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I INTRODUCTION 

All ATLAS AUTOCODB PROGRAJI C•uiata ef a aeriH of STATBJlllffS 

which descri•e in alce•raic notatien the calculatioa to lte executed. 

The atatements are ef two kinds, declaratiYe atateaents pvins the 

aature of the quantities involved, and iaperatt•e stateaenta which 

descri•e the actual operations t• •e performed on the■, and the sequence 

in which they are t• •e carried out. The atatements are not imaediatelJ 

recopisa•le lty the co•puter and ■ust first N converted into an 

equivalent sequence •f •asic MACHINE INSTRUCTIONS. This is done •Y 

a special translation prosra■ called a COMPILER which 1• held 

per1111nently availa•le in the machine. Hot until the presra• hu •"n 
'coapiled' can it ae executed. 

The followinc example cives a seneral idea of the principles 

involved in writinc a prop-am. We wish to fit a straipt line 

'f a ax + • to sets of data of the fora XI, na ll, Y2J --, Xn, Ya 

whic~ are to •e punched and presented on a data tape in this order. 

lach such set is to be terminated •Y the num•er 999999 and the final 

1et lty two such num•ers. Each set 1• asaUJ11ed to contain less than 

1000 pairs. For each set the quantities 

a= nfX1Yi - fXifYi 

nfXi:a. - (fXi)& 

It a fY1 - afXi 

n 

... .a. a. • 
c = fYi - 2(afXiYi + ltfYi) + a fXi + 2altfX1 + n• 

are calculated, the last lteinc the sum of the squares of the deviations 

f<n - an - •>,,_ • 

I.I 

The tollowinc is the fonnal procram for this calculation. The 

atateaents are to~• iaterpreted in the written order unless a atate■ent 

11 encountered which transfer■ control to another specifically laltelled 

atatement. In 1eneral each statement 1• writtea as a new line, othenriae 

it ■ust •• separated fro■ the pre•lous stat-ent •Ya ae■i-colon. 



,Jtegin 

,!:!!! a, Jt, c, x, y, xx, xy, YYJ intecer n, 1 
arra;t x, Y (IzIOOO) 

n = I 

2: read (X(n)) 

if X(n) .,. 999 999 !!!!!! -> I 

3s read (Y(n)) 

D = n + I; -> 2 

Is n = n - IJ x a OJ y a OJ xx • OJ yy • OJ xy • O 

cycle 1 = 1, I, n 

X a X + X(i); y = y + 
2 

XX = XX + X(i) J yy a 

xy = xy + X(i)Y(i) 

repeat 

Y(i) 
a. yy + T(i) 

a= (n•xy - x•y)/(n•xx - x•x) 

i. =- (y - a•x)/n 

c = yy - 2(a*xy + i.•y) + xi•a~ + 2a•i.•x + n•i.A 

newline 

print (a, 2, 3)J space; print (Jt, 2, 3); space; print (c, 2, 3) 

read (X(I)) 

unless X(I) = 999 999 ~ -► 3 

stop 

end of proITT"am 

Users of Mercury Autocode will note some new features, 1UUMtly 

I. Explicit declaration of all quantities. 

2. The nestin~ ·of brackets in arithmetic formulae and the oltliptory ue 

of Jtrackets as a subscript notation. 

3. Explicit use of a J11Ultiplication sip where this 1• necessary 

to avoid amDiguity. 

~• The use of multi-letter identifiers. 

5. The underlined delimiter words, e.~. c;tcle 

BLOCKS AND ROUTINES 

Complete precrams are &enerally split up into a nUJlllter of 

■elf-contained unit■ called ROUTINES, and each routine may Jte further 

aplit into a number of BLOCKS. A detailed description of their 

censtruction and use is deferred until later, Jtut the earlier sectiou 

it is sufficient t• note that the Autocode statement• Jtetween Jtep• 

and end cons-ti tute a Jtlock. We note however, that when a ltlock 
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PHRASE STRUCTURE NOTATION 

Atlas Autocode is a PHRASE STRUCTURB LAM'GUAGB and to a.aist in it• 

description we ao .. tiaea ha•• resort to phrase •tructure aotation. la 

ceneral, whenever a name appears in square ~rackets in the descriptiea •f 

an Autocode atate11ent, we mean that in an actual statement it would ~e replaced 

~, a particular element of the clasa defiaed ~Y the DU1e. For example, 1• the 

next sectien we defiae [NAME] and [EXPR] to deDote a ceneral na•e and a 

pneral expression respectively, and with these definitions we could p oa to 

define a function of a sinsle varialtle ~1 

[NAME] ([EXPR]) 

and in an actual procram this 11ipt ~• replaced ltJ 

s(x + 7 -2) 

1ince c is a na .. , and x + y -2 1• an expreaaion. Purtber note• oa phrase 

1tructure notation will lte found in Appendix I • 



2 THI ■ASIC LANGUAGB 

SYMBOLS OF THE LANGUAGE 

Prop-ams are preseDted to the coaputer as a lensth of perforated 

paper tape which is scanned lty a photoelectric tape reader, the input 

uait of the machine. The prop-am tape is prepared on a Flexowriter 

keyltoard machine, the keys of which are enp-aved with the followin1 

aymltols: 

ABCDEFGHIJKI.MNOPQRSTOVWXYZ 

abcdefitbijklmnopqrstuvwxyz 

Cl tJ 'I 

0123456189 

= > < I • i , • ' & • I + - _ I C > C 1 ? 

A •ack-spacinc facility allows underlininc and also the formation of 

compound characters 

e.c. cycle r > < -> i 9 

We also make use of a vertical arrow 1'which lty convention is punched 

as t that is an asterisk superimposed on a vertical Jtar. 

