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I INTRODUCTION

An ATLAS AUTOCODE PROGRAM consists ef a series of STATEMENTS
which describe in algebraic notatien the calculationm to be executed,
The statements are of two kinds, declarative statements giving the
nature of the quantities involved, and imperative statements which
describe the actual operations te be performed on them, and the sequence
in which they are te be carried out, The statements are not immediately
recognisable by the computer and must first be converted into an
equivalent sequence of basic MACHINE INSTRUCTIONS, This is dome by
& special translation program called a COMPILER which is held
permanently available in the machine, Not until the pregram has been
‘compiled® can it be executed,

The following example gives a general idea of the principles
involved in writing a program, We wish to fit a straight line
y=ax + b to sets of data of the form XI,YI; X2,Y2} ====, Xn, Yn
which are to be punched and presented on a data tape in this order,
Each such set is to be terminated by the number 999ggg and the final
set by two such numbers, Each set 1s assumed to contain less than
1000 pairs, For each set the quantities

a = nfXivi - EXiPVYL
ngxi* - (Bxi)*

b= BYi - abxi

c = BYL" - 2(afXiYi + BEYL) + a~ $Xi* 4+ 2abfXi + nb*

are calculated, the last being the sum of the squares of the deviations
BYL - axi - W),

The following is the formal program for this calculation, The
Statements are to be interpreted in the written order unless a statement
is encountered which transfers control te another specifically labelled
Statement, In general each statement is writtem as a new line, otherwise

it must be separated from the previous statement by a semi-colon,

I.1
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real a, b, ¢, x, y, xx, Xy, ¥V} integer n, 1
array X, Y (1:11000)
n=1I
2: read (X(n))
if X(n) = 999 999 then -> I
3: read (Y(n))

n=n4+ I -> 2

A

It m=n~-J; x=0; y=0) xx=0} yy=0; xy =0
cyclei = I, I, n
x=x+ X(1); y=y + Y(1)
xx = xx + X(1)%; yy = yy + v(1)*
xy = xy + X(1)Y(1)
repeat
a = (n*xy - x*y)/(n*xx - x*x)
b = (y - a*x)/n
c = yy - 2(a*xy + b*y) + xx*a® + 2a%b*x + n*h>
newline
print (a, 2, 3); space; print (b, 2, 3); space; print (c, 2, 3)
n=1I
read (X(I))
unless X(I) = 999 999 then -> 3

stop
end of program

Users of Mercury Autocode will note some new features, namely

I. Explicit declaration of all quantities,

2, The nesting of brackets in arithmetic formulae and the obligatory use

of brackets as a subscript notation,

3. Explicit use of a multiplication sign where this is necessary
to avoid ambiguity,

4. The use of multi-letter identifiers,

5. The underlined delimiter words, e,gZ. cycle

BLOCKS AND ROUTINES

Complete pregrams are generally split up into a number of
self-contained units called ROUTINES, and each routine mnay be further
split into a number of BLOCKS, A detailed description of their
Censtruction and use is deferred until later, but the earlier sectioms
it is sufficient te note that the Autocode statements between begin
and end constitute a block, We note however, that when a block
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PHRASE STRUCTURE NOTATION

Atlas Autocode 1s a PHRASE STRUCTURE LANGUAGE and to assist in 1its
description we sometimes have resort to phrase structure motation, Im
general, whenever a name appears in square brackets in the descriptiem eof

an Autocode statement, we mean that in am actual statement it would be replaced
by a particular element of the class defimed by the name, For example, im the
next sectien we defime [NAME] and [EXPR] to denote a general name and a
general expression respectively, and with these definitions we could ge omn to
define a function of a single variable by
[NAME] ([EXPR])
and in an actual program this might be replaced by
g(x + y -2)
since g is a name, and x + y -2 is an expression,

Further notes omn phrase
structure notation will be found in Appendix I.
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2 THE BASIC LANGUAGE
SYMBOLS OF THE LANGUAGE

Programs are presented to the computer as a length of perforated
paper tape which is scanned by 2 photoelectric tape reader, the imput
unlt of the machine, The program tape is prepared on a Flexowriter
keyboard machine, the keys of which are engraved with the following
symbols!

ABCDEFGHY JELMNOPQRSTUVWXYZ

abcdefghi jklmnopqrstuvwxyz

afw

0123456789

=>< | *:,,"&%/+-_3%()L12
A back-spacing facility allows underlining and also the formation of
compound characters

€. ko EXE&E g><=>30

We also make use of a vertical arrow > which by convention is punched
as § that is an asterisk superimposed on a vertical bar,
_NOTE All SPACES and UNDERLINED SPACES in a program are ignored whem the
program 18 read into the machine, Thus they may be used freely to assist '
legibility in the written form of the program,

RAMES

These are used to identify the various operands, functions amd
routines which appear in the program, A name consists of one or
more letters, possibly followed by one or more decimal digits, and
possibly terminated by one or more primes(’),e.g.,

x 1 Alpha aIO TEMPI y"' 83’
Underlined names and mixed names such as RK2ST are NOT allowed,

There are certain names,e,g., log,sin,exp,print, read etc,
which have a standard meaning, (the PERMANENT roufines), but all other
names must be declared before any reference is made to them (see bolo');.
In future a general name will be denoted by [NAME],

DELIMITERS i
These are & preassigned set of symkols and underlined ‘ordl,o._]
+=*/(;,)>»>=->;n
cycle repeat integer real if then caption comment
(Note that -> consiste of two symbols, - followed by >)
Unlike names whose meaning can be defined by the user, delimiter
have fixed absolute meanings in the language, An Autocode program

consists entirely of nawes and constants separated by dcll-lglrl.
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IIPES

Calculatiens are performed on two principal types of operand,

real and integer, (Later on we shall introduce complex). Both are

represented by floating point numbers (in the form 1.8" ) where

a 18 held to a precision of 40 binary digits and ® 1s an 8-bit imteger);
but those of integer type are kept in an unstandardised form

(so that the least significant 24 bits can be used directly for
B-modification, The precise method of storage is described in the

section on machine instructions),

The locations in the computer store holding numbers are
distinguished by assigning names to them (see later), and reference te

the number is made by giving the appropriate name, Both real and integer
numbers referred to in this way are called variables and denoted by [VAR],
Programs will consist mainly of operations on real operands,

the use of integer operands being generally confined to counting and subscript
arithmetic,

:ENCTION}\L DEFENDENCE

1 Functional dependence is indicated by writing the name of the
function followed by the list of arguments in parentheses,

e.g. 5in(2wx/a) arctan(x,y) TEMP(i) a(I0, IO)

* Bach argument can be an EXPRESSION (see below),

Within a block all names must be distinct, and it is not
@ulhle to have a function with the same name as a scalar, Thus

2 and a(i) or f and f(x) would NOT be allowed to appear in the

~ same klock,

RATION OF VARIABLES
The names of variables used in a block are_declared at the head of

the block

€,g, integer i1, j, k, 1, m, n, o, p, q, ¥, S, t
real a, b, ¢, d, e, £, g, hy u, v, w, x, y, 2

¢ch will be familiar to Mercury Autocode users,

' examples are
integer I, max, min
real t, Temp, VOL I, VOL 2

je effect of these declarations is to allocate storage positions (ADDRESSES)
0 the named variailes, and any subsequent reference to one of the declared
8 will then be taken as referring to the number stored in the appropriate
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A general
One dimensional arrays of elements may be declared by statements such as

array =2,8(0 3 99), (X0 : XQ)
which reserves space fer three arrays of real variables a(1), B(i), e(i),

+?
In the first twe the subscript runs from O to 99, amd in the third from L‘_l Kows

An [OPERAND] is s
e 1 ‘an [OPERATOR]
OF] is
To refer to a particular element of an array one might write s
iples of expre
a(50) B(3) w(2n + 23 - I) c(X0 + 1) - A ;
~I
It is the computed value of the argument, which may ke a general integer = I’J(
Z + log(I
expression (see later), which determines the particular element, IIRGTB‘
1. ™
Two dimensional arrays are declared in a similar way
8q rt (x(
e,8. array A(I:20, I120), B(0:9, 0:149). T
a c
This defines and allocates storage for a 20 X 20 array A and a X0 X 50 <
- x4+ ¥+
array B, To refer to a particular element,one writes, for example ' 2.5 xI b
o) X
A(I,I) A(i-X, 3+X) B(9,2K+I) "‘ Bt
b . X=y
should an array of integer elements be required, the declaration is - x ) 4
AL+ x

qualified by integerxr

e.g., integer array TYPE (1:50),
Storage allocated by the above declarations has dynamic significance, i.,e,
they are implemented at run time and not at compiler time, Consequently,
the arguments in array declarations need not be constants but may be general

integer expressions, The significance of this will be explained in the s ot
on block structure and dynamic storage allocation (see later),

STANDARD FUNCTIONS
The following standard functions are available and may be used

directly in arithmetic expressions (see next section) without formal

declarationg
sin(x) cos(x) tan(x) 1log(x) exp(x) sq rt(x)
arctan(x,y) (= tnﬁ"(!fx))
radius(x,y) (= (x* + y* )®)
fracpt(x) (= fractional part of x)
intpi(x) (= integral part of x)
int(x) (= nearest integer to x, 1.@, intpt(z+.5))
mod(x) (= Ixi)
parity(n) (= (-1)")
The arguments in the above functions may be general expressions, except
that the argument of the last must be of type integer (see later),

A complete list of standard functions is given in Appendix 2,
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ARITHMETICAL EXPRESSIONS

A general arithmetical expression is denoted by [EXPR] and comsists
of a sequence of operands and operators possibly preceded by a sign symbol,
thus

[+?] [OPERAND][OPERATOR][OPERAND]I[OPERATOR] .... {OPERAND]

An [OPERAND] is a [VAR], [CONST], ([EXPR]), I[EXPR]|, or [FUNCTION]**, and
an [OPERATOR] is one of + - * / § (The asterisk denoting multiplicatien)
Examples of expressions are

A(1-I,3) + A(1+1,3) + A(4,3-I) + A(1, X)) ~4A(41,])

Z + log(XI + cos(2w(x/a + y/b + z/¢)))

LENGTH * BREADTH * HEICGHT

sq rt (x(1)* + y(1)* + z(1))

a* b/c * d/e

(x+y+2)/(a4+ b+ c)

2,5 xL b * (c + d)e

e = |x-y| + ,00001

(X + x) $ (a~X){XI-x) % B

NoTEs

I, Multiplication and division take precedence over addition and
subtraction and division takes precedence over multiplication, Thus

the fifth example means a * (b/c) * (d/e),

2, An exponent is denoted by % [OPERAND] and exponentiation takes

~ precedence over the other operations, Thus the last example means

~ (X + x) to the (a - I))((X - x) to the b), A special symbol, superscript®,
48 available to represent squares as in the fourth example, and is
_equivalent to the pair of symbols % 2,

'3, |[ExPR]| is interpreted as the positive magnitude of the

[EXPR], Thus it is equivalent te mod([EXPR]).

