

stop

return

-> [N]

~ [N-LIST]

-> [NAME]([-?][N])

-> [NAME]((EXPR])

caption [TEXT]

[H-VAR] ::a [H-EXPR]

~ [H-EXPR] !_2 [.!!!!,! or .!!!!.!,][B-VAR]

~ [H-EXPR-LIST] !_2 [!!!.! or .!!!!,!lCH-VAR]

withdraw [H-VAR] ~ [ll!,! or !!!!,!1£R-VAR]

add list [B-VAR] to list [H-VAR]

split list [H-VAR] ~ [H-VAR]

set up[!!!! or .!!!!!1 [B-VAR]

[lJI][S)

.!! (CORD]!!!!! [UI)[S]

unless [CORD] then (UI)[S]

FOR~L\T [SS]

FORMAT [SS]

FORMAT (SS]

FORMAT [SS]

FORM.AT [SS]

FORMAT [SS]

FORM.AT [SS]

FORMAT [SS]

FORMAT [SS]

FOR.'MT [SS]

FORiMT [SS]

FORMAT (SS]

FORMAT [SS]

FORMAT [SS]

FORMAT [SS]

FORMAT [SS]

FORMi\T [SS]

FOID.11\T [SS]

FORMAT [SS]

FORMAT [SS]

FORMAT [SS]

FORMAT [SS]

FOR'{AT (SS]

FORM.AT [SS]

FORMAT [SS]

FORM.\T [SS]

FORMAT [SS]

FORMAT (SS]

FORMAT [SS]

FORMAT [SS]

FORM.AT [SS]

FORMAT [SS]

FORMAT [SS]

FORM.AT [SS]

FORMAT [SS]

FORMAT [SS]

FORMAT [SS]

-
...
:1!11

a

ae

Cl

Cl

"'

..
=
a

Cl

12

-
"'
a

a

a

112

=
...
,..

..
-..
=

-
a

..

[UI] llnl<'Ht:_ [CONn]ls]

cyclo [N/\1.m] = [EXPR](,](EXPR][,](EXPR)[S]

rcpe:tt [S]

[TYPE][NAME LIST][S]

[TYPE?] array [/\RRAY LIST][S]

[TYPE?] array fn [ARRAY FN LIST][S]

~ [TYPE][NAME LIST][$]

~ [TYPE?] array [crdN ARRAY LIST][S]

[RT] Spee [NAME][FPP][S]

[RT][NAME][FPP][S]

begin [S]

~ [S]

end of pro<;ram [S]

[N]:

[N] ~ [COND]i

[NAUE]([-?][N]):

switch [SWITCH LIST][S]

compile queries [S]

iimore 9ucrics [S]

compile juMp trnce [S]

compile routine trace [S]

stop ,ittnp trace [S]

stop routine trace [S]

com~~nt [TEXT](S]

[FD)[,][N)[,][N][,][;:t?][CONST][S]

[FD][,](N][,][N][,][OW)[S]

[;:t ?] [CONST][S]

C::t?][CONST](,][z:?][CONST][S]

[OW)[,][OW][S]

[FD][,][N][,]-[,](ALPHA?][NAME][S)

[FD](,][N][,]-[,][-?](M][ALPHA?][NAMB][+ COJffl

[FD][,][N](,][N][,](N]s(S]

result= [EXPR][S]

[NAME] a ,!! [S]

!,! a [EXPR][S]

.!.! • .!.! C±l[EXPR']Cs]

[CORRECTION)[S]

Al

an,

.!t...

typ

In 1

para

a)

1,) I

c) 'I

e,rpre

intel!!

inte1te

real f :

comple:

Content

in the :

Minn

5

APPXJmIX 2 LIST OF STANDA.llD P'UNCTIOMS AJro PEIUIAJ{ENT llOUTINES

All the functions and routines listed ~elow are rleclared at level o

and hence aro per .. nentl7 aYaila~le unless the na.me■ are redeclnred

locally ~y the user.