. .!!Q!! All SPACES and UNDERLINED SPACES in a procram are icnored when the 

prop-am is read into the machine. Thus they may be used freely to aa■ist 

leciltility in the written form of the prop-am. 

liJ\1.IBS 

These are used to identify the various operands, functions aad 

routines which appear in the prop-am. A name consists of one or 

more letters, possibly followed lty one or more decimal dicits, and 

possibly terlllinated lty one or more primes('),e.c., 

x i Alpha aIO TEMPI y'' lt3' 

Underlined names and ~ixed names such as RK2ST are NOT allowed. 

There are certain names,e.g., loc,sin,exp,print, read etc. 

which have a standard meaninc, (the PERMANENT routines), ltut all other 

names must be declared before any reference is made to the• (see ltelow). 

In future a ceneral name will ~e denoted lty [NA1tm]. 

DELDfITERS 

These are a preassiitned set of eym-als and underlined word•,••'•• 

+ - •IC , > > ~ ->; r 
cycle repeat integer real if .!!!.!!, caption coment 

(Note that-> consists of two symlM>ls, - followed ~l ►) 
Unlike names whose aeaninc can lte defined lty the user, deliaiten 

ha•• fixed a~solute meaainp in the lancuace. An Autocode proll"aa 

c•nsists entirely •f nastes and constant• separated lty delillitera. 
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r• 

Calculati•n• are perfor.ed on two principal types of operaDd, 

!!!! and integer. (Later on we shall introduce complex). Both are 

repre1ented lty floatinc point nWDlters (in the for• a.8 t-- ) where 

a i• held to a precision of ~o ltinary dicits and It is an 8-Jtit iatecer)5 

~ut those of integer type are kept in an unstandardised fona 

(ao that the least sipificant 2~ !tits can lte used directly for 

l-110dification. The precise method of storace is descrilted in the 

aection on machine instructions). 

The locations in the computer store holdinc numlters are 

diatinguished ~Y assi1P1inc names to them (see later), and reference t• 

the number is made by civini the appropriate name. Both real and intecer 

numbers referred to in this way are called varia~les and denoted ~1 [YAR]. 

Proi;rams will consist mainly of operations on~ operands, 

2.2 

the use of inter.er operands being cenerally confined to countinc and aultscript 

arithmetic. 

FUNCTIONAL DEPENDENCE 

Functional dependence is indicated •Y writing the name of the 

function followed by the list of ari.uments in parentheses. 

e.g. sin(2•x/a) arctan(x,y) TEMP(i) a(IO, IO) 

lach ar&tUment can ~e an EXPRESSION (see below). 

Within a block all names must be distinct, and it is not 

possible to have a function with the same name as a scalar. 11:lus 

a and a(i) or f and f(x) would NOT be allowed to appear in the 

1aae •lock. 

DICLARATION OF V ARIADLES 

The names of variables used in a ~lock are declared at the head of 

the ~lock 

e.g. integer 1, j, k, 1, m, n, o, p, q, r, s, t 

real a,•• c, d, e, f, &, h, u, v, w, x, y, z 

Illich will •e familiar to Mercury Autocode users. 

Other examples are 

integer I, max, nlin 

real t, Temp, VOL I, VOL 2 

tM effect of these declarations ia to allocate storage positions (ADDRESSES) 

t. the named varia•les, and any su•sequent reference to one of the declared 

-• will then ~e take~ as referrinc to the numaAr stored in the anorooriat• 



OD• dimensional arrays of element• aay N declared lty ■tatements sacb u 

array a,lt(O 1 99), c(IO I 19) 

which reserve• space fer three array• of!!!! varialtles a(i), lt(i), c(1). 

In the first twe the aultscript ruu fro• o to 99, aad in the third froa 

10 to i:9. 
To refer to a particular element of an array one aipt write 

c(IO + 1) 

It is the computed value of the arcument, which aay II• a ceneral integer 

expression (see later), which determines the particular ele111ttnt. 

Two dimensional arrays are declared in a similar way 

e.g. arraz A(I120, 1120), 11(019, 0149). 

This defines and allocates storage for a 20 X 20 array A and a 10 X 

array B. To refer to a particular element,one write•, for exa■ple 

A(I,I) A(i-I, j+I) a(9,2K+I) 

ahould an array of integer elements•• required, the declaration 1• 

qualified by integer 

e.c. integer arraz TYPE (1150). 

50 

Storage allocated by the above declarations has dynamic aipiflcance, 1.e. 

they are implemented at run time and not at compiler time. Consequently, 

the arguments in array declarations need not lle constants ltut aay N ceuval 

integer expressions. The significance of this will be explained in the sect 

on ltlock structure and dynamic storace allocation (see later). 

STANDARD FUNCTIONS 

The following standard functions are availaltle and may lte used 

directly in arithmetic expressions (see next section) without for-1 

declaration& 

sin(x) cos(x) 

arctan(x,y) 

radius(x,y) 

:fracpt(x) 

intpt(x) 

int(x) 

mod(x) 

parity(n) 

tan(x) log(x) exp(x) sq rt(x) _, 
(= tan (y/x)) 

(::s (XA + 'r )Jt.) 

(:a fractional part of x) 

(• integral part ef x) 

(::s nearest integer to x. 1.e. intpt(x+.5)) 

<=- lx l) 
(• (-I)~) 

The arguments in the altove functions •Y N general expresaiou, exc .. t 

that the argument of the last IIIU8t •• of type intepr (see later). 