Constants are written in a straight forward metation, e.g.,

2,538 X 25 17.28a~X Ia7

16 last two examples mean respectively

1,728 and 10 000 000

' ttional exponents are not allowed in floating peoint constants, The
special symbol 4 may be used in constants and is equivalent to the

pair of symbols ,5

% Or, more strictly, (see Appendix I)
[ExPR] = [+?] [EXPR']
[BxPR'] = [OPERAND] [OPERATOR] [EXPR'], [OPERAND]




5. Am explicit multiplication sign is not required when the operands
are uniquely separable, In the seventh example it is the quantity
2,5 * xI * b * (ctd) * e that is computed, Note that an explicit
multiplication sign 1s necessary to denote b * (c+d) as b(c+d) would
ke interpreted as referring to a function b of argument ¢ + d,
6, A full stop ., may ke used instead of an asterisk to denote multiplicatien
whenever there is no posibility of confusion with a decimal point, Thus
in the above examples it is possibkle to write

LENGTH, BREADTH, HEIGHT

a,b/c,d/e

2.5 xIs, (c+d)e
The only time when an asterisk must be used is when multiplying twe B.lltlltl.
together,

Thus 2*5 means (2) x (5)
2.5*3,8 means (2,5) x (3.8)
2,5%.3.,8 1s meaningless

INTEGER EXPRESSIONS
An [EXPR] is an integer [EXPR] if all the [OPERAND]'s are

scalars, array elements etc, declared to be of type integer, integer
constants or interer functions, Thus if we assume that x is a real
variable, and i,n, j,k(I),k(2) are integer variables, the following
are interer [EXPR]'s,

n*(n-XI)/2

1+ 3+ k(2) + int(x)

Jtk

int pt (n*(n-1)/3)

NOTES

I, All calculations on integer [EXPR]'s are done by floating
point operations and the result is destandardised at the end,
2, Exponentiation is performed by repeated multiplication,
i,e, J¥ k= Jx } x ~ew—m(to k terms), Thus the result is exact,
3, The value of the [EXPR] is assumed to be integralj this will
in general be true (if the range is not exceeded) except in
division when the result may be non~-integral, No check is made for
this case so that the function "int pt® or 'int® should be used,
4. 8ince the machine can hold negative powers of 2 and since
the accumulator gives am exact dividend 1f the nmumerator is a
multiple of the divisor, the first [EXPR] in the examples gives
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tien

tants

2.6
ARITHMETIC ASSIGMMENTS

The general arithmetic instruction is
[vAR] = [EXPR]
Examples are
X(p, @) = I + 2 cos(2x(x+y))
a= (b +c)/(d+e)+F
i=14+1I
The action of the general arithmetic assigmnment is to place
the computed value of the [EXPR] in the location allocated to the 1,h,s, [VAR],
If the 1.,h.s, is a real [VAR], the r,h,s. [EXPR] may be of type real or
integer, but if the 1l.h.s, is integer then the r,h,s, must be an integer [EXPRI],
8,8, 1f v had keen declared real and i integer then we could write
y=41 but not 1 = y even 1f we knew that y had an integer value,

LAPELS, JUMPS AND CONDITIONAL OPERATORS

Normally instructions are obeyed sequentially, but frequently it
is required to transfer control to some imstruction other than the next
in the sequence, or to obey an instruction only if certain conditions are
satisfied, The following facilities are provided:

SIMPLE LADELS Any instruction can be labelled -> IO
by writing an integer [N] before it, separated e
by a colon, More than one label is permitted, 107 ==

Unconditional Jump instructions are written as 4258 -—

=» [N] -> 4
-> 5
These are used to provide for a switch A(XI & 3)
milti-way switch, With reference to the ——
companying diagram the instruction o and
1) will jump to A(I), A(2) or A(3) —
rding as 1 = I, 2 or 3, e
ult is signalled if the value of 1 A(X)t —-
ponds in any way to a label not set, —
ie general form of the lakel is [NAMEI(IN]): A(3)1 ———
mist be declared at the head of S
itine by a statement of the form e =
[NAEI([-?][N]:[~?1[N]) where e
] indicates that the integers ' ~-> A(1)




CONDITIONAL LABELS

Another kind of multi-way switch is
illustrated by the accompanying diagram,
Here the condition at the places indicated

are tested im turn and control passes to the 4 cage X <l===
instruction following the first to be successful, ——
If none is satisfied a fault is signalled, 5 case 0<x<Xi~-=

The general form of the label is [N] case [COND]:

where [COND] denotes the general 6 case x > Itewm=

condition defined in the next section, A
simple label [N]: may be used in place of

the last alternative in which case control
passes directly to the following instructions
if it reaches that point,

NOTE All labels are local to the block containing them and jump
may only refer to labels within the block (see later),
A CONDITIONAL OPERATOR of the form
if [COND] then OR unless [COND] thenm

may be written before any unconditional instruction (including a

Jump instruction),
The [COND] phrase takes one of the forms
[sCc] and [sc] and [SC] --- and [sc]
or [sc] or [sc] or [sC] --- or [sC]
or just [SC] by itself *x
Here [SC] denotes one of the following "simple' conditions
[EXPRI[PI[EXPR] or [EXPRI[PI[EXPRI[PI[EXPR] er ([COND])
where [9#] denotes one of the comparison symbols = g>><<

IF (or unless) the condition is satisfied the instruction is obeyed,

otherwise it is skipped and control passes directly to the next

instruction,

1
Examples of conditional instructions and conditional labels are

if x < 0 then x = mod(y)
if 0 < x < X and 0<y<I them ->1I

case (y > T or y < - I) and x > Ot

Alternatively, conditional operators may appear AFTER unconditional

instructions, in which case they are written
it [conp] OR unless [COND]
e.g.x = 0 if |x] < ,000 00OX

->Iunlassz>agr_z-0

** or, more strictly, (see Appendix I)

2.7
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CYCLING INSTRUCTIONS

These are pairs of statements which allow a group of
instructions to be obeyed a fixed number of times,
€.gs cycle 1 =0, I, n-I

repeat

In the above example the instructions between cycle and repeat are

traversed n times with i successively taking the values 0,I, ase =L,
After the final cycle, control goes to the statement
following repeat,

The r,h,s, quantities may be general integer [EXPR]1's and the

1,h,8, mist be of inteper type,

The initial value, increment, and final value must be such that

final value - initial value

increment
--mt be a positive integer or zero otherwise a fault is indicated, It is
_-the initial values of the three expressions which are relevant and the
Cycle is traversed at least once, Cycles may be nested to any depth,
m Statements such as cycle x = ,2,,I,I are NOT allowed,and
lould be replaced by an equivalent permissable form,
€., Cycle 1 = 2,I,I0

X = oIl
8 1 has been declared integer and x real,

ik SIMPLE INPUT AND OUTPUT INSTRUCTIONS

It is convenient to introduce some input and output instructions
¢ this stage in order that the reader may complete his study of the
ductory example, Strictly speaking, the input and output

tions are czlls for the appropriate routines and as such a

ormal description of them will come later,

amples of the instructions to read in decimal numbers from a data tape

read(al) read(VOLI, VOL2, TEMP, 1) read(X(K))

® first of these reads the next number on the data tape into alj the
ond reads the next four numbers into the named variables, and may

d to read in any number of individual numbers, The third is
same form as the first, but the particular variable depends

the computed value of the argument; thus if K was three, the number
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array A(X:I00) ; integer i
cycle 4 = I,I,I00
read (A(1)) 3 m_
repeat e
The rules for preparing data tapes are given in the section on
Input and Output

To print decimal numbers, instructions of the following form may be used
print (x + y. cos(z), 2, 7)
print £1( A, 5)
The first of these prints the value of the expression in fixed point
style with two digits before the decimal point and seven after, The
second prints the value of A, standardised so that I < |Al < X0 in
floating point style i,e, as a fixed point number and a decimal exponent,
with five digits after the point, A could be replaced by a general
expression, 'The following instructions may be used to facilitate the
programming of page layouts:
newline
space
The first causes subsequent information to be printed on a fresh line
and the second causes a space to be left on the current line,
The above instructions are more fully described in the section on input

and output,

MISCELLANEOUS NOTES

I, With the instructions so far described the reader should be able to
construct programs of the level of the introductory example i.,e,

programs consisting of a single block delimited by begin and end of preo ram,
Z. end of program is the formal end of the program and appears after the :

last written instructionj its action is to terminate the reading of the
program and to start obeying it from the first instruction,

3, The instruction stop can appear anywhere in the program and signifies
the dynamic end of the programj its action is to terminate the calculat-=j
4. The delimiter comment allows written comments to be inserted in a
program to assist other users in understanding it, The information
following comment up te the next newline or semi-colon is ignored

By the computer,

5. It has been noted earlier that all spaces and underlined spaces in a '
program are ignored and that Autocode statements are terminated by a semi:
colon or a newline, If a line is terminated by the delimiter c then tbﬁh
following newlime character is ignored by the computer, thus a single .
statement may extend over several lines of the printed page, It is not
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3 STORAGE ALLOCATION AND THE BLOCK STRUCTURE OF PROGRAMS

THE STACK

In erder teo illustrate the primciples of storage allocation, we
Assume the following simplified picture of the data store (the stack),

& fuller description being given in the section en the use of machine instructions,

Each cell represents a 4.8 kit word in the computer store and can be

ed to hold either a real or an integer variable, At any time during the

ig of a program, the stack pointer, St, points to the next available
location 1.e, it contains the address of the next free word,

In the examples that follow, single shaded cells represent locations
¢h have already been allocated, and double shaded cells represent locations
i hold information essential to the compiler, such as array dimensions
fﬂlrlgins, and are not of importance in the context ef this section,

Is vhich are allocated to variables are indicated by the presence of the

iBe given to the variable,

AGE ALLOCATION DECLARATIONS

The declarations which allocate storage space are

real integer array integer array
[0 illustrate the stack mechanism we consider the following examplet

begin
real a, b, cj integer i, max
array A(I: 2, I: 2), x(I: 3)

above declarations the stack picture would be as below

. ald|lc|i|max A(X, 1) 1A(X,2) 1A(2,X) |A(2,2) Ix(1) |x(2) x(:’)f_ h

position of St before begin and St2 its position after the
f:-r ¢« Any further declaration advances St by an appropriate amount,

8ud or end of program is reached when St reverts to StI,




BLOCK STRUCTURE OF PROGRAMS

This is illustrated by the following example:

begin

real a,b,c
a=1I3 b=2
cC = at+h
begin

real a,b,d
a=2} d=1I
b =c

c =4

end

& = at+b+c

end

The stack picture associated with the above block 18 given below:
StI1 stz 8t3

. | J

5;’%253%%&325 aln|c a | b | d r_® % = =

I 2 3 4 56 171 8 9 10

before the first begin St is at 5tI, and moves to St2 on entering the
first block, After the second begin St is at St3 and reverts to St2
when end is reached, At the second end, corresponding to the first
begin, St assumes its orignal positien, StI,

In the diagram, positiens 3, 4, 5 correspond to the declarati
of the outer block, and 8, Q, I0 to those of the inner block, After %}'
instruction ¢ = a+b, the value 3 is left in positien 5; while the instru
of the inner block leave the values 2, I, 3, 4 in the positions 8, I0, |
respectively, The last instruction of the outer block leaves the value
7 in position 3,
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Thus the variables a, » of the inner bleck do not conflict with

2, b of the outer block, while a reference to ¢ in the inmer block is

taken to refer to the variable of that name declared in the outer block,
¥e say that a,b are LOCAL mames to the inner block and ¢ is a NON-LOCAL
name, We also note that the information stored in the variables of the
inner block is lost when the block iz left, and that we could not refer

in the outer klock to a variable declared im the inner block,

Futher details of the structure of programs will be given in the
section on routines, and for the present the following notes on blocks
will be sufficient,

I, Blocks may contain any number of sub-blocks and blocks may be neated te
any depth,

2, Names declared in a block take on their declared meaning in the block
and in any sub-blocks unless redeclared in the sub-block,

3, Labels are local te a block and transfers of control are only possible
between statements of the same block,

4. The outermost block of a program is terminated by end of program,

which causes the process of complling to be terminated and transfers

control to the first instruction of the program,

FIXED VARIABLES AND DYNAMIC STORAGE ALLOCATION

Variables declared by real and integer are called FIXED VARIABLES,
a8 are those locations which are double shaded in the stack pictures
4,8, those holding the links, array parameters, array function parameters
otc, (see later), This is because the amount of storage space required
can be determined at compiler time, Array declarations, however, may
‘have general integer expressions as the parameters and hence have dynamic
significance, For example one might have a declaration such as

array A,B(Itm, Itn), x(I:n)
In this case the space allocated will depend on the computed values

of m and n and cannot be determined at compiler time,
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Owing to the dynamic significance of the storage declarations it
is customary to put them at the beginning of a block before the first
instruction statement, If they are not put at the beginning it sheuld be
remembered that storage will be allocated each time a declaration is
reached, without the stack pointer being reset
e.k. begin

integer n

I: read(n)
array x(I:n)

end
In the above example, the stack is advanced and x(i) redefined
each time the loop of imstructions is traversed, which would almost
certainly ke undesirable, To define an array in terms of a variable

parameter, one could write

berin

1nta!er n
I: read(n)

begin
array x(X:n)

end
=31

end

In this case the stack pointer is reset to its original value
each time the inner block is left,
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ARRAY FUNCTICNS

The declarations of the previous sections define variables and

allocate storage space for them, In this ssction we introduce a
declaration which defines variables as the numbers contained in
storage locations that have already been allocated, This is of
importance in communicating between routines and in renaming
variables (see later),
An example is
array fn X(s,p)
which defines X(1i) as the real number in the storage
location whose address is given by 8 + 1.,p, Thus it defines a
vector X(i) in terms of an origin s and a dimensior parameter p,
Array functions may define rectangular arrays with any number
of subscripts,
e.g. array fn Y(s,p,q)
defines Y(i,J) = real number in address (s + i.p + J.q)
array fn 2(s,p,q,r)
2(1,3,k) = real number in address(s + i.p + j.,q + k,r)
integer array functions may be defined by prefixing the
declaration by interer,

e.g., integer array fn M(s,p)