I. STANDftP.D MATKEMATICAL FUNCTIONS

s~~e of the functions are special cases in that the function

type and the type of the formal parameters 111&7 depend on context. For

example 'sq rt' exists in the following two forJM

real fn spec sq rt(.!:!!! x)

co~plex fn spec sq rt (complex z) (see Section 8)

In the followinc lists we shall assume that n r epresent• a formal

pa~ameter of type inte~er, x of type !,!!l, and z of type complex.

The following functions may appenr in inteqer expressions

int pt(x) int (x) parity (n)

The following, tocether with (a), may appear in~ expressions

sin(x) cos(x) tan(x) log(x) exp(x) sq rt(x)

arc tan(x,y) (-r<9<•) radius (x,y)

JllOd(z) rc(z) im(z) arg(z)

frac pt(x,7)

c) The following, together with (a) and (b), ~ay appear in complex

A2.l

expressions

sin(z) cos(z) tan(z) log(z) 8'lCJ)(Z) sq rt(z) conj(z)

~, STORAC.F. FU~CTIO~S

intcr.:er fn SE'-'<" addr ((VAR))

inte!'ier fn s r cc intecer (intc&cr n)

real fn spP.c ronl (inte~e~ n)

coinplex fn ~2oc complex (inteqer n)

The address recovory function ia a special case since the

feml parameter type of the argument may bo integer naffle or real name.

The functions inte~er (n), real (n), C01TJplex (n) give the

contents of storage location n •• an integer,!.!!!,, or complex nWl~erJ

in the lut case the two part• of the complex DWDlter are assumed to

Nian and n + i:.

31 INPUT/ OUTPUT ROUTINES (see Section 5)

routine l'lpec l'lelect input (integer n)

routine s pec read ((VARIABLE LIST])

routine s pec read symbol ~integer nAwie n)

routin~ s pec read binary (integer nAme n)

routine spec eelect output (inte~er n)

rout ine spcc print (real x, inteGer m,n)

routine f:rl:lc print fl (real x, intoger n)

r outine cir<'c print symbol (intP.ger n)

ro11tir" sr"c punch binary (intci,er n)

1•011tino :=:pnc !<ipace

routine !1pN• sp'lco~ (int'!";er n)

routin" snnr nrwlino

rou!:in" r-pnc tab

inteF,cr fn ~~nc next symbol

r outine /'P'•"C :-kip symbol

Th" al~Qvc roatincs aro the basic input/output routines,

but it is anticipated that more comprehensive routines will be

actdcd l'Jh<>rtly.

:4• M.'\TR IX R0_~P."F.~

A2.2

111c fol lowing b:\sic 111atrix routines are available. It 1•

assumed thnt tho w~triccs are stored by rows in the conventional •anner.

ro••t i1H~ sp,...c mat mult (~ sI,s2,s3, integer wi,n,1)

1his forms nn m x n matrix in sI onwards, as the product of

an m x l r~trix in s2 onwards and an l x n matrix in s3 onwards.

routtnc s pcc mat div (~ sI,s2, intoger m,n)

This replaces them x n 11\atrix A in sl onwards by the• x n

~atrix WA, where Dis an m x m matrix stored in s2 omrards. B 1•

destroyed by the routine.

routine spec mat trans (~ sI,s2, integer a,n)

This forms in sl onwards the transpose of then x • -trix

stor~d in s2 onwards .

real fn spcc det (~ aI, integer ■)

This evaluates the determinant of the• x • .. triX •tored

of fj

~

Given

where

• steJ

to the

real r

The re

•almt •

places

5, INTEGRATION OF ORDINARY DIFFERENTIAL ESUA'l'IONS

A perJMnont routine is a~aila~le for the integration of syatema

of first order ordinary differential equations.

routine s_p__e_£ int step(~ s, real na111e x, integer n,m, real h, routine f)

Given the syst~m of equations

yi' ~ fi(x,yI,y2, •••••• yn) i = 1,2, ••••• n

where yi at xo is known, the routine evaluates yi at xO + li'!h by

Ill steps of a Rungo-Kutta fourth-order integration process. On entry

to the routine, yt at xO is stored ins onwards and xo in the

real name x. On exit, yi at xO + mh are ins onwards and xo + Jllh in x.