A complete list of standard functiou 1• ciYen ln Appendix 2. 
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ARITHMETICAL BXPRESSI01'S 

A seneral arithmetical expression 1• denoted~, [SXPll) and coui■t• 

•ta aequence of operands and operator• po■•i~ly preceded~, a alp ■JIINl, 

thua 

[±?] [OPERAJml[OPBRATOR][OPERAND][OPBRATOR) •••• {OPERAND] 

Aa [OPERAND] ta a [VAR], [CONST], ([EXPR]), l[EXPR]I, or [PUNCTIOR]••, aad 

an [OPERATOR] is one of+ - • / t (The asterisk denotins -lti,llcatioa) 

lxaaples of expressions are 

~ 

A(i-1,j) + A(i+I,j) + A(i,j-1) + A(i,j+I) -,tA.(1,j) 

Z + loc(I + cos(2•(x/a + y/~ + z/c))) 

LENGTH* BREAJYl'H * HEIGHT 

sq rt (x(1)2. + ,ot + zui') 
a * i.;c * d/e 

(x + y + z)/(a +i.+ c) 

2.5 xI ~ • (c + d)e 

e = lx-yl + .00001 

(I+ x) t (a-I)(I-x) t i. 

I. Multiplication and division take precedence o•er addition and 

1ai.traction and division takes precedence over multiplication. Thu■ 

the titth example means a * (lt/c) • (d/e). 

i. An exponent is denoted~, t [OPERAND] and e:x:ponentiation takes 

precedence over the other operations. Thus the last example 111eana 

((I+ x) to the (a - 1))((1 - x) to the ~). A special s:,altGl, auper■cript.11., 

11 aTailai.1e to represent squares as in the fourth example, and 1• 

tqUiTalent to the pair of sy.ibols t 2. 

a. l[EXPR]I is interpreted as the positi•e macnitude of the 

(IXPR]. Thu• it 1s equivalent to 11od( [EXPR]) • 

4- Constants are written in a atraipt forward notation, e.s., 
2.538 I .25 IT .:z8cr-I I.a7 

ft• laat two exaJiples mean respectively 

I.T28 and 10 000 000 

Practional exponent• are uot allowed in floatins poi•t constants. Th• 

-,.C:ial •111"1 ½ aa:, 1te aaed in constant• and is equi ••lent to the 

,air et •ya•ls .5 

•• Or, -,re strictly, (see Appendix I) 

[IXPR] • C±?l [EXPR'] 

[BXPR'] • [OP.BRABD] [OPBllATOR] [BXPR'], [OPBRAlfD] 



5. All explicit 1111ltiplication •icn is not required when the operand• 

are uniquely separa•le. In the •••~nth example it 1• the quantity 

2.5 • xI • • • (c+d) ••that is coaputed. Rote that an explicit 

■ultiplication sip is necessary to denote • • (c+d) as •<c+d) would 

•• interpreted as referrinc to a function • of arcument c + d. 

6. A full stop. may •e used instead of an asterisk to denote multiplicatiea 

whenever there is no posi•ility of confusion with a decimal point. Thu• 

in the aDOve examples it is possi•l• to write 

LENGTH. BREAIYI'H. HEIGHT 

•••/c.d/e 

2.5 xl•. (c+d)e 

The only time when an asterisk must •e used is when 11111ltiplyinc two ceutant1 

to,ether. 

Thus 2•5 means (2) x (S) 

2.5•3.8 means (2.5) x (3.8) 

2.5.3.8 is meanincless 

INTEGER EXPRESSIONS 

An [EXPR] is an inte~er [EXPR] if all the [OPERAND]'• are 

scalars, array elements etc. declared to •e of type inte~er, intecer 

constants or into~cr functions. Thus if we assume that x is a.!!!! 

varia~le, and i,n,j,k(I),k(2) are integer varia•les, the followinc 

are inte~er [EXPR]'s. 

NOTES 

n•(n-I)/2 

i + j + k(2) + int(x) 

j t k 

int pt (n•(n-I)/3) 

1. All ca~.culations on inte~~:r: [EXPR]'s are done •Y tloatins 

point operations and the result is destandardised at the end. 

2. Exponentiation is performed •Y repeated multiplication, 

i.e. j t k = j x j x -----(to k terms). Thus the result is exact. 

3. The value of the [EXPR] is assumed to N intesralJ this will 

in ceneral ~e true (if the ranee is not exceeded) except in 

division when the result JULY IHt non-intep-al. No check is aade for 

this case so that the function 'int pt' or 'int• •hould •e used. 

4• Since the aachine can hold necative powers of 2 and since 

the accumulator liTes an exact dividend if the numerator is a 

multiple of the d1vi•or, the first [EXPR] in the exall})les civu 
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ARITHMETIC ASSimlMENTS 

'l'he general arithmetic instruction is 

[VAR] "" [EXPR] 

Examples are 

X(p, q) =I+ 2 cos(27(x+y)) 

a a(~+ c)/(d + e) + P 

i = i + I 

The action of the general arithmetic assicnment is to place 

2.6 

the computed value of the [EXPR] in the location allocated to the leh••• (VAR]. 

If the l.h.s. is a~ [VAR], the r.h.s. [EXPR] may n of type!.!!! or 

integer, aut if the I.h.s. is integer then the r.h.s. 11\lSt be an inte5er [BXPR]. 

e.~. if y had ~een declared!:,!!! and i intepr then we could write 

y = i but not i = y even if we knew that y bad an intecer value. 

LABELS, JUMPS AND CONDITIONAL OPERATORS 

Normally instructions are obeyed sequentially, lmt frequently it 

11 required to transfer control to some instruction other than the next 

in the sequence, or to obey an instruction only if certain condition• are 

satisfied. The following facilities are provldedl 

81!.tPLE LAIJELS Ally instruction can ~e labelled 

~Y writing an integer [N] before it, separated 

~Y a colon. More than one label is permitted. 

Unconditional jump instructions are written aa 

-> [Kl 

YEt'TOR LAUELS 

These are used to provide for a 

aalt1-1ray switch. With reference to the 

diae::rnm the instruction 

•> A(i) will jump to A(I), A(2) or A(3) 

ACCOrdinc as i = I, 2 or 3. 