The parameters in array functions may be general integer expressions,
As an example, assume that I00 storage locations have been allocated
in some way, and that the starting address is stored in integer
variable sI, Then to define the contents of these locations as a
vector x(1), one could write
array fn x(sI,I)
x(0) would then correspond to the number in address sI, x(I) to that
in 81 + I etc, If it is desired that the first location should
- Correspond to x(I), the declaration would be written
array fn x(sI - I,I)
If we had wanted to define a IO x IO matrix, stored row by row
rather than a vector, we could have written
array fn A(sI,I0,I)
and A(0,0) would correspond to address sI,
.L array fn A(sI - I0 - I,10,I)
‘would define a matrix in the available space whose first element
was A(I,I),
_ To define the transpose of the above matrix we could write
array fn B(sI - II,I,I0)

a subsequent reference to B(i,Jj) would give the same storage

ion as a reference to A(j,i) of the previous declarationm,
"It should ke noted that. in reanearal 17 the auffices af sarrave
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THE ADDRESS RECOVERY FUNCTION
The absolute address of any variable is not generally known in

an Autocode programme, but it may be obtained by means of a standard
function,
e,g. 8 = addr(A(0,0))
This places the address of A(0,0) into the variable s, The argument
may be any variable, real or integer, and the result is an integer
giving the absolute address of the storage location allocated to that

variable,

The address recovery function is used in conjunction with the array
function in communicating between routines (see later),

It may also be used in connection with the renaming of variables as

in the next section,

THE RENAMING OI" VARIABLES WITHIN A BLOCK
We i1llustrate this with an example, Suppose we want to define and

allocate storage for pairs of real variables x(1i), y(i) so that they
are in succesive locations, The array declaration will only define
a vector or matrix array stored in the conventional manner, so we

adopt the following device

begin

integer s
array a(X:2000)

s = addr(a(I1))
array fn x(s - 2,2), y(s - I,2)

s

The first pair of numbers could then be referred to either as .
x(1), y(I) or a(X), a(2), the second by x(2), y(2) or a(3), a(4) otc.f
Since the array declaration is for 2000 variables, up to X000 pairs
x(1), y(i) can be accomodated, '
As another example, suppose we have defined a matrix A and alloca -;
storage for it by the declaration
array A(I31X0,I1:I0)
and we wish to define the first column of A as a vector, then we Ceu
write
array fn y(addr(A(I,I)) - X0,I0)
which defines y(i) = real number in address (addr(A(I,I)) - IC + :o.f
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4 ROUTINES

BASIC CONCEPTS

A large program is usually made up of several routines

each of which represents some characteristic part of the calculation,

Such routines may be called in at several different points in the program,
and their design and use is a fundamental feature of the language,

The introductory example consisted of a main block only (delimited by

begin and end of program) although it makes reference te the routines 'read’,
'print', 'newline', which are permanently available in the machine, In

exactly the same way however, the user may call in routines which he has
written himself in Autocode language, Consider for example a routine

to evaluate

y = a(0) + a(I)x + ,.4 + a(n)x™

assuming the coefficients to be stored in consecutive (real) locations,
This might take the form

routine poly (real name y, addr s, real x, integer n)

array fn a(s, I); integer 1

y = a(n)

cyclei =n- I, ~-I, O

Yy = x,¥ + a(1)

repeat

return

end

‘ﬁlil routine will be EMBEDDED and used in a main routine as illustrated
overleaf,

The routine is called in by the main routine whenever the
'poly’ appears, The first reference to 'poly' would cause the poly
outine to evaluate
U=19(0) + B(I)Z + 400 + B(m)z™
id the second would cause it to evaluate
V = e(20) + c(2D)x* + .., + c(30)x*°
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begin

real U, V, =, x; integer m

array b(0:5), c(0:50)

routine spec poly (renl name y, addr s, real x, integer n)

poly (U, B(0), z, m)
poly (V, ¢(20), x*, 10)

routine poly (real name y, addr s, real x, integer n)

body of

poly
routine

end
end of program
The parameters in the routine specification and routine
heading are the FORMAL PARAMETERS and the parameters in the call sequences
are the ACTUAL PARAMETERS, precise definitions of which will be given

in the next section,
The body of the routine may be considered as a block
delimited by routine and end, and the concepts of storage allocation, loca

and non-local names etc, apply to routines in exactly the same manner as
for blocks, In fact a block may ke considered as being an open routine
without parameters,

Any number of routines may be embedded in the main routin
in the above fashion and they are referred to as SUBROUTINES of the
routine, If the body of a subroutine occurs before any reference to it
in the main routine, the routine specification may be omitted, but by
convention it is usual to place all the subroutine specifications among
the declarations at the head of the main routine and the bodies at the e
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We define the TEXTUAL LEVEL of the body of the main bleck
28 I and of each subroutine (i.e, within the subroutine body) as 2,

Now each subroutine is basically the same in structure as the main

block (which is essentially a routine without parameters) and a
subroutine may define and use its own subroutines in precisely the same
manner, The textual level within these subroutines would be 3, and the
progression may continue to any depth,

The most general form of a complete program is thus a nested

hierarchy of routines, A typical routine layout is shown below:

routine A(-, -, =) routine heading

integer — =y =

real -y =p =

array -, =, - declarations of local

working space and specifications
routine spec BI(~, «~, =) of subroutines used,
routine spec B2(~, -, =)

routine spec BN(-, -, =)

- 1 body of routine,

routine BI(-, -, ~) “

routine B2(-, -, -)

subroutine headings and bodies
routine BN(-, =, =)

end end of routine
ﬁ'ﬁpicture is to be treated recursively i,e., it also applies to the

of each subroutine, and the whole routine might itself be embedded
M & subroutine of a still larger routine,
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FORMAL PARAMETERS AND ACTUAL PARAMETERS

The parameters of a routine are the pieces of information
(variables, addresses, routine names) which tell it what to do

on the different occasions when it is used, The formal parameters are
the names by which this information is referred to inside the subroutine
itself, The actual parameters are the expressions which are substituted
in place of the formal parameters whenever the routine is called in,

For each type of formal parameter there is a permissible form for the
actual parameter, as shown in the following table:

formal parameter type Corresponding actual parameter

inte~or name name of an interver variable
— Tcal pama name of a rgoal variable

integer any expression (which will be

evaluated as for an 1nteger

assipgnment)
_xeal ditto (but for a real assigument)
addr The name of any integer or real

variable (including an array
element), The actual address of
the variable is handed on as the

parameter proper

routine type i,e, routine In some cases it is required t
[RT] pass on a routine as a paramete
real fn and the actual parameter is

the name of the routine, which

integer fn must be of the same type as

formal parameter and have forma

real map parameters which correspond in

type to those of the formal

integer map parameter, An example is given
a later section

NOTE An addr parameter is equivalent to an integer parameter in

the body of the routine, The difference relates to the corresponding
actual parameter. Thus an addr parameter replaced by x 1is equivale:
an integer parameter replaced by addr(x),
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,!a the polynomial example described earlier, the formal parameter y
M an output parameter and the actual parameter must therefore be a
‘name, The formal parameter s is the address of the first coefficient
2(0) and the statement array fn a(s, I) establishes the store mapping
function as a(i) = real number in address (s+I.1i).
‘The parameter x may be replaced by an expression the value of which is
tlu parameter proper, similarly for n, [The parameters s, x, n are
called by VALUE}; they correspond to local locations in the poly routine, ]
: The statement end is the formal or written end of the
- routine while return is the dynamic end, i,e, it is the instruction
which returns control to the main routine, Where the formal end is also the
'_Fh'namic end as in the present example the return imstruction can be
omitted; in this case end serves for both purposes,

Another example of a routine is given below:-
routine mat mult (addr sI, s2, s3 integer m, p, n)
integer 1, Jj, kj real c
array fn A(sI, p, I), B(s2, n, I), C(s3, n, I)
cycle 41 =0, I, mI
cycle J =0, I, n-I
c =0
cycle k=0, I, p~I
¢ =c + A(i, k)B(Xk, j)
repeat
C(i, j) = ¢
repeat
repecat

end

This forms the product of an m x p matrix stored in location sI onwards,
a4 pxn matrix stored in s2 onwards, and places the resulting

X n matrix in s3 onwards, all three matrices being assumed stored row
)y row, A typical call sequence might be

mat mult (H(X, I), =x(X), y(I), 20, 20, I)

ION ROUTINES

When a routine has a single output value only it may
6 written as a FUNCTION ROUTINE,
g. The polynomial routine may be recast as a function routine as follows:i-
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X m
real fn poly (addr s, real x, integer n) %
<&
array fn a(s, X); integer 1; real y :
- B, x
y = a(n) - 5
cycle i = n-X, -I, O 3 ’
Y = y.x + a(i) .
Scop
repeat
result = y .
s elth

end

Here the (real) result must be assigned immediately before exit,

The specification is given by
real fn spec poly (addr s, real x, integer n)

and the routine might be called in by an assigument statement such as
y = a,b + 2h, poly (c(0), I/x, I6)

An example of an integer function is given below, It
selects the index of the maximum element x(k) in a set x(m), x(m+I)
ees X(n) n > m stored in consecutive locations, assuming x(0) is stored
in address s8I,

integer fn wax(addr sI, integer m, n)
iuteger 1, %

array fn x(sI, I)

Kk = m

if n=m then -> I

cycle L = mI, I, n

if x(1) > x(k) then k = 1

Iiresult = k
end
and a call sequence might be
y = I + mod(z(max(x(0), 50, I00)))
NOTE The delimiter result must be used as the 1l,h.,s, of the assignment
statement signifying the dynamic end of the function routine, It does
NOT correspond to a store location and cannot be used in any contoxt:

other than the above,

STORE MAPPING ROUTINES
Finally, store mapping functions may be defined by writing

real map or integer map before the function specification and heading

e.g. real map X(integer i, j)
result = s + 1,n - 1,(i-I)/2 - n 4 j - I

end

This defines a real triagular matrix of n columns, st
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X may appear on the l,h,s, of an assignment statement
®.g8. X(i-x, j+I) = [EXPR]
8, n would probably be local to the routine in which such a statement

appeared,

SCOPE OF NAMES

In general all names are declared at the head of a routine
either in the routine heading or by the declarations integer, real, array,

array fn, switch, and the various routine specificatioms,

Therefore they are local te that routine and independent
of any names occurring in other routines, However, if a name appears
in a routine which has not been declared in one of the above ways, them
it is looked for in the routine outside i,e, in the routine in which it
is embedded, If it is not declared in that routine it is looked fer in
the routine outside that and so on until the main block is reached, The
store mapping function of the last section is an example of a routine
which uses non-local names,

Now the main block is itself embedded in a permanent block of
textual level zero which contains the PERMANENT material, so that if a
name is not found in the main block it is looked for among these,

The permanent names may in fact be redeclared locally at any level, but
clearly it would be unwise to assign new meaning to such routines as
'log', "print', etc, This outer block also contains supervisory

. material for controlling the entry to and exit from the main block,
In general, the only non-local names used in a routine will be the

permanent names,

NENT ROUTINES AND LIBRARY ROUTINES,

The permanent names include the standard functions, sin, log,

y etc, and the basic input/output routines read, print etc,

se routines are used in a programme without declaration and without
necessity of inserting the routine bodies, since these are

rmanently available at level zero, A full 1ist of the permanent routines
-::;1ven in Appendix 2,

In addition to the permanent routines, there will exist LIBRARY
itines which will ke permanently stored on magnetic tape, These

routines may be automatically incorporated into a user's

by means of a library routine declaration,

e,g, library routine spec least squares ( addr sI,s2,integer m,n)

-;:iw&ropriato routine is then automatically inserted into the

» at the current level i,e, the name is local to the routinme

fnldeme 4ha 1dhesawse Aasl oesadd s




AN EXANPLE OF A COMPLETE ROUTINE

routine spec 1line fit (addr s,

and forms the quantities
a = n[>Xiyi - [>Xi,.$7i
n[>x1? - ([>x1)*

b= [>Y1 - a[>X4

c = $Yi® - 2(afXivYi + bEYL) + a~$Xi? + 2abfXi + nb>

[ef introductory examplel

routine line fit (addr s, integer n,

real x, y, *x, Xy, Yy} Ainteger 1

array fn X(s, 2), Y(s + I, 2)

x =0} y=0} xx=0; xy =0}

cycle 1 =0, I, n-X
x=x+ X(1); y =y + Y(1)