The routine requires an auxiliary routine to evaluate the derivatives.

routine spcc f (~ sI,s2, ~ x)

This must be written so that when it is entered with a

valuo of x and values of yi in sl onwnrds, it evaluates the fi and

places them in s2 onwards.

APPEffDIX 3 NUMERICAL EQUIVALENTS OF BASIC AND COKPOUND snmoLS

The nWllerical equivalents for use in conjunction with the 'read •,-,ol'

and 'print symbol' routines are given in the taltle ovorleaf.

the numerical equivalents of the basic •ymbol• i.e. •Ylftbol• comprising a

s i ngle (upper or lower case) character.

Up to three basic symbols may lte superiJDpOsed (by mean.a of the

ltackspace facility) to form a compound symbol.

e .g. 'l. is formed fro••_ /

The n\ll'l\erical equivalent of a compound syaltol is ,.. .,
a.2 + De2 + C

where a , b,c are the numerical equivalents of the individual ayabola, ordered

so t hnt a>~> c. Thus the numerical equivalent 1• independent of the

order of punching the individual characters.

If only two s ymbols are used, the formula 1•

b.27 + C, ~ > C

Thus t is equivalent to 86.2 + 28.2 + 15
and> 1• equivalent to 86.2 + 21

l

C

IG

II

12

13

14
IS

16
17

18

19
20

2I

22

23

24
25

a6

21

28

29
30

3I

A).2

TABLE OF NUMERICAL EQUIVALENTS

0 32 • 64 96
l 33 A 65 space 91 •
2 34 B 66 98 II

3 35 C 67 99 C

4 newline 36 D 68 100 d

5 37 E 69 IOI a

6 38 F 70 102 f

T 3<) G TI 103 g

8 (40 H 12 104 h

9) 4l I 73 105 1

IO , 42 J 14 106 j

II ., 43 K 15 107 k

I2 ? 44 L 76 stop 108 1

13 " 45 JI 77 109 •
14 • 46 N 78 IIO n

15 I 41 0 19 III 0

16 0 48 p 80 II2 p

17 I 49 Q 81 [II3 q

18 2 50 R 82] 114 r

19 3 51 s 83 115 s

20 4 5.2 T 84 u6 t

21 5 53 u 85 II7 u

22 6 54 V 86 (underline)II8 V -
23 7 55 w 87 Ilg ..
1.4 8 56 X 88 120 X

25 9 57 y 89 121 y

26 < 58 z go a: 122 z

27 > 59 91 tJ 123
28 a 6o 92 i 124
29 + 61 93 125

30 62 94 126

3I • 63 95 127

APPENDIX 4• LIST OF l10NITORED FAULTS

COMPILING TIME FAULTS

The following faults are inonitorod at compiling tiae.

I. Faults due to [NAME]'s not havins ~een declared.

NAME NOT SET

SWITCH VECTOR NOT DECLARED

2. Faults, found in arithn,etic instructions, which give special

indications but which are most often caused by [NAME]'s not having

Ileen declared at the current level. These special indications arise

when similar [NAME]'s appear in the levels above.