A fault is signalled if the value of i 

in any way to a la~el not set. 

fte ceneral form of the la~el is [NAME]([lf])t 

Ill ran,e must Jte declared at the head of 

of the fora 

where 

(-?] indicates that the intecer• 

-> IO 

IOs 

-> s 

switch A(I 1 3) 

A(I)l 

A(3)1 

-> A(i) 
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CONDITIONAL LABELS 

Another kind of multi-way switch 1• 

illustrated •Y the accompanyinc diacr&lll. 

Here the condition at the places indicated 

are tested in turn and control passes to the 

instruction followinc the first to De successful. 

If none is satisfied a fault 1• sipalled. 

.!!!! ... 5, 6 

The ceneral form of the la•el is [N] .£!!! [COND]s 

where [COND] denotes the ceneral 6 ~ X > Is--
condition defined in the next section. A 

simple label [N]z may •e used in place of 

the last alternative in which case control 

passes directly to the followinc instructions 

if it r eaches tha t point. 

NOTE All labe ls are local to the •lock containinc the■ and 

may only refer to labels within the •lock (see later). 

A CONDITIONAL OPERATOR of the form 

!,! [COND] ~ OR unless [COND] .!!!!!! 
may De written before any unconditional instruction (includinc s 

jump instruction). 

The [COND] phrase takes one of the forms 

[SC]~ [SC]~ [SC] --~ [SC] 

or [SC] .2!: [SC] .2!: [SC] --- or [SC] 

or just [SC] by itself •• 

Here [SC] denotes one of the followinc 'simple' conditions 

[EXPR][~][EXPR] or [EXPR][,J[EXPR][p][EXPR] •r ([COND]) 

where[~] denotes one of the comparison symDOls a,>?<~ 
IF (or unless) the condition 1s satisfied the instruction is o•eyed, 

otherwise it is skipped and control passes directl7 to the next 

instruction. 

Examples of conditional instructlona and conditional laltel• are 

_!! X < 0 ,!!!.!!! X :a mod(y) 

.!,! 0 ~ x < I ~ 0 ~ 1 ~ I ~ -> I 

~ (y > I ,2!: 1 < - I) !!!!! X ? 01 

Alternatively, conditional operators 1118.J appear Al"'.l'Bll unconditional 

1utructions, in which case they are written 

,!! [COND] OR unless [COND] 

e.s.x • o !! lxl < .ooo 0001 

-> I unless z > R ~ z • o 

•• or, 110re strictly, (see Appendix I) 
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CYCLING INSTRUCTIONS 

These are pairs of statements which allow a ~oup of 

instructions to be obeyed a fixed number of times. 

e.g. cycle i = o, I, n-I 

reeea! 

In the above example the instructions between cycle and reeeat are 

traversed n times with i successively ta.king the values 0,1, ••• ,n-I. 

After the final cycle, control goes to the statement 

following rereat. 

The r.h.s. quantities may be general integer [BXPR]'s and the 

l.h.s. must be of inteiaer type. 

The initial value, increment, and final value must be such that 

final value - initial value 

increment 

IIUSt be a positive integer or zero otherwise a fault is indicated. It 1• 

the initial values of the three expressions which are relevant and the 

cycle is traversed at least once. Cycles may be nested to any depth. 

!!'!! Statements such as cycle x = .z,.1,1 are NOT allowed,and 

lhould be replaced by an equivalent permissable form. 

e.g. ,«!Y~le i = 2,1,10 

X = eli 

where i has been declared intcr;er and x ~. 

801.!R SIUPLE INPUT AND OUTPUT INSTRUCTIONS 

It is convenient to introduce some input and output instructions 

at this in order that the reader may complete his study of the 

example. Strictly speakinc, the input and output 

are calls for the appropriate routines and as such a 

fonal description of them will come later. 

llamples of the instructions to read in decimal nwnbers from a data tape 

read(aI) read(VOLI, VOLZ, TEMP, 1) read(X(K)) 

first of these reads the next number on the data tape into aIJ the 

reads the next four nwnbers into the named variables, and JnaY 

Ued to read in any number of individual numbers. The third is 

the same form as the first, but the particular variable depends 

the computed value of the argument; thus if K was three, the nwuer 

2.8 
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array A(l:IOO) J !nteger i 

cycle i a 1,1,100 

read (A(i)) 

repeat 

The rules for preparing data tapes are given in the section on 

Input and Output 

To print decimal numbers, instructions of the following fona may 1te used 

print (x + y. cos(z), 2, 7) 

print fl( A, 5) 

The first of these prints the value of the expression in fixed point 

style with two digits before the decimal point and seven after. The 

second prints the value of A, standardised so that I< IAI < 10 in 

floating point style i.e. as a fixed point number and a decimal exponent, 

with five dit;its after the point. A could •e replaced •Ya general 

expression. The following instructions 111ay be used to facilitate the 

progratnming of page layouts: 

newline 

space 

The first causes subsequent information to ~e printed on a fresh line 

and the second causes a space to be left on the current line. 

The above instructions are more fully described in the section on input 

and output. 

MISCELLANEOUS NOI'ES 

1. With the instructions so far described the reader should be a•le to 

construct proi:rams of the level of the introductory example i.e. 

programs consisting of a single •lock delimited •Y •epn and ~e_n_d ___ ......,...., __ 

2. end of program is the formal end of the prortram and appears after the 

last Witten instructionJ its action is to terlllinate the readin, of the 

program and to start o~eyin~ it from the first instruction. 

3. The instruction stop can appear anywhere in the progra11 and signifiea 

the dynamic end of the program; its action is to terminate the 

4• The delimiter comment allows written comments to •e inserted in a 

program to assist other users in understandin, it. The information 

following comment up to the next newline or semi-colon is ipored 

•Y the computer. 