XX = XX + x(i)"; ¥Y = ¥y + Y(i)"

xy = xy + X(1) Y(1)
repeat
a = (n,xy = X,¥)/(n.xx - x,x)

b = (y - a,x)/n

c = yy - 2(a,xy + b,y) + XX.8" 4+ 22,b,x + n,b*

return

end

The stack picture associated with the routine above

given below,

Istx

real name a, b, c)

yy =0

integer n,
The routine takes n pairs of numbers Xi, Yi stored in s onwards

real name a, b, c)

XX

xy

N —
links

When the routine is entered the stack pointer is advanced
StI to St2, The first two locations are used by the compiler and the

408'
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chon Correspond to the formal parameters of the routine, and the

declarations in the body of the routine, We note that the locations

labelled a,b,c in the diagram will contain the addresses of the

jnum variables, since they correspond to output parameters, The last

four locations correspond to the array fn declarations in the body ef

the routine, The above are the fixed variables of the routine; any array
§¥-1arntions in the routine would cause St to be further advanced by an amount
idepending on the current values of the parameters in the declarations, Whem
Zéturn is reached in the above routine, the stack pointer reverts te StI and
”*1iniormat10n between StI and St2 is lost, A further description of the

iméchanics of the stack is given in the section on the use of machine

instructions,

VARIARLES

We see from the above description of the stack that when a

jutine is left the information stored in the local variables of the

f{ ne is lost, and no further reference may be made to it, In some

68 it may be desirable to retain some of this information and be able
irefer to it on a subsequent entry to the routine, This may be
tomplished by prefixing the relevant declaration by own,

: own real a, b 3 own array A(I!IO0)

The effect of own is to allecate storage space for the named
dables in a part of the store which is not overwritten when other

8 are called in, This is done at compiler time and hence does not
8 dynamic sipnificance; as a consequence, an own array statement must

ameters which are integer constants,

TIONS AND ROUTINES AS PARAMETERS

This is illustrated by the following example involving a
thetical likbrary integration routine

y routine spec integrate (real name y, real a, b, integer n, real fn f)

 Integrates a function £(x) over the range (a, b) by evaluating
®(200) + 42(X) + 2£(2) + ouo + 4£(20-I) + £(2n))(b-2)/6n

2(1) = £(a + ,51,(b-a)/n)

';7!n3111ary routine is required to evaluate f(x) and details of it
?ﬁ]llaed on to the library routine, This is done by means of the
rameter type [RT] as defined earlier, and the body of the routine
n be
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routine integrate (real name y, real a, b, integer n, real fn f )
real hj integer i

real fn spec f(real x)

h = ,5(b-a)/n

y=0

cycle i = 0, 2, 2n-2

y =y + 2f(a + i,h) + 4f(a +(1+I)h)
repeat

y = (y - £(a) + £(b))h/3

end

Now consider a programme to evaluate
2
z = fexp(-y)cos(b.y)dr
-3
for various values of b read from a data tape, the last value being .Ci
followed by 1000, using the integer value of n nearest to IOb, mber ,#3 e
begin

library routine spec integrate (real name y,real a,b,integer n,real fa
real z, b

real fn spec aux (real y)

comment Simpson rule integration
Isread (k)
if » = I000 then stop
integrate (z, 0, I, int(I0b), aux)
newline
print (b, X, 2)jspace;spacejprint (z, I, 4)
-> I
real fn aux(real y)
result = exp(-y) cos(b,y)
end

end of program

Note that the names given to the auxiliary reutine and its
parameters need not be the same in the library programme and the
main programme, but they must cdrraspond in type,

The function routine 'aux' in the above example is an example

of a routine referring to a non-local name b,
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5 INPUT AND OUTPUT ROUTINES
BASIC INPUT ROUTINES

The input of data is handled by permanent routines,
Some examples of which were given in an earlier section,

The basic input instructions are:

routine spec select input ( integer 1 )
This selects an input channel from which subsequent data is
read, This channel remains selected until another "select input'
instruction is encountered, If no channel is specified, channel O is

futomatically selected,
routine spec read ([VARIABLEJ])

This reads a decimal numbers from the currently selected data
thannel and places it in the location specified by the [VARIABLE]

1ych may be either a real name or an integer name, The routine reads

mmbers in either fixed or floating point form,
€8s —0,310I 18 7,132a~-7 3.I872x 14
A number is terminated by any character other than a decimal
:ﬂ¢t, the first decimal point, or an exponent, An exponent consists
of a followed by an optional number of spaces, an optional sign, and
he decimal digits, It is terminated by the first symbol which is not
ecimal diglit, Spaces and newlines preceding numbers are ignored, but
other symbols cause the routine to signal a fault, A fault is alse
hdicated if a number assigned to an integer variable is not integral,
It should be noted that a single space is sufficient to
iingte a number, and that no spaces are allowed within the mantissa
thin the numerical part of the exponent ( c,f, constants appearing
e programme where all spaces are irrelevant and numbers are
inated by the following name or delimiter),
If individual numbers are separated only by spaces or newlines,
a series can be read by the call

read ([VARIABLE LIST])
.8 read ( a,1,X(1))
This is treated as if it were a series of calls
read (a); read(i); read (X(i))

hence the subscript of X(i) takes the value Jjust
"i to 4,

L
‘The read routine is an exception to the general form of a

ine, since it may have an indefinite number of real names and
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Another permanent input routine is

routine spec read symbol (integer name 1)

This reads the next symbol (single or compound) from the
selected channel, converts it into 1ts numerical equivalent
and places the result in the specified integer location, A table of
numerical equivalents and a description of the formation of compound
symbkols is given in Appendix 3,
NOTE, Erases are ignored completely on input to the computer and

therefore do not exist as a character inside the machine,

BASIC OUTPUT ROUTINES

The basic permanent output routines aret

routine spec select output (intermer i)

which corresponds to the "select input' routine. Again channel O is

selected unless otherwise specified,

routine spec print f1 (real x, integer m)

routine spec print (real x, intezer m, n)

The first of these prints the value of x (which may of ¢ourse
ke any [EXPR] in floating point form standardised in the range [I, 10],
with m decimal digits after the decimal point, The number is preceded !r
a minus sign if negative, and a space if positive,

The second routine prints the value of x in fixed point form witl
m digitas before the decimal point and n after, Insignificant zeros, oth
than one immediately before the decimal point are suppressed and a minm
sign or space precedes the first digit printed, If |x] > IO then e
digits are included before the decimal point, the effect being to spoi
any vertical alignment of the printed page, |

It should be noted that no terminating characters are inclur'?
by the above routines, Terminating characters should ke included by the
ugser by mecans of the permanent routines given belbws

routine spec newline

routine spec space

routine spec spaces(integer n)

routine tab

The first of these resets the carriage of the appropriate
printer (or punches the newline character ), and the second causes
the printer to skip a character position, If a number of successive
spaces are required, the third routine may be used e,g, spaces(5) .

The fourth routine causes the printer to move to the next
tab setting or punches the tab character,

Another permanent routine is
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CAPTIONS

There is a special facility for printing captions,
e.E. caption #ESAATABLEZOFSTEMPSAGAINSTAVOL}

This prints the information after caption up te, but not including,
the terminating symbol "newline' or 'semi-colon', Since spaces and underlined
spaces are ignored on input and §} is a terminating symbol, the compeund
symbols g A § are used within the caption statement to denote 'space,’

‘underlined space', and 'semi-colon' respectively,
Thus

newline

caption A g = g# 3 print (y,I,3); newline

caption B g = g# ; print (z,X,3); newline
would be printed as

A= I,7T12
B= -2,389
To enakle a caption to appear in the same vertical alignment en the
printed programme page and the output page, the following device can be uséd:

newline
§ caption ¢
’ TABLEgSOFg TEMPSAGAINSTAVOL
by
R INPUT / OUTPUT ROUTINES

rith . Input and output of binary information is performed by the routines
ther routine spec read binary (integer name 1)
aus routine spec punch binary (integer 1)
ra The first reads the next row of holes on the tape as a binary number
11 nd places it in the nam~d variable, The second punches the seven

#ast significant binary digits of the integral part of the integer
d easion as a row of holes on the output tape, In both cases the
the

8lected channels must have been designated '"binary"' in the jok
scription,

The following two routines are useful in constructing special purpose
put and output routines,

integer fn spec next symbol

routine spec skip symbol
instruction

p = next symbol

68 the numerical equivalent of the next simple or compound symbol omn

jata tape in the named variable without moving on the data tape,
information is still available for a subsequent read instruction,
he second routine skips a symbol on the data tape and is equivalent to

wmand somkal Ffal
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6 MONITOR PRINTING AND FAULT DIAGNOSIS

FAULT MONITORING _?#50! 26 an,
There are two types of fault which can be detected by the Compiler, .?. Stateme,
firstly those which can be found during compiling and secondly those which Ufhich States
become evident during the running of the compiled program, To aid 5’,30h they s
Appendix 4 t

the programmer in correcting these faults information is automatically

printed out where a fault occurs,

COMPILER TIME MONITORING
During compiling an outline of the program is produced in which the

beginning and end of each routine are printed against the physical
line number, This gives a broad outline of the program as an aid in
finding the faulty instructions and also correlates each routine with
its routine number, for use in tracing faults found at rum time (see later),
Also all faults during compiling are monitored, Those to which a line
number can be attached, such as NAME NOT SET, are preceded by it, while
those which can only be found at the end of a routine such as TOO FEW
REPEATS are monitored after the END, Finally at the end of each routine
all the non-local variables except the reserved names are printed out,
Although these do not necessarily indicate a fault, they may indicate a
name which should have been declared locally, A typical program moniter
might be

I BEGIN
26 NAME NOT SET
55 LABEL 7 SET TWICE
70 BEGIN ROUTINE POLY = 24
II5 NAME NOT SET
115 REAL QUANTITY IN EXPR
180 END OF 24
LABEL I8 NOT SET
NON-LOCAL VARIABLES
A
TEMP
SI
182 END

The above should be self-explanatory, It indicates that the program
started at line I and finished on line 182, These are physical line!
and include all blank lines on the print-out, The routine POLY s
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lines 26 and 55 and two in 1line II5, Since there may be more than
one statement on a line, it is not possible to tell specifically

which statement is involved but the faults are printed in the order in
which they are discovered, A full list of faults iz given in
Appendix 4 together with a brief description of their nature,

RUN TIME MONITORING

During the running of a program certain faults may be detected
Both by the compiler and by the machine and its supervisor program,

hl' example, the supervisor program detects the case where the square
‘root of a negative argument is being requested and the compiler detects
faults connected with switch instructions and test instructions,

The standard procedure is to print out a line of information

ipecifying the fault followed by a 1list of the FIXED variables used,
For example

ALL TESTS FAIL
ROUTINE 38 LINE II7
FIXED VARIABLES

tates that at the test instruction in line II7 routine 38

8 1ine number gives the line in the whole program not in the routine),
t the [COND]’s on the labels were satisfied, Then follows a

f the fixed variables of the routine,

A full 1ist of run time faults appears in Appendix 4o

PPING
The above standard monitoring procedure involving the termination
"-’mam, may prove inconvenient, For example, if a program has
ber of sets of data, rather than stop if the accumulator overflows
me number becomes so large as to be out of the machine's

in the middle of one set, it may be preferable to restart on




6.3

The user may write a set of instructions in his main

program (at label I) and label them, for the accumulator overflow humber i
case, with [conDp] 1,
the swit

fault (1) : -

If the 1a

The action taken by the machine is first to print out the nature appear

of the fault, then to test whether the appropriate fault label has R
been set; i1f it has it then obeys the instruction labelled and carries As with qt
on; if not it gives the standard fault monitoring, The relevant fault by the 1ins

label numbhers are given in Appendix 4,

FAULT DIAGNOSIS

There are many program faults which manifest themselves only in
wrong answers, and the following facilities are incorporated to aid users

in tracking down such faults,

QUERY PRINTING

All arithmetic instructions, including complex, may be followed
by a query (?),

€aBe a=Db{l) +¢c ?
After obeying such an instruction, the value of the 1,h,s, is printed
out in floating point style with ten significant figures, The compiling
of the query print instructions may be controlled by the statements

compile queries

ignore queries

The first instruction causes the subscquent queries in the program to

be compiled, until an ignore queries statement is reached where subseq

queries are ignored,

ROUTINE and LABEL TRACING

There are two tracing facilities available: the routine trace and
the label trace, In the areas where the routine trace 1s operative it
causes the routine number to be printed out each time it is entered,
The correspondence between routine number and its name can be found from
the program outline produced during the compilation, Thus a prin
may appear