LHS NOO' A DRSTINATION

ROUTINE NAf~ APPEARS IN EXPR

CALL.<; FOR .ADDR OF EXPR

CALLS FOR Annn OF FUNCTION

CALLS FOR CONTROL NO OF NON-ROUTINE NAME

SWITCH VECTOR APPEARS IN EXPR

3. Arithmetic Faults

COMPLF.X QUANTITY IN Ex.PR

RRAL QUANTITY IN EXPR

REAL CONSTANT IN EXPR

WRONG NUMBER OF PARAMETERS

NON-INTEGRAL EXPONENT

i.e. a~ or integer [EXPR]

i.e. in an integer [EXPR]

''
This may bo due either to the

wrong number ot parameters appearin1

or to the omission of a multiplicatioD

sign before a left bracket.

4. ~aults found at tho end ot each ltlock or routine

LABEL ••• NOT SET There is a reference to label •••

which hns not been set.

NO LABELS SET

TOO FEW ENDS

TOO FEW REPEATS

:.. Other faults

Al' FAULT

No labels to which rotorences are

made have been set.

begins (or routines) do not match

ends -
czcles do not match repeats

An actual uaramAtAr .,Anli:t i+ -••

KUN T

the Pl

laltell

in the

in the

DIV OVl

EXP OV1

SQ RT C

LOG OF

TRIG ffl

FP FAULT A formal parameter faultl it •ean•

that the routine heading ia not

consistent with the routine

specification.

NOT A ROUTINE NAME A ca ll sequence is written in which

the [NAME] has not appeared in a

routine specification or routine

heading.

LABEL SET TWICE

SWITCH OUT OF RANGE

NAME SET TWICE

ARRAY OF MORE THAN 2 DIMENSIONS

WRONG FORMAT IM CORRECTIONS

NAME NOT VALID In [NAME]= st, the [NAME] must

be local.

INSTR OUT OF CONTEXT The format result= [EXPR] .. , only

appear in function rout!nes.

RUN TIME FAULTS

I. The following faults are monitored at run time. NorJRally they cause

the program to be terminated but it may be restarted by a sequence

laltelled

fault (n)l

in the top level (label I). The relevant nulllber• appear

in the ta~le below.

DIV OVERFLOW

EXP OVERFLOW

SQ RT OP' -VE ARO

LOO OF -VE ARO

TRIG ffl LOST ACCURACY

INV ffl OUT OF RANGE

division by O or a

non-standard number

exponent overflow

a trigonometrical

function in which

all accuracy has

lteen lost.

an inverse trig

function e.g. arcsin

when the argwnent ia

fault (I)

fault (I)

fault (2)

fault (2)

fault (3)

fault (4)

INPUT ENJ)ED

SPURIOUS CHARACTER

IN DATA

insufficient data so

that a read indtruction

effectively reads over

the end of the data tape.

~purious character (i.e.

not a decimal digit,

decimal point, sign or

«) appears in data.

fault (S)

fault (S)

2. Faults which indicate programming errors Jtut which always cause the

program to terminate

INPUT NOT DEFINED

OUTPUT NOT DEFINED

ALL TESTS FAIL

SWITCH VARIABLE TOO HIGH

SWITCH VARIABLE TOO LOW

SWITCH VARIABLE NOT SET

EXPONENT NEGATIVE

EXPONENT HON-INTEGRAL

i.e. all conditions in a test

instruction fail.

i.e. in an integer expression.

3. Faults which indicate an error in the 1MCbine or compiler and should

lte referred to the compiler staff.

There are a n11mber of these such a•

SV INSTRUCTION

SV OPERA.ND

ILLEGAL BLOCK

	Preface
	Contents
	1 Introduction
	2 The Basic Language
	3 Storage Allocation and the Block Structure of Programs
	4 Routines
	5 Input and Output Routines
	6 Monitor Printing and Fault Diagnosis
	7 Presentation of Complete Programs
	8 Complex Arithmetic
	9 Half-Word Operations and List-Processing Facilities
	10 The Use of Machine Instructions
	Appendices
	1 Phrase Structure Notation
	2 List of Standard Functions and Permanent Routines
	3 Numerical Equivalents of Basic and Compound Symbols
	4 List of Monitored Faults