5. It has been noted earlier that all spaces and 11J1derlined spaces in a 

program are ignored and that Autocode statement• are terminated by a••• 
colon or a newline. If a line is terminated_, the delimiter£ then the 

followinc newliae character is ignored ~1 the conpu.ter, thus a •in1l• 

statement may extend over several lines of the prillted pace. It is not 
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3 STORAOB ALLOCATION AND TH!: BLOCK STRUCTURE OF PROGRAMS 

THB STACK 

In order to illustrate the principle• ef •torace all•cation, we 

u11.111e the tollowinc simplified picture of the data store (the •tack), 

a fuller description lteinc civen in the •ection en the use of aachine iutructiou. 

I I . . . 

Each cell represents a ,f.8 ltit word in the computer store and can lte 

ued to hold either a !!!,! or an integer varialtle. At an:, tiae durtnc the 

runinr ot a procx-am, the stack pointer, St, points to the next availaltle 

lteation 1.e. 1 t contain• the address of the next free word. 

In the examples that follow, sincle shaded cells represent location• 

allocated, and doultle shaded cell• represent location• 

Illich hold information essential to the co111piler, such aa array dimension• 

11d eririns, and are not of importance in the context of this section. 

C.111 which are allocated to varialtles are indicated lty the presence of the 

GB ALLOCATION DECLARATIONS 

The declarations which allocate atorace space are 

real integer array inte;er array 

the stack mechanism we consider the followin1 examples 

ltegin 

!.!!! a, It, c; integer 1, 11ULX 

array A(I: 2, I: 2), x(I: 3) 

the aJtoye declaration• the stack picture would lte u ltelow 

a It C i max 

11 the position of St ltefore ltecin and St2 it• position after the 

An:, further declaration advances St lt7 an appropriate aaount, 

---~P~r_o_cr._a_■ is reached when St re•ert• to StI. 



BLOCK STRUCTURE OF PROGRAMS 

This ia illustrated •1 the followinc ex&J11ple: 

lte(in 

!:!!.! a,e,c 

a • I; • = 2 

C • a+• 

1te1in 

~ a,e,d 

a "" 2; d = I 

• "" C 

C • 4 
end 

a= a+e+c 

end 

The stack picture aaaociated with the altove ltlock i• civen ltelows 

Stl St2 St3 
J, 
~ • It C - a It d 

J, 
I I . . . 

I 2 3 4 5 6 7 8 9 IO 

ltefore the first~ St is at StI, and 1110ves to St2 on enterinc the 

first ltlock. After the aecond 1te,1n St ia at St3 and reverts to St2 

when~ is reached. At the aecond .!!,!!, correspondinc to the first 

lte~in, St assumes its oripal position, StI. 

In the diap-aa, positi•n• 3, 4, 5 correspond to the 

of the outer ltlock, and 8, 9. IO to those of the inner ltlock. 

instruction c = a+lt, the value 3 is left in positien 5J while 

of the inner ltlock le&Ye the values 2. I, 3, 4 in the poaition.s 8, IO, 

respectiYely. The last instruction of the outer ltlock leaves the Yalue 

7 in position 3. 
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Thus the •aria•lea a,• of the inner alock do not conflict with 

a,• of the outer alock, while a reference to c in the inner alock 1■ 

takea to refer to the •ar1a•le of that na■e declared in the outer •lock. 

le aay that a,• are LOCAL Da•es to the inner •lock and c is a NON-LOCAL 

uae. We also note that the inforaation store~ in the varia•lea of the 

inner •lock 1• lost when the alock is left, and that we could not refer 

in the outer •lock to a variaale declared in the inner •lock. 

Futher details of the structure of prop-allS will •e elven in the 

■ection on routines, and for the present the followtnc notes on •lock■ 

will •e sufficient. 

1. Blocks JU.J contain any number of sua-blocka and •locks aay be nested to 

any depth. 

2. Names declared in a alock take on their declared meaninc in the •lock 

and ia any aub-alocks unless redeclared in the sua-alock. 

3. Labels are local to a block and transfers of control are only po■ai•l• 

•etween statements of the same •lock. 

•• The outerJ110st block of a prop-am la terllinated •Y end of prop-am, 

which causes the process of compilinc to be terminated and transfer• 

control to the first instruction of the prop-am. 

FIXED VARIABLES AND DYNAMIC STORAGE ALLOCATION 

Variaales declared by~ and integer are called FIXED VARIABLES, 

u are those locations which are double shaded in the stack pictures 

1••• those holdinc the links, array parameters, array function par•meter• 

etc. (see later). This is ~ecause the amount of storace space required 

can ae determined at compiler time. Array declarations, however, aay 

ba•e 1eneral integer expressions as the parameters and hence have dyna•ic 

aipificance. For example one micht have a declaration such as 

array A,B(Ism, I1n), x(I1n) 

In this case the apace allocated will depend on the computed value■ 

of• and n and cannot~• determined at compiler time. 



Owinc to the dynaaic aipificance of the atorase declaration• it 

is customary to put the■ at the 1te1innin1 of a ltlock laefore the fir•t 

instruction statement. If they are not put at the ••&11Ulin1 it ah••ld N 

remomltered that storace will lte allocated each time a declaration ia 

reached, without the stack pointer lteinc reset 

••I• bc,t~ 

inte,;.~ n 

I: read(n) 

arra7 x(Isn) 

-►I 

end 

In the a.ove example, the stack is advanced and x(i) redefined 

each time the loop of inatructiou is traversed, which would al■oat 

certainly ae undesiralale. To define an array in teru ef a varialale 

parameter, one could write 

llc,-:in 

integ;er n 

U read(n) 

1tett!,!! 

array x(lin) 

end 

->I 

end 

In this case the atack pointer 1• reset to its oricinal value 

each time the inner ltlock 1• left. 