RI R5 R3 R2 RI RS R3 R2 ,eesc00c000ccccccce ,
The label trace facility allows the flow of the program to be followed
in greater detail. For everv simple fump instruction cheved the ]
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number is printedy for every test the value of the label at which the
[COND] is satisfied is printedj for every switch it 1s the value of

‘the switch that is printed, Thus a print-out might appear

-> 3 test I => 4 ~> 6 switch 3 => 7 => 8 => 0 .eseness

If the label and routine trace are both operative the print-out might
‘appear

RI -> 3 test I -> 4 ~=> 6 RS 8witCh 3 ,eecceccse

A2 with queries the areas in which the traces are operative are delimited
By the instructions

compile jump trace

stop jump trace

compile routine trace

stop routine trace
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7 PRESENTATION OF COMPLETE PROGRAMS

JOB DESCRIPTIONS

The running of programs on the computer is controlled by a supervisor
program held permanently in the machine, The supervisor accepis

complete programs as a series of tapes(program and data) and a :ftn::i

JOB DESCRIPTION which may be in a separate tape or included with the

program or data, A full description of the system is given elsewhere **, :::g::;

and in this section we give examples to illustrate the gemeral

principles of job descriptions, et
klock),

We give first an example of a program with its data on the
same tape,

JOB

(Title)

COMPILER ATLAS AUTOCODE

ouTPuUT

0 LINE PRINTER 5 BLOCKS

I TELETYPE 2 BLOCKS

STORE 30

COMPUTING I.5 MINUTES

berin

end of program

DATA

%7

** Howarth, D,J,, Payne, R,B,, Sumner, F,H,, ''The Manchester Unive b
Atlas Operating System, Part 2: Users' Description'' Computer Jou i
October I96I,
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NOTES

I, The title identifies the program, The first few characters will
be a code to identify the particular organisation and the rest will
be information of an arbitrary form to identify the programmer and
the program within the organisation,

2. The OUTPUT information =ays that reference to channel O in the
program means the line printer and channel I means a Teletype punch,
The block numbers give an upper limit to the number of blocks of
output that is to be permitted on each device (4096 characters per
block), If the 1limit is reached the program is terminated, In the
absence of an OUTPUT section the following is assumed

OUTPUT

0 ANY I BiLOCK

ANY indicates that any of the output devices may be used,

3, The STORE and COMPUTING sections are optional, STORE gives an
upper limit on the number of 5I2Z word main store blocks used by

the program and data, while COMPUTING gives a limit on the running
time of the program, If either 1limit is exceeded, the program is
terminated, If the above information is not present, the

following is assumed

STORE 20

COMPUTING 4 SECONDS

4+ A program tape is always assumed to be on program channel O so
that in the above case, the data for the problem is also on channel O,
‘5« ***Z is an end of tape marker and indicates that all the information
on the tape has been read,

A second common form of complete program is a program tape
@nd a separate data tape, In this case the program type might be

COMPILER ATLAS AUTOCODE
(Title I)

begin

end of program

Lii VA
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The data tape, which this time includes the jok description,

might ke
Jos
(Title 2) 8 «
INPUT
0 (Title X)
SELF = I of co
OUTPUT are g
0 ANY I0 BLOCKS imagi,
STORE 20 that
COMPUTING 30 SECONDS
DATA m

For ex

*d k7

The INPUT description gives the relevant program as being
channel 0 (the program channel) and SELF = I indicates that the data
tape is to be read as channel I, Thus an imstruction 'select input (I)'
would be required in the program,

CORRECTIONS TO PROGRAMS

It is possible to insert corrections automatically in
a program by rcading in a correction tape, which is designated
channel I5 in the job description,

The available instructions are

delete line [N]

replace line [N] by

end of correction

end of corrections

The line numbers refer to the physical line numbers of
the original program,

A correction tape might ke as below

DATA

(Title)

replace line 30 by

a = a*x - b

z cos (a)
delete line 35

end of corrections

k7
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8 COMPLEX ARITHMETIC

As indicated previously, facilities exist for the manipulation

of complex as well as real and integer quantities, Complex quantities

are stored as a pair of real numbers in consecutive locations (the real and

imaginary parts respectively), The address of ths complex quantity is

that of the real part,

DECLARATIONS

All quantities must be declared at the beginning of the routine,
For example

real RI, R2, R3

complex Z
complex array P(I:I0), Q(I:X0,X:I0)

Causes 3 locations to be reserved for RI, RZ, R3, 2 for z, 20 for P and
200 for Q,

Similarly if sI were the starting address of the matrix Q above,
then the declaration

complex array fn for R(sI - 20, 10)

‘Would define a complex vector R(1) whose elements were the first column
of the matrix Q, Rote that the user need only ke aware of the method

of storing complex numbers for evaluating the origin (here BXI -~ 20)

ht an array, The other parameters (in this case X0) refer to elements

 rather than locations and the factor 2 is automatically taken care of,

ARD FUNCTIONS

The following standard functions are added te those previously

re(z) (real part of z)
im(z) (imaginary part of z)
arg(z) (argument of =z)

= conj(z) (complex conjugate of z)
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The argument z may ke any [EXPR] (in the complex sense as described below)

The functions

5

sin, cos, tan, log, exp, sq rt, mod
may also have complex [EXPR]'s as arguments and they are interpreted in
the normal fashion,
For example if
z =x + 1y
then exp(z) = exp(x)(cos(y) + 1 sin(y))
The functions
arctan, radius, frac pt, int pt, int

are meaningless if their arguments are complex,

ARITHMETIC EXPRESSIONS

The arithmetic expression [EXPR] is still of the form
[+?1[OPERAND] [ OPERATOR ] [OPERAND][OPERATOR] ,,..esss [OPERAND]
kut [OPERAND] is now expanded to be

[vAR], [coxsT], ([EXPR]), | [EXPR]|, [FUNCTION] or i

Here 1 is a delimiter denoting the i (or j) of complex algebra notatienm,
Examples of this more general expression are

(Voconj(1) - I.conj(V))/(1i2)
(ZX1Z2 + 22Z3 + 23Z1)/23
Y(1,2) + sin(conj(¥(2,1)))
RO(I + 12Q0d)

i

NOTES

I. VWhen a complex number is written out expiicitly (say x + iy),

then it is regarded as 3 operands (x,i and y) connected by the two

operators + and (implied) *, Thus if the brackets were omitted

from the denominator in the first example it would mean
((Veconj(I) - X.conj(Vv))/1)z
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ARITHMETIC INSTRUCTIONS

The form of the instruction remains
[VAR] = [ExPR]

Wt [VAR] now

includes complex scalars and complex array elements, For
example

Z = ZX22/(2X + Z2)
Y=0G4 12pf%c
A(p,q) = 2sin (27z)

R =RI + re(z)
P = §(V,coni(1) + I.conj(v))

NOTES

I, Just as real quantities may not appear on the ro.h

«8, of an integer
instruction (except as

arguments of int(x) or intpt (x)), so complex

Quantities may not appear in real or 1nteger instructions,
However, the functions

re(z), im(z), mod(z), arg(z)

ert from complex to real quantities and may therefore appear on

Tehes, of a real instruction, In fact any function whose

is real regardless of its arguments may be

used in a real
ction,

Thus i1f X and B are real then

X=B4+ im(Y) is valid

re(z) and im(z) are actual locations in the store and can therefore
#Sed on the 1,h,s, of

an instruction (whose mode is then real),
example

re(z) = sq rt (2)

re(y) = 5 +im (zX)




However, wod(z) and arg(z), even though they do define z, are not lecations
in the store and cannot be used on the l,h,.s, If a complex quantity

- ComprTION

is being evaluated by means of the evaluation of its modulus (m) and
of note I

argument (a), the assignment is done by

z = m*(cos(a) + 1 sin(a))

W |~

or z = m*exp (ia)

AUV INES A
3. When the functions )

quantities
sin, cos, exp, mod

par:
appear in a complex instruction, a test is made to see whether the

arguments are real or complex, and the appropriate method used,

4. However, when the functions
sq rt, log

appear in a complex instruction, then arguments are regarded as complex,
Consequently, in a complex instruction, the evaluation of sq rt (-4) givel
123 and does not cause the machine to stop as it would in a real
instruction,

DATA

complex numbers on a data tape are punched using similar conventions

for real numbers, For example
34143 13 X.X7a3 - 12,13a4

Within the number spaces may only appear immediately before or immediat

after +1 or -1,

They may be read by the usual read instruction
0.2 read (zI,z2,z3)



CONDITIONS

In conditional operators, [EXPR]'s must be real (In the sense

of note I of the previous section ), Hence the following are legitimate,

if arg (z) > /2 then ~> 3

3 case |z| >I1I:

BOUTINES AND FUNCTIONS

Since routines and functions are allowed to operate on complex

quantities, the parameter types have been expanded to include

Formal parameter type Actual parameter type

‘tomplex name name of a complex variable

any expression (which will be
evaluated as if for a complex
assignment)

‘The routine types [RT] have also been expanded to include complex fn
i complex map, As an example we will rewrite the function routine for

8 polynomial

2(0)+a(I)X+ seeesses a(n)x

iming x and the coefficients a(i) to be complex.

complex fn spec poly (addr s, complex x, integer n)

complex fn poly(addr s, complex x, integer n)

complex array fn a(s,X); integer i} complex y
y =a (n)

cycle i = n-I, -I, O

¥ = ¥ox + a(i)

repeat
result = y

end

8.5




Half-wa
Q HALF-WORD OPERATIONS AND LIST PROCESSING FACILITIES [H
PFERA’ H -
0 TIONS ON HALF-WORDS and [H-EXPR]
In the previous sections we have regarded the 48-bits of a word as a [
+.

single entity, as a number in fact, There are many applications in nomn- where [H] d -
enc

numerical work where we can conveniently regard the 48—b1ts split inte (8] 1s deri
nec

a number of independent entities and even into single digits,(We will in

[ H-

these cases consider the 48-h1t words as two ~bit words often called
24 and [H-VAR] as
half-words), For example, characters are represented by their numerical atH

equivalents (see Appendix 3) in the range O - I27 , Since this number can

be represented in 7 bits it is ssikle to ck three such characters to a '
¥ po pe BIN] describes

word, For example a b ¢ could be packed half of s
- the 24-bit wor:
that this addre
8/2, [CONST] an
instructions an
renthesis,

a b c
i

Sy
[TX0000 T T000T oI 10001 IO

1,8, *6070 5430 ,
Facilities are provided for performing operations on 24-bit words, te
pack and unpack information so stored, and for manipulation in list

J egation operat.
structures etc, These are very similar to those used in the Compiler Compiler,

ad to 0's
the system used to write the Atlas Autocode Compiler, . -
Me half-word o
The scheme embraces the B~lines of Atlas which are given the special n
*y ™
BX, B2, B3 senssscscsecsses
operators
The restrictions on the use of B-lines described in the section on machine
! The operato:
instructions must be observed, Thus only BII - B5Q are generally available
3 operators) s
to the user, These are "global® variables and do not have to be declared )
). from left to
hanhded down from one routine to another as a parameter, In them the binary | .
al +
is assumed to be one octal place up from the end,
. interpreted
For local variables we may use the least significant half of an e
i
inteper type variable, (This is due to the method of storing an integer .'ny ik
Oother
quantity, As explained in the section on machine instructions, the integer "
>3 -2 ] ‘use of brack:
I0 is stored as 8 x(I0x8 ) i.e, . 7
operatio:
03000000 00000120
1 ‘right of
and if the least significant half is interpreted in the same way as a B~11
it has the value IO, '
. rators 4,
If for example K, MIN, I3, I2
a resul
have been declared integer quantities then we can refer to their least e . ~
-.u ' .n
significant halves as aK, aMIN, al3, al2, In the particular case of the 3.5 :
names I3, @2 ssese WO Can abbreviate them to a3, @2 .css. This facilit; g |
i Anformation

is peculiar to the names IXI, I2Z, I3 ,..ee¢ ©tC, which must still be ¢ b
't 18 rounda



Half-word operations are effected by the instruction
[B-VAR] = [H-EXPR]

and [H-EXPR] is defined as

[+?2](HI[HOI[H]lusoueecsnceses[H]

vhere [H] denotes a half-word operand and [HO] a half-word operator
[H] is defined as

[H~VAR],[CcONST],[OW], ([H-EXPR])
and [H-VAR] as

gIN]1,a[NAME],a( [H~-EXPR])

BIN] describes the B-lines and a[NAME] the least significant
half of interer [NAME]'s as described previously, a([H-EXPR]) denotes
the 24-bit word in the address given by the value of [H-EXPR], Note
‘that this address will not in general be integral but will take the form
/2, [CONST] and [OW] have the meanings described in the section on machine
fnstructions and ([H-EXPR]) has the usual significance of an expression in
enthesis, In addition each half-word operand [H] may be preceded by 2
ation operator (-) which causes the operand to be negated (i,e, all I's
ed to 0's, all 0's to I's) before it is used,
The half-word operator [HO] is defined as

) =y X P & ¥, /, », %, (+)
operators are described in detail below but note
The operators have uniform precedence (c.f, ordinary arithmetic
operators) and are applied to successive partial results in order

from left to right, Thus

ol + a2 - a3 & a4 V a5/6,125

. interpreted

(((((aX+a2)-a3) & a4) V a5)/6.125)

If any other interpretation is required it must be indicated by the
use of brackets which have the usual over-riding precedence,

The operations are carried out on all 24-bits including the three to
right of the binary point,

rators +, = have their usual meanings, * denotes multiplication
gives a result with the decimal point three places up from the least
iticant end, Thus

3.5 * 4.5 ylelds I5.75

) information can be lost at the least significant end, the exact

B oo a e B AR LB e o e Vol ame odd «-w -
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/ denetes division and gives a quotient with the decimal point three places up,
&, ¥, ¢ (Called "and’, "or' and "not equivalent’ respectively) are logical
operations which are performed between each pair of corresponding digits im
parallel, For any pair of digits the result is given by the following tables

0% 0=0 oOvVvo=0 OfgO0=0
Ok I=0 OYI=1I Olt I=1
I&0=20 IVOo=1I IZ0=1
I & I =X IVI=1I IAI=0
Thus the operation
*0000003X & *00000055
il.e, 000 000 000 000 000 000 OXII 00X

& 000 000 000 000 000 000 IOX IXIOX
would give 000 000 000 000 000 000 OOX 00X
1.0. *OOOOOOII

The operators » and < refer to left and right shifts respectively
(note that » must not be confused with ->, the arrow sign)
These shift the digits up or down circularlyj i,e, digits which are shifted
pver the top reappear at the bottom,
Thus if ol = *0707 0707 then o2 = aI < 3 sets a2 = *7070 TOoT0
a3 = *6161 6161

These instructions allow us to unpack informatiom packed in the vwwg;f

and a3 = al » 2 sets

escribed at the beginning of the section, Thus if «l contains a, b, and ¢ P
l.e, 1f al = *6070 5430

then a2 = oI & *0037 6000 » 7

sets aZ to *0000 I420, the numerical equivalent of b,

The operation (+) refers to the chaining of information and is
described later (see section on lists),

The form of the conditional operators 1s expanded to allow
[H-EXPRI[P1[H-EXPR] as a form of [SC], For example a conditional ins
may be

if BI > aI+IO0 then ->IO
or 1if B34+p4 # X000 then al = al+l

CONVERSION TO INTEGER OR REAL
The definition of [EXPR] has been extended to include [H-EXPR] a

an alternative form, thus
IExPRl = 221 fexer® 1 frB-rexenl

Constants, 1f an

88 part of ap [EXP)
dgniZicant halt o:
10 real the resuit

ised, Note howevey

bits being assumed

h the treatment
ME] = [EXPR'], |
t is to say the ,

ermit constants whij

ISTS

Quite often in
b-sections which
@ total of ayj the
ward solution ig 1
er the largest pos
.izéul of storage a
A list consistg
L PAir of half-wor
. tion and the s
i inverted commas
he store,

Farmatically 3¢ I

and [
ght appears-

X
[

Possible to

in e« In genera
Ond half of the |

t to the add
' chain, aXl(+)

1 2 alax+d),

TP oW owm
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tants, If an [H-EXPR] appcars in place of an [EXPR] (or within parentheses

jart of an [EXPR]) it is converted to 48-bit form by giving it a most

gnificant half 0300 0000 if it is +ve, 0317 7777 if it is -ve, To convert

freal the result is then simply standardised, otherwise it is left unstandard-

8, Note however that all 24 bkits are preserved, the three least significant

8 being assumed to be zero or in some way relevant, This is consistent

th the treatment of the instruction i = 2,5, which is recognised as

BiE] = [EXPR'], Strictly speaking the [EXPR'] should be an "integer' expression,
it 18 to say the result should be an exact integer, The checks applied, however,

mit constants which are a multiple of I/8,

Quite often in non-numeric work, the data may be divided into

gections which may have a length which varies over wide limits but where
itotal of all the sections generally is much more constant., The straight-

rd solution 1s to allocate storage for each section big enough to

P the largest possible length which may appear, However, this is very

#ul of storage and the idea of a LIST has been developed to overcome this,
‘A list consists of a number of full-word registers which may be considered
of half-word registers, The first half-word contains useful

mation and the second the address of the "next' word in the chain, "Next®

finverted commas since the actual location of the "next' word may be anywhere

mmatically if indicates an 'information® word

and the linking addresses,

‘might appoarst-

F )

4

b &

b ad'(91

thus possible to utilise ALL the working space as all words may be linked
thain, In general we deal with CIRCULAR chains, i,e, chains in which

ond half of the last word contains the address of the first word,

it is to this type of structure that the operator (+) refers, Thus

§ set to the address of (often shortened to 'if aI points to') a

p chain, aI(+)I points to the mnext, and aI(+)2 to the one after,

0 1ists are circular, in the above aI(+)5 = al, Again from the nature of
")I,: alal+d).

[iste may only be traversed in one direction (the direction of the




LIST PROCESSING FACILITIES

The Autocode contains a number of facilities for forming and manipulating location
1ists, All the operations make use of a central or main chain, whose list, a1 1|
address is kept in 89 [

XXX
PS‘! A censeque;

A large area of the store is initially chained up in this way and it
is assumed that while registers may be borrowed from and returned to it, would cause
it is never exhausted,

Lists are referred to by list [H-VAR], Thus list aI is the 1list whose
address is given by al, The main chain then is effectively list 389. Empty

lists are characterised by having this address zero,

For setting up lists initially the instruction
set up list [H-VAR]

is provided, It creates an empty list for use later on, To do this, of Inlgigs
it merely sets [H-VAR] = 0, (In fact for example al = O could be writtem The word
and it would have the same effect, The above format is essentially te (which ¢
increase readability of programs), in which

Items can then be added to this list by the instruction A numb
add [I-EXPR] to list [H-VAR] S8truction

For the first variable to be added the instruction causes the [H-EXPR] teo M

evaluated and placed in the next word in the main chainj and then the word i [H-EXPF
detached and made into a circular list of one word, - !-qln-pla
Thus the instructions
sot up 1ist el ,
add BI0 to list al 1d give ri.
would result in a change from
> > > S - e
1‘ Blled a Ny
RS9 .' [B-VAR
On travers
to in w
this lat
'Plo am > —— * ¥
tructio)

Corres
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location of the main chain, which is then detached and added to the
list, aX being updated in the process, The list then appearsi:-

-—)imo r_)—l'w‘

A censequent

add I0 to list aX
would cause list al to become

P10 —)—kmi

~

10

~

In list [H-VAR], the [H-VAR] always points to the last word added,

The words are added in such a way that on traversing the chain

(which can only be done in one direction), the items are met in the order
in which they are entered,

A number of items can be added at the same time by means of the
ruction

add [H-EXPR-LIST] to 1ist [H-VAR]

[B-EXPR-LIST] is defined as a series of [H-EXPR]'s separated by commas,
'lelmple

set up list al

add IO, a4+I5, I0 to list al

1ld glve rise to the same list as above,

Items may be placed in a chain in another way and the resulting chain
ed a NEST, In contrast to a list the nest has the following properties,
[B-VAR] always points to the first word added,

i traversing the nest, items are encountered in the reverse

in which they are entered,

8 this latter property which is important in nests, It is a 'first-
Bst-out device',

instruction

set up nest a2

corresponding listing instruction, sets a2 = O,

3:13 the instruction




9T

samo orde;

The corres

"t
' sets [H-vA
___alplo

word it us
T | et
o2 | _ Bets 85 to

However a following instruction, say,
add a4 + I5 to pest a2 _ T
results in :* o

Y

Plo
T

]

where a2 1s unchanged and the consequent

and further
the REVERSE

add I0 to nest a2 The two

Lfference 1
- differen
et the [n-v

L 4

results in
PlO chain an
If the 11

where the item added is inserted immediately after the item at the head dﬁ' Ly 1ist or
the chain (i,e, the one whose address is in a2) and where a2 does not chs

Lists
The instruction
add [H-EXPR-LIST] to nest [H-VAR] o
adds a series of [H-EXPR]'s to the nest, | .;wlftect is
There are two instructions for retrieving information stored in lists .
and nests, I8 referring

withdraw [H-VAR] from list [H-VAR]
sets [H-VAR] to the value of the FIRST item entered in the list and —
returns the word which contained it to the maim chain, For example, & |
considering the 1list al previously built up, the instruction .
withdraw g5 from list al

sets g5 to the value of PIO and contracts the list to

io

A\




gamo order in which it was entered,
The corresponding nesting instruction
withdraw [H~-VAR] from nest [H-VAR]
sets [H-VAR] to the value of the last item entered and returns the
word it used to the main chainj for example,

withdraw g5 from nest a2

sets A5 to X0 apd contracts the nest to

Y

ht15

'

]

o

and further withdraw orders cause the information to be retrieved in
‘the REVERSE order to which 1t was entered,

ROTES
‘I, The two operations are exactly the same physically; it is the
difference in entering information in a list or nest which results in
ﬁho different order in which items are withdrawn, The action is to
f“t the [H-VAR] to the information in the next word after the head of
he chain and return that word to the main chain,
If the 1ist or nest contains only one word, withdrawing a word sets
L or ¢2 to zero, It is impossible to withdraw information from an
¥y list or nest and any attempt to do so will cause trouble,
Lists or nests may be deleted by
delete 1ist [H-VAR]
or delete nest [H-VAR]
@ effect is to break open tho 1list or nest and return it to the main
ile

i referring to the following diagram

Y

- RO

list g4 would result in

9.8
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I0 THE USE OF MACHINE INSTRUCTIONS

s
STACK STRUCTURE 2t repres
must be L
Machine instructions can be used in routines either to make an
: o
inner loop more efficient or to effect some operation which cannot easily sult is 4
be done otherwise, It is essential however, before using such instructions
C
to krow how data 1s stored in the stack, We shall assume from here !ELlQQELEQ
w
that the reader is reasonably familiar with the logical structure of the @ shall n
machine, that is with the basic order code, We shall illustrate the T Where
written in

use of machine instructions by recoding the inner loop of the routine

'line fit' described earlier, The local data of the routine is stored

as follows:

(and termina

Bd
o T 2 3 5 6 7 8 g 10 XII I2 I3 I4 I5 16?:7 function dig:
i E sinlalblelx]y]xx| xylyrli]s] 2 |s+x] 2 to the addres
e S —— R
LINKS floating point numbers ] Pla:
| unstandardised floating point integers

Here Bd refers to the B-line associated with the routine, and corresponds

to the textual depth of the routine in the programme in which it is
octal notat:

embedded, If (say) this is 2 then Bd = B2, The addresses 2, 3, 4, seesed
] The ef}

associated with s, n, a, etc,, are assigned of course at compiler time,
the address

The coefficients s, 2 and s+I, 2 of the array functions are evaluated at
run time however when these statemeonts are encountered, All the above The format
quantities are referred to as the "fixed"' variables, There are no

local arrays involved in this routine, BgO always points to the next

available location in the stack, RBd points to the old position of BQO 1
Similar to (;

- Thia [
.;%iding any si

before the routine was called in, The previous contents of Bd (if any)
are stored in (Bd,}) and the control number link in (Bd, 0)., The
location (Bd, I) is used in test instructions while (Bd,3/2) holds the
number of fixed variables in the routine,Bg0 is advanced from its origina
value to the value shown Bd + I7 immediately on entering the routine,
The unstandardised integers are obtained by adding 0,8 to the standare
version with the add instruction 0330, Thus an unstandardised IO is

1 - -
as 8 .(10,8 n), i,e., as al notatio:

03000000 00000I20 in octal form

ITACK INSTRUCTIONS
The following autocode formats involving the stack pointer (B9O

to plant ;

re available location «
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8t represents the contents of BQO, In the last instruction the [NAME]
must be local to the routine containing the instruction, otherwise a

fault is indicated,

MACHINE CODE FORMATS

Ye shall now describe some 'machine code' formats,

I, Where there is no symbolic address involved an instruction is

written in the form
[Fpl, [N]1,[N]1, [+?]1[CONST]