ARRAY 

The 

alloca 

declar, 

atora11 

iaporta 

Y&rialtJ 

ADH 

locatio1 

•ector ; 

Array 

•1 suits< 

e.,. 

inteito1 
' 

declaratl 

• 
The par 

Aa an e 

ta eo11e w 

Y&riable 

•ector x(! 

a(o) woulc 

1a •J: + J: 

oorrupond 



ARRA.Y FUNCTIONS 

Th• declaration• of the previou• ••ctions define varia•lea and 

allocate atorap space for the■• In this •oction we introduce a 

declaration which defines variables as the aua••r• contained in 

atorace locations that have already !teen allocated. This 1• of 

i•portance in comntnicatinc ltetween routines and in rena'ldnc 

varialtles (see later). 

An exa■ple is 

arra;i fn X(s,p) 

which defines X(i) as the real nualter in the •tora1e 

location whose address is civen •Y • + i.p. Thu• it defines a 

Yector X(i) in terms of an oricin a and a dimension parameter p. 

Array functions may define rectan111lar arrays with any numlter 

•f sultscripts. 

e.c. arrat fn Y(a,p,q) 

defines Y(i,j) =!.!,!!number in address (s + i.p + J.q) 

array fn Z(s,p,q,r) 

Z(i,j,k) .! ~ number in address(a + i.p + J.q + k.r) 

inte;er array functions may •e defined •Y prefixinc the 

declaration •Y into~!!:• 

••I• int~~ arraz fn M(s,p) 

The parameters in array functions may be ceneral inte~er exprea•iou. 

As an example, assume that 100 stora~e locations have lteen allocated 

in some way, and that the startini address is stored in inte;er 

variable sI. Then to define tho contents of these locations as a 

Yector x(i), one could write 

array fn x(sI,I) 

x(0) would then correspond to the numlter in address sI, x(I) to that 

ia sI + I etc. If it is desired that the first location should 

correspond to x(I), the declaration would lte written 

array fn x(sI - I,I) 

If we had wanted to define a I0 x I0 matrix, stored row ~y row 

r~tber than a vector, we could have written 

array fn A(sI,I0,I) 

and A(O,o) would correspond to address sI. 

array fn A(sI - I0 - 1,10,1) 

would define a 111atrix in the availa~le space whose first element 

waa A(I,I). 

To define the transpose of the altove matrix we could write 

array fn B(sI - II,I,I0) 

'lhen a suuequent reference t~ B(i,j) would cive the saae storace 

lecation as a reference to A(J,i) of the previous declaration. 

It shou f f ce 



THE ADDRESS RECOVERY FUNCTION 

The a•solute address of any varia•l• 1• not 1enerally known ia 

an Autocode procrame, •ut it may ae oatained •1 ••an• of a •tandard 

function. 

••i• a a addr(A(O,O)) 

3.6 

Thi• places the addre•• of A(O,O) into the varia•l• •• The arcument 

aay ae any variallle, ~ or inte1er, and the result 1• an inte1er 

civin& the absolute address of the atora1• locatioD allocated to that 

variallle. 

The address recovery function is used in conjunction with the array 

function in co111JDun1catinc lletween routines (see later). 

It may also be used in connection with the renanin1 of varialllea •• 

in the next section. 

THE RENAMING OP VARIABLES WITHIN A BLOCK 

We illustrate this with an example. Suppose we want to define and 

allocate stora,e for pairs of~ variallles x(i), y(i) so that they 

are in succesive locations. The array declaration will only define 

a vector or matrix array stored in the conventional manner, ao we 

adopt the followinc device 

be~in 

interer s 

array a(ll2000) 

s a addr(a(I)) 

array fn x(s - 2,2), y(s - I,2) 

The first pair of num•era could then ae referred to either as 

x(I), y(I) or a(I), a(2) , the second •Y x(2), y(2) or a(3), a(•> etc. 

Since the array declaration is for 2000 variallles, up to 1000 pair• 

x(i), y(i) can be accoJDOdated. 

As another example, suppose we have defined a matrix A and allocated 

atorace for it •Y the declaration 

arra7 A(IIIO,IIIO) 

aad we wiah te defiae the firat colUJ1J1 of Au a vector, then we ceuld 

write 

array fn y(addr(A(I,I)) - 10,10) 

wbic~ define• y(i) ,:.!:!!! nW1ller in address (addr(A(I,I)) - IO + 10.1) 
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4 ROUTINES 

MSIC CONCKPl'S 

A larce prop-aa 1• uauall:, made up of aeveral routines 

each of which represents •oae characteristic part of the calculation. 

Such routines may-• called in at several different point• 1n the prop-aa, 

and their design and use 1s a fundamental feature of the lancuace. 

The introductory example conaiated of a aain -lock only (delimited-:, 

~epn and end of prop-am) although it 1118.kes reference te the routine• 'read', 

'print•, 'newline', which are permanent!:, availa-le in the machine. In 

exactly the same way however, the user may call in routines which he ha• 

written hiJ11Self in Autocode lancnage. Consider for exaaple a routine 

to evaluate 

:, • a(O) + a(I)x + ••• + a(n)x"' 

u1UJling the coefficients to -e stored in consecutive(.!:!!!,) locations. 

Tb11 llight take the form 

routine poly (real name y, ~ a, ,!:!!! :z:, inte;er n) 

array fn a(s, I); integer i 

y = a(n) 

cycle 1 = n - I, -I, o 
y a x.:, + a(i) 

repeat 

return 

end 

Tbia routine will 1te EMBEDDED and used in a main routine aa Ulu•trated 

••erleaf. 

The routine is called in -Y the main routine whenever the 

11M 'poly' appears. The first reference to 'poly' would cause the poly 

routine to evaluate 

U = -(O) + -(I)z + ••• + -(m)zm 
and the second would cause it to evaluate 

V a C(20) + c(2I)x:z. + • •• + c(30)x.A.
0 



itecin 

real u, Y, s, XJ integer m 

array lt(o1 5), c(o150) 

routine spec poly(!.!:_~) name y, addr •• .!:!!,,! x, inte,er n) 

poly (U, b(O), z, m) 

poly (Y, c(20) , x2.., IO) 

routine poly (real name y, addr s, .!:!!,! x, integer n) 

body of 

poly 

routine 

end 

end of program 

The parameters in the routine specification and routine 

heading are the FOIUiLU. PARAMETERS and the parameters in the call sequences 

are the ACTUAL PARA1,1ETERS, precise definitions of which will lte given 

in the next section. 

The body of the routine may lte considered as a ltlock 

delillited by routine and~• and the concepts of stora1e allocation, 

and non-local names etc. apply to routines in exactly the same manner u 

for ltlocks. In fact a block may lte considered as lteini an open routine 

without paramoters. 

Any number of routines may lte emltedded in the main routine 

in the above fashion and they are referred to as SUBROUTINES of the aaia 

routine. If the body of a subroutine occurs before any reference to it 

in the main routine, the routine specification may lte omitted, ltut lty 

convention it is usual to place all the sultroutine specifications amonc 

the declarations at the bead of the u1n routine and the ltodies at the 
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al 

We define the TEXTUAL LEVEL of the llody of the main i.1ook 

u I and of each aui.routine (i.e. within the subroutine ltody) as 2. 

low each subroutine ia naically the same in atructure ••the-in 

-lock (which is essentially a routine without parameter•) and a 

•u~routine may define and use it• own su~routines in precisely the •a­

unner. The textual level within these su~routines would .. e 3, and the 

procression may continue to any depth. 

The JllOSt &eneral fona of a complete proll"am 1• thus a nested 

hierarchy of routines. A typical routine layout 1• ahoYD lHtlows 

routine A(•, -, -) routine headinc 

integer -, -, -
real -, -, --
array -, -, - declarations of local 

working space and specification• 

routine s2ec Ill(-, -, -) of sularoutines used. 

routine SJ!OC 82(-, -. -) 
routine s2ec Im(-, -, -) 

} ltody of routine. 

routine BI(-,-,-) 

end 

routine B2(-, -, -) 

end 

subroutine headings and bodies 

routine JIN(-, -. -) 

end -
end en of routine 

fte picture is to i.e treated recursively i.e. it also applies to the 

subroutine, and the whole routine milht itself i.e euedded 

• a au-routine of a still larger routine. 



FORMAL PARAMETERS AND ACTUAL PARAMETERS 

The parameters of a routine are the pieces of inforaation 

(variables, addresses, routine names) which tell it what to do 

on the different occasions when it is used. The fonnal parameter• are 

the names by which this information is referred to inside the subroutine 

itself. The actual parameters are the expressions which are substituted 

in place of the formal parameters whenever the routine is called in. 

For each type of formal parameter there is a permissible form for the 

actual parameter, as shown in the following tablez 

formal parameter type 

i;ca1 nm::1.a 
integer 

corresponding actual parameter 

name of an iw;e~ variable 

ruune of a ...u:ll varia~le 

any expression (which will be 

evaluated as for an integer 
_____________________ a_s_s __ i.~ent 

&AAl: 
addr 

routine t:,pe i.e. routine 

[RT] 

real fn 

integer fn 

real map 

integer map 

ditto (but for a ~1.l nssi 

The name of any into~ or !:!!!! 
variable (including an array 

element). The actual address of 

the variable is handed 

arameter ro er 

In some cases it is required te 

pass on 

and the actual parameter 

the name of the routine, which 

must be of the same type as tbt 

formal parameter 

parameters which 

type to those of the formal 

parameter. AD example 

a later section 

!!Q!! An~ parameter is equivalent to an intepr parameter in 

the ltody of the routine. '111e difference relates to the correspondiDI 

actual parameter. Thus an~ parueter replaced lty x 

&Ja interu parameter replaced lty addr(x). 
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Jn the polynomial example descri~ed earlier, the formal parameter 1 

11 an output parameter and the actual parameter must therefore~• a 

..... The formal parameters is the address of the fir■t coefficieat 

a(O) and the statement array fn a(s, I) esta~lishes the ■tore aappiac 

tuction as a(i) =~number in address (s+I.1). 

The parameter x may be replaced by an expression the value of which 1• 

the parameter proper, similarly for n. [The parameters s, x, n are 

called by VALUE; they correspond to local locations in the poly routine.) 

The statement end is the formal or written end of the 

nutine while return is the dynamic end, i.e. it is the instruction 

which r eturns control to the main routine. Where the formal end is also the 

dynamic end as in the present example the return instruction can ~e 

Ollitted; in this case end serves for both purposes. 

Another example of a routine is given below:­

routine mat mult (~ sI, s2, s3 integer m, p, n) 

integer 1, j, k; real c 

array fn A(sI, p, I), B(s2, n, I), C(s3, n, I) 

cycle 1 = o, X, m-1 

cycle j = o, x, n-x 

C = 0 

cycle k = o, I, p-X 

C = C + A(i, k)B(h, j) 

repeat 

C(i, J) = C 

repeat 

repeat 

end 

forms the product of an m x p matrix stored in location sl onwards, 

stored in s2 onwards, and places the resulting 

a x n matrix in s3 onwards, all three matrices being assumed stored row 

A typical call sequence might be 

mat mult (H(X, I), x(I), y(X), 201 20, X) 

ION ROUTINES 

When a routine has a sin~le output value only it may 

a FUNCTION ROUTINE. 