(and terminated as usual by j; or newline), Here [FD] refers to the
function digits, [N] to the Ra and Bm digits, and [+?][CONST]

to the address part, This last is written as a constant in the usual way
(preceded possibly by a sign) bearing in mind that the binary point is
located 3 places from the right hand end, Thus

oxox, 8o, 2, 2.5 is equivalent to
04064002 00000024

in octal notation,

The effect of this instruction in the above routine would be to
‘set the address s in RS0,
2 The format

[Fp], [N]1,[N],[07]
18 similar to (I) but here the address part is written as an octal

mmber, This consists of an * followed by up to 8 octal digits,
uding any significant zeros, Thus *0047 is equivalent to the 24

[+?1[coNsT]

gsed to plant a standardised 48-bit floating point number in the
‘ent location of the programme,
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plants a pair of 24-bit words, each similar to the address part of (I),

: 4 4
in the current location,
pai;
5. The format
[ow], [ow]
plants a pair of half words, each similar to the address part of (2), 7
We now have three instruction formats which use a symbolic :
address,
6. [(Fpl,[N], - ,[NAME]
[N]1:
Here the [NAME] must refer to an integer (or addr), real, integer name,
Corre
real name, In the case of an integer or real name, the resulting th
e 8 1

instruction is as follows

[FD],[N], d, p

where (Rd, p) is the "address' of the name, Bd being the B-line pointing
to the appropriate section of the stack, and p being the address relative

to the oripgin of that section, Thus an instruction

~ puts ar
Fi

0324, 0, -, x

appearing in the routine under discussion would be translated as
TOgTram

0324, 0, 2, 7T

The effect would be to put x in the accumulator, In case of integer
end real name the symbolic instruction always corresponds to a pair of

instructions, thus

0324, 0, -, a is translated as
oxox, 99, 2, 405
0324, 0, 99, O

If the [NAME] refers to an unstandardised floating point integer then !
may wish to select the integral half for use in a B-line, This can be _
done by writing a before the [NAME], Thus

oxoxr, 8o, -, as
is equivalent to
orox, 8o, 2, 2.5

s the c
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If 8 were an integer name then the instruction would correspond to the

pair of instructions

0IOX, 99, 2, 2.5
oxoxr, 80, 99, 0.5

7. In the instruction format
[Fp]1,[N],[N],[N]:
[X]: refers to a simple label, It is replaced by the control number

corresponding to the label, We may refer to labelled comstants in

this way, For example

0334, 0, 0, I4t

I4t *03, *00000X2

puts an unstandardised I0 in the accumulator
A Finally, we have a special purpose format, the use of which requires
2 more detailed understanding of the operation of the translated

programme,
[¥p],[N], -, [-2][N]I[NAME][+CONST?]

where again the [NAME] can be preceded by a if necessary, Here the

#ttual address is obtained by selecting a particular address associated

fith the [NAME], adding to it the [+CONST] if present, and finally adding
0,8 if a is present, The particular address referred to is specified by
the value of [-?][N], It is obtained by looking up a property 1list which
s set up by the compiler for each name quantity, The significance of the
yarious addresses which can be oktained in this way is explained elsewhere,
ffjn example however, we may refer to the storage layout of the routine
tussed earlier,thus

0xox, 8o, -, Xax

8 the origin of the X vector in B80, Here X was defined as the
2y In X(s, 2), However, in the following version of the "line fit'

R Ty M o e T R T L L - s (= R wor- I -




routine line fit (addr s, integer n, real name a, b, c)

real x, y, xx, Xy, yy
Xx=0} y=0} xx = 0} xy =0} yy = O

2:

I

oxoxr, 8o, -, as
oror, 81, -, an
o124, 81, 81, -2

0324, 80, 81, 0
0320, 0, -, x "
0356! 0y, -y x

0324, 80, 81, 0
0362, 8o, 81, o
0320, 0, -, xx ?
0356, 0, -, xx

0324, 80, 81, 0
0362, 8o, 81, 1
0320, 0, -, Xy
0356, 0, =, Xy J

0324, 80, 81, 1
0320, 0, -, ¥ >
0355, 0, =» ¥

0324, 80, 81, I
0362, 8o, 81, 1
0320, 0, -, yy
0356, 0, -, ¥y

0214, 127, 81, I
0122, 81, o, 2
0121, 127, 0, 2t

8 = (N,xy = X.¥)/(n,xx - x,x)
b= (y - a,x)/n

¢ = yy - 2(a.xy + b,y) + xx.a;

end

load s into B8O
load n into B8I
form 2n - 2

X(1) + x =--> x

2
X(1) + xx --> xx

X(1)Y(1) + xy -=> xy

Y(1) + y ==> ¥y

L1
Y(1) + yy -—-> yy

if "B8I = 0' then -> X

BS8I = B8I ~ 2
- 2

2
- 23.‘.3 + n,b

10.5

USE OF

those B

by certai
every aut,
of the ¢t ¥

Al
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USE OF B-LINES

The user of machine instructions mugt take care to avoid using

those B-lines which are used by the system, These are

BI, B2, B3, -——-

vhich are associated with routines of textual depth I, 2, 3, etc, The
embedding of routines within each other would not normally extend very
fart it would be a very complicated program indeed that ran to IO
deep,

The extracode sequences use BQI - Bg7., Bg8, Bgg are only used
by certain extracodes but om the other hand they are used by almost
_ every autocode instruction and indeed by certain 'machine' instructions
of the type O,

Also B60 - B7Q are used by permanent and library routines,
Therefore the user should confine himself to BIO - B5Q,
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APPENDIX X PHRASE STRUCTURE NOTATION Given 1
In describing Atlas Autocode we use square brackets round an allowec
entity to denote that it represents a class of entities and may be replaced
by any member of the class, We call an entity in square brackets a PHRASE, we can
For example we could define a decimal digit hy
PIIRASE [DIGIT] = o,I,2,3,4,5,6,7,8,9 The [Ss.
where the commas are interpreted as meaning ‘or', Thus there are ten diff its own
things which can be called [DIGIT], and when we refer to [DIGIT] elsewhere
we mean that any of the ten will be legitimate, the unce
We can then build up from this basis and describe, for example, they may
a signed digit as unless [

PIRASE [SIGNED DIGIT] = +[DIGIT], -[DIGIT]
There are many phrases in which a particular component may appear - Note that

an indefinite number of times (for example an integer may have any number These are

of digits), and a special qualifier * is used in a phrase to indicate that but those
it appears at least once, but may be repeated any number of times, ¥
Thus, having defined [DIGIT] we may define an integer and call it [N] by
FURASE [N] = [DIGIT*] 1 defincd a
There are also places where a phrase may or may not appear and the F
qualifier ? 1is uscd, For example a name in Atlas Autocode may be formally the rou
defined by the [NAME]
PIRASE [NAME] = [LETTER*][DIGIT*?][PRIME*?] & function
where  PIRASE [LETTER] = a,b,c,d,e,t,g,h,1,j,k,1,m,n,o,p,q,r,s,t,u,v,v,x,f' '
A,B,C,D,E,F,G,H,1,J,K,L,M,N,0,P,Q,R,S,T,U,V,W,X,T Brences

and  PIRASE [PRIME] = *
The Atlas Autocode langnage 14 recursive and phrase definitions may use
themselves, For cxample wo may define a 'l1ist of names separated by commas . Brooker,

PIMASE [NAME LIST] = [NAME][,][NAME LIST],[NAME]
Thus ¢ is a [NAME LIST] since it is a [NAME],
b,c 1s a [NAME LIST] since b is a [NAME] and c, a [NAME LIST]}
a,b,c is a [NAME LIST] since a is a [NAME] and b,c, a [NAME LIST]
Note that 1f a comma is a component of a phrase it must appear in sqnamq:
brackets as above, to distinguish it from the comma which separates thl:
alternatives of a phrase,
The qualifier * also indicates recursiveness and a [NAME LIST]
could be defined as
PHRASE [NAME LIST] = [NAME][,NAME+?]
where PHRASE [,NAME] = [,][NAME]
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Given the phrases of the language it is then possible to describe all the formats
allowed in a program, For example, if we introduce the phrase [TYPE] as

PIIRASE [TYPE] = integer, real, complex

we can then define the format for the scalar declarations as
FORMAT [SS] = [TYPE]J[NAME LIST][S]
The [SS] indicates that it i1s a source statement which means it appears on
its own in an Autocode program,
In Atlas Autocode there is a further type or CLASS of format,
the unconditional instructions [UI], which have the special property that
they may be preceded by the conditional operators if [COND] then and
unless [COND] then,
A 1list of the phrases and formats of Atlas Autocode follows,
Note that some phrases ([S],[CONST],[NAME] and [TEXT])are not formally defined,
These are defined by special built-in routines which we will not consider here,
t those interested may refer to the references given below,
Finally we should point out that some of the definitions are not
letely rigid, For example, the arithmetic assignment statement is

FORMAT [UX] = [NAME][APP] = [EXPR]

the routine which deals with this format, tests are made to ensure that
[NREI[APP] does in fact describe a variable, and is not, for example,
 function,

Brooker ,R,A,, Morris,D, and Rohl, J,S,, ''Trees and Routines'',
Computer Journal, Vol, 5, No, I,

inmker,n.ﬁ., MacCallum, I,R,, Morris,D, and Rohl,J.S,

'"The Compiler Compiler'' 3rd Annual Review of Automatic Programming

(ed, Goodman), Pergamon Press,
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PHRASES AND FORMATS OF ATLAS AUTOCODE

PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE

PHRASE

PHRASE

PHRASE

PHRASE
PHRASE
PHRASE
PHRASE
PHRASE

PHRASE
PHRASE

PHRASE
PHRASE
PHRASE

PHRASE
PHRASE

PHRASE
PHRASE
PHRASE

[EXPR] =
[EXPR'] =
[OPERATOR] =
[OPERAND] =
[arpP] =
[EXPR-LIST] =
[TYPE] =
[QUERY] =
[NAME LIST] =
[ARRAY LIST] =
[ARRAY FN LIST] =

[BOUND PAIR LIST]=

[OWN ARRAY LIST] =

[CONSTANT BOUND PAIR LIST]=[NJ:[N1[,]I{N1:[N],[N]:[N]

[conn] =
[AND-C] =
[orR-C] -
[scl =
[comp] =
[RT] =
[FrP] =
[FP] =
[FP-DELIMITER] =

[N~LIST] &=
[SWITCH L1ST] =

(-1 =
[ALPHA] =
[H-EXPR] =

[+?1{EXPR" ], [B-EXPR] '
[OPERAND][OPERATOR][EXPR' ], [OPERAND]

+y =y *, /3ty oy NIL
[NAME][APP], [CONST], ([EXPR]), |[EXPR]I, 1
([EXPR~LXST]), NIL

[ExPrRI[, JIEXPR-LIST], [EXPR] = [B-mxpme
integer, real, complex (xEq)
[H]
?
[NAME]L, JINAME LIST], [NAME] _ {Ro]
E [H-vAR]

[NAME LISTI([BOUND PAIR LIST])[,][ARRAY LIST], :
[NAME LISTI([BOUND PAIR LISTI) 3 (list or
[NAMEJ([EXPR][, J[EXPR-LIST])[, J[ARRAY FN LIST], 'f [H-EXPR-L
[NAME]C[EXPRI[, I[EXPR-LIST]) ® [+ cons)
[EXPR]: [EXPR]I[, J[BOUND PAIR LIST], ‘ tcl
[EXPR]: [EXPR] i b [corRECTT
[NAME LISTI([CONSTANT BOUND PAIR LIST1)[,]1[OWN ARRA
[NAME LISTI([CONSTANT BOUND PAIR LIST])
[AND-C],[OR-C] f:[UIJ
[sc] and [AND-C],[SC] ;;"I]
[sc] or [OR-C],[sc] -?BI]

' [ux]

[H-ExPRI[COMP][H-EXPR], [EXPR][cOMPI[EXPRI[COMPILE
[Expr]l[comP]l[EXPR], ([COND])
By Fa P9 %9 S >

routine, integer map, real map, complex map, int

real fn, complex fn

([Fp+]), NIL
[FP-DELIMITER]I[NAME]

[,?] integer name, [,?] real name, [,?] ¢

[,?] integer, [,?] real, [,?] complex, [,?] ad
[,?1(RT1,[,] _
[N1[, J[N-LIST],[N]
[NAME LISTI([-?3[N1:[-2]IN])[,1[SwITCH LIST],
[NAME 1.ISTI([-?J[N]:[-?1[ND) '
a

[+?1[H-EXPR']



SE [H-EXPR'] = [NEG?][HI[HOJ[H-EXPR' ], [NEG?][H]
RASE [NEG] - -)
S8 [H] = [H-VAR], [CONST], [OW], ([F-EXPR])
MSE [HO] = +y %, & Vo 2y =y /s *, 4, ()
[H-VAR] - pIN], alNAME], a([H-EXPR])
E [list or nest] = list, nest
\SE [H-EXPR~-LIST] - [H-ExPR][, ][ H-EXPR-LIST], [ H-EXPR]
BE [+ CONST] = [+][consT]
R [c] = delete line [N], replace line [N] by, end of [CORRECTION]

R [CORRECTION]

corrections, correction

- [{NAME][APP] = [EXPR]I[QUERY?]

= [NAME][APP]

- stop

= return

- -> [XN]

= test [N-LIST]

" ~> [NAME]([-?]1[N])

= -> [NAME]([EXPR])

= caption [TEXT]

= [H~VAR] = [H-EXPR]

= add [H-EXPR] to [list or nest][B-VAR]

= add [H-EXPR-LIST] to [list or nest][H-VAR]
= withdraw [H-VAR] from [list or nest][H-VAR]
- add 1ist [H-VAR] to list [H-VAR]

= split 1ist [H-VAR] at [E-VAR]

- set up [list or nest] [B-VAR]

= [o1lis]

- it [conNp] then [UI][s]

- unless [COND] then [UI][S8]



FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

[8s]
[ss]
[ss]
[ss]
[8s)
[ss]
[ss]
[ss]
[ss]
[ss]
[ss]
[ss]
[ss]
[s8]
[ss]
[ss]
[ss]
[ss8]
[ss]
[ss]
[ss]
{ss]
[ss]
[ss]
[ss]
[ss]
[ss]
[ss]
[s5]

[ss]

[se]
[ss]
[ss]
[ss]
[ss]
[ss]

FORMAT [8s]

[UI] unless [Conplls]

cycle [NAME] = [EXPRI[, 1[EXPR]L, J[EXPRI[S] an
repeat [8] Y
[TYPEI[NAME LISTIL[S]

[TYPE?] array [ARRAY LIST][S] I,
[TYPE?] array fn [ARRAY FN LISTI[S]

own [TYPEI[NAME LISTI[S] typ
own [TYPE?] array [OWN ARRAY LISTI(S) exa;
[RT]1 spec [NAME][FPP][S]

[RTI[NAMEI[ FPPI[S]

begin [S] In 1
end [s] pars
end of program [S] a)
[N]:

[N] case [COND]: b)
[NAMEI([-2]1[N]):

switch [SWITCH LISTI[S]

compile queries [S]

ipnore querics [S] c) 1
compile jump trace [8] axpre
comnile routine trace [S]

stop jump trace [8]

stop routine trace [S]

comment [TEXTI[S] 2, 81
[¥DIL, JINIL, JINIL, J[+?][CONSTILS]

[Fp1L, (NI, JINIL, Jlow1Ls] Aintege
[+?]1[consTI[S] intege
[+2?]{coNsT1[,1[+?]1[CONSTIL5] Teal f
Cowll, Jlowl[s] Comple:
[¥p1L, I[NIL, 1-0, J[ALPRA?J[RAME][S] 4

[FDIL, JINIL, 3-[, I[-?1 (NI [ALPHA? 1CNAME](+ CONST

[FDIL, JENIL, JENIL, JENT: L8] ’ formal
result = [ExXPRI[S]

[NAME] = st [8] content
st = [EXPRI[S] in the .
st = st [+J[EXPR'][S] ko in n

[CORRECTION][S]



APPENDIX 2 LIST OF STANDARD FUNCTIONS AND PERMANENT ROUTINES
All the functions and routines listed below are declared at level O
and h#nce are permanently available unless the names are redeclared

locally by the user,

I, SBTANDARD MATHEMATICAL FUNCTIONS

Some of the functions are special cases in that the function
type and the type of the formal parameters may depend on context, For
exawple "sq rt' exists in the following two forms

real fn spec sq rt (real x)

complex fn spec sq rt (complex z) (see Section 8)

In the following 1ists we shall assume that n represents a formal
pacrameter of type integer, x of type real, and z of type complex,
2) The following functions may appear in integer expressions
int pt(x) int (x) parity (n)
b) 'The following, together with (a), may appear in real expressions
sin{x) cos(x) tan(x) log(x) exp(x) s=q rt(x)
arc tan(x,y) (-¥<@<r) radius (x,y) frac pt(x,y)
mod(z) re(z) im(z) arg(z)
¢) The following, together with (a) and (b), may appear in complex

expressions

A2.1

sin(z) cos(z) tan(z) log(z) exp{z) 8q rt(z) conj(z)

2, STORAGE FUNCTIONS

inteper fn spec addr ([VAR])

integer fn spec integer (integer n)

real fn spec real (integer n)
complex fn spec complex (integer n)

The address recovery function is a special case since the

fermal parameter type of the argument may be integer name or real name,

The functions integer (n), real (n), complex (n) give the

contents of storage location n as an integsr, real, or complex number}

in the last case the two parts of the Complex number are assumed to
de in n and n + I,
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3, INPUT / OUTPUT ROUTINES (see Section 5%)

routine spec select input (integer n)
routine spec read ([VARIABLE LIST])

routine spec read symbol {integer name n)

routine spec read binary (integer name n)

routine spec select output (1ntaggr n)
routine spec print (real x, 1nteg§5 m,n)

routine speec print f1 (real x, integer n)

routine spec print symbol (integer n)

routire spoc punch binary (integer n)

routine snpec space

routine sper spaces (inteser n)

routine spoe newline

roittine spec tab

interer fn srec next symbol

routine spnc skip symbol

The above routines are the basic input/output routines,
but it is anticipated that more comprehensive routines will be
added shortly,

4 MATRIX ROUTINES

The following basic matrix routines are available, It is

assumed that the matrices are stored by rows in the conventional manner,

rontine spec mat mult (addr sI,s2,s3, integer m,n,1)

This forms an m x n matrix in sI onwards, as the product of

an m x 1 matrix in s2 onwards and an 1 x n matrix in 83 onwards,

routine spec mat div (addr sI,s2, integer m,n)

This replaces the m x n matrix A in sI onwards by the m x n
matrix B*A, where B is an m x m matrix stored in s2 onwards, B is
destroyed by the routine,

routine spec mat trans (addr sI,s2, integer m,n)

This forms in sl onwards the transpose of the n x m matrix
stored in =2 onwards,

real fn spec det (addr sI, integer m)

This evaluates the determinant of the m x m matrix stored

value

places
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Se INTEGRATION OF ORDINARY DIFFERENTIAL EQUATIONS

A permanont routine is availlable for the integration of systems

of first order ordinary differential equations,

routine spec int step (addr s, real name x, integer n,m, real h, routine f)

Given the system of equations
yi' = £1(x,51,52,0e000ee¥N) 1= X,2,0000e
where yi at x0 is known; the routine evaluates yi at x0 + vh by
m steps of a Rungo-Kutta fourth-order integration process, On entry
to the routine, yl at x0 1s stored in s onwards and x0 in the
reai name x, On exit, yi at x0 + wmh are in 8 onwards and x0 + mh in x,

The routine requires an auxiliary routine to evaluate the derivatives,

routine spec f (addr sI,s2, real x)

This rmust be written so that when 1t is entered with a

valua of x and values of yi in sI onwards, it evaluates the fi and

places them in s2 onwards,
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APPENDIX 3 NUMERICAL EQUIVALENTS OF BASIC AND COMPOUND SYMBOLS

The numerical equivalents for use in conjunction with the 'read symbol'

and ‘print symbol' routines are given in the table overleaf, The table gives

the numerical equivalents of the basic symbols i,e, symbols comprising a
single (upper or lower case) character,

Up to three basic symbols may ke superimposed (by means of the
backspace facility) to form a compound symbol,

2,8, # 18 formed from = _ /

The numerical equivalent of & compound symbhol is

a.z" + b.z’ + ¢
where a,b,c are the numerical equivalents of the individual symbols, ordered

so that a > b > ¢, Thus the numerical equivalent is independent of the

order of punching the individual characters,
If only two symbols are used, the formula is
»,2" +c, h>ec
Thus # is equivalent to 86,2 +28.2 + 1§
and > is equivalent to 86,2 + 27

™~ s

IC
II
12
I3

15
16
X7
I8

19

21

RE8RXNBRAPLER
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32
33

a4
335
36

37
a8
39
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57
58
59
60
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62
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64
65
66
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69
70
71
72
73
74
75
76
77
78
79
8o
81
82
83
84
85
86
871
88
89
90
9I
92
93
94
95

space q7

99
100

10X

102

I03

104

105

106

107

stop 108
109

110

? I1x
I12

113

114

115

116

17
_(underline)1x8
I 119
120

I21

« X2z
1z3

} 124
125

126

I27
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APPENDIX 4, LIST OF MONITORED FAULTS

COMPILING TIME FAULTS

The following faults are monitored at compiling time,
I, Faults due to [NAME]'s not having keen declared,

NAME NOT SET

SWITCH VECTOR NOT DECLARED

Z, Faults, found in arithmetic instructions, which give special
indications but which are most often caused by [NAME]'s not having
keen declared at the current level, These special indications arise
when #imilar [NAME]'s appear in the levels above,

LHS NOT A DESTINATION

ROUTINE NAME APPEARS IN EXPR

CALLS FOR ADDR OF EXPR

CALLS FOR ADDR OF FUNCTION

CALLS FOR CONTROL NO OF NON-ROUTINE NAME

SWITCH VECTOR APPEARS IN EXPR

3. Arithmetic Faults

RUN
COMPLEX QUANTITY IN EXPR i,e. a real or integer [EXPR] L
I, Th
REAL QUANTITY IN EXPR i.e., in an integer [EXPR] B
e the p
REAL CONSTANT IN EXPR
label.
WRONG NUMBER OF PARAMETERS This may be due either to the
wrong number of parameters appearing
in t
or to the omission of a multiplicat -
in the
sign before a left bracket,
NON-INTEGRAL EXPONENT
DIV OV
4e ¥Faults found at the end of each block or routine
EXP ov
LABEL, , {NOT SET There is a reference to label,..
which has not been set, el
LOG OF
NO LABELS SET No labels to which references are
TRIG F
made have been set,
TOO FEW ENDS begins (or routines) do not match
ends
TOO FEW REPEATS cycles do not match repeats
INV FN

5« Other faults
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FP FAULT A formal parameter faultjy it means
that the routine heading is not
consistent with the routine
specification,

NOT A ROUTINE NAME A call sequence is written in which
the [NAME] has not appeared in a

routine specification or routine

heading,

LABEL SET TWICE

SWITCH OUT OF RANGE

NAME SET TWICE

ARRAY OF MORE THAN 2 DIMENSIONS

WRONG FORMAT IN CORRECTIONS

NAME NOT VALID In [NAME] = st , the [NAME] must
be local,

INSTR OUT OF CONTEXT The format result = [EXPR] may only
appear in function routines,

RUN _TIME FAULTS

I, The following faults are monitored at run time, Normally they cause
the program to be terminated but it may be restarted by a sequence
labelled

fault (n):
in the top level (label I), The relevant numbers appear
in the table below,

DIV OVERFLOW division by O or a fault (X)
non-standard number

EXP OVERFLOW exponent overflow fault (I)

SQ RT OF -VE ARG fault (2)

LOG OF -VE ARG fault (2)

TRIG FN LOST ACCURACY a trigonometrical fault (3)

function in which
all accuracy has
been lost,
INV FN OUT OF RANGE an inverse trig fault (4)
function e,g, arcsin

when the argument is



INPUT ENDED insufficient data so fault (5)
that a read instruction
effectively reads over
the end of the data tape,
BPURIOUS CHARACTER spurious character (i,e, fault (5)
IN DATA not a decimal digit,
decimal point, sign or
@) appears in data,

2, Faults which indicate programming errors but which always cause the
program to terminate

INPUT NOT DEFINED

OUTPUT NOT DEFINED

ALL TESTS FAIL i,e, all conditions in a test

instruction fail,

SWITCH VARIABLE TOO HIGH

SWITCH VARIABLE TOO LOW

SWITCH VARIABLE NOT SET

EXPONENT NEGATIVE i.e, in an integer expression,

EXPONENT NON-INTEGRAL

3. Faults which indicate an error in the machine or compiler and should
ke referred to the compiler staff,
There are a number of these such as

8V INSTRUCTION

8V OPERAND

ILLEGAL BLOCEK
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