,C. The polynomial routine may be recast as a function routine as folloo:-



real fn poly(~ s, !!!.!, x, integer n) 

array fn a(s, I)J integer 11 !.!!! y 

y "' a(n) 

cycle i en-I, -I, o 

y = y.x + a(1) 

repeat 

!.~"" y 

end 

Here the(!.!!.!) result must ~e assicned iJ11J11ediately before exit. 

The specification is given by 

real fn spec poly (~ s, !!!!, x, integer n) 

and the routine might be called in ~y an assipment statement such as 

y = a.h + 2h. poly (c(O), I/x, 16) 

An example of an integer function is &iven below. It 

selects the index of the maximum element x(k) in a set x(m), x(m+I) 

••• x(n) n > m stored in consecutive locations, assumini x(O) is stored 

in address sl. 

inte~er fn 111ax(addr sl, 

.!2!!.~r:cr 1, k 

arrai fn x(sI, I) 

k = m 

if n = m then-> I 

~_ycle i = mtl, I, n 

g x(i) > x(k) then k = i 

rcp~at 

!:result 

end 

= k 

integer m, n) 

and a call sequence might be 

y =I+ mod(z(max(x(O), 50, IOO))) 

NOTE The delimiter result must be used as the l.h.s. of the assicnmnt 

statement signifyin, the dynamic end of the function routine. It dou 

NOT correspond to a store location and cannot ~e used in any context 

other than the above. 

STORE MAPPING ROUTINES 

Finally, store mapping functions may be defined by writin1 

real map or integer mae before the function specification and headiDlt 

e.g. real maE X(inte~er 1, j) 

result= s + i.n - i.(i-I)/2 - n + j - I 

end 

This defines a real triagular matrix of n columns, 1 
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I ■ay appear on the l.h••• of an as•irnment atate111ent 

••I• X(i-I, j+l) • [BXPR] 

•• n would pro•a•ly •• local to the routine in which •uch a •tatement 

appeared. 

SCOPE OF NAMES 

In &eneral all names are declared at the head of a routine 

either in the routine headin& or •Y the declarations integer,.!:!!!, array, 

array fn, switch, and the various routine specifications. 

Therefore they are local to that routine and independent 

of any names occurring in other routines. However, if a name appears 

in a routine which has not been declared in one of the above ways, thn 

it is looked for in the routine outside i.e. in the routine in which it 

is embedded. If it is not declared in that routine it is looked f•r in 

the routine outside that and so on until the main •lock is reached. The 

1tore mapping function of the last section is an example of a routine 

which uses non-local names. 

Now the 111ain block is itself embedded in a permanent block of 

textual level zero which contains the PERMANENT material, so that if a 

name is not found in the main •lock it is looked for amon, these. 

The permnnent names may in fact be redeclared locally at any level, lm.t 

clearly it would be unwise to assign now moaning to such routines as 

'log', 'print', etc. This outer block also contains supervisory 

aaterial for controllin, tho entry to and exit from the main block. 

In general, the only non-local nnMcs used in a routine will •e the 

permanent names. 

PERMANENT ROUTINES AND LIBRARY ROUTINES. 

The permnnent names include the standard functions, sin, 101, 

addr, etc. and the •asic input/output routines read, print etc. 

These routines are used in a programme without declaration and without 

the necessity of insertin, the routine bodies, since these are 

,enianently available at level zero. A full list of the permanent routine• 

11 civen in Appendix 2. 

In addition to the permanent routines, there will exi•t LIBRARY 

routines which will •e permanently stored on magnetic tape. These 

Ullrary routines may ~e automatically incorporated into a user's 

Jl'OP'U •Y means of a library routine declaration. 

e.c. li~rary routine spec least squares ( ~ sI,s2,inte1er ■,a) 

!H appropriate routine is then automatically inserted into the 

tncrme at the current level i.e. the naJle 1• local to the routiDe 

•talninc the li•r&rY dec1aratt~•-



AN EXAMPLE OF A cmtPI.ETE ROtrrnm 

routine spec lino fit(~ s, integer n, real na• a, a., c) 

The routine takes n pairs of nwnbers Xi, Yi stored in a onward• 

and forms the quantities 

a= n[>XiYi - [>Xi.fYi 

n[>Xi~ - ([>Xi)°'-

b = [>Yi - a[>Xi 

n 

c = fYi~ - 2(afX1Yi + bfYi) + a~fXi~ + 2abfXi + nit~ 

[cf introductory example] 

ro\ltine line fit(~ s, integor n, real name•• a., c) 

real x, y, xx, xy, YY• intc~er i 

Y.L~!n X(s, 2), Y(s + I, 2) 

X = OJ y = Ot XX = Ot XY = Ot yy a 0 

czcle 1 = o, I, n-1 

x = X + X(i); y = y + Y(i) 

xx = x~ + X(i)a..J yy = yy + Y(i)a. 

xy = xy + X(i) Y(i) 

!.£e.~ 
a = (n.xy - x.y)/(n.xx - x.x) 

b = (y - a.x)/n 

C = yy - 2(a.xy + b.y) + 
.1.. 

xx.a + 2a.b.x + n.bca. 

return 

end 

The stack picture associated with the routine above ia 

given below. 

fStI 8t2 

s n a C :x XX X i s 2 s+I 2 

links 

When the routine is entered the stack pointer ia advanced froa 

Stl to St2. The first two locations are used by the compiler and tbe 

other• c 

declara1 

laltelleci 

D&med va 

tour loc 

tbe rout: 

declarat: 
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return ta 

tile intor 
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ether• correspond to the formal parameters of the routine, and the 

declarations in the Dody of the routine. We note that the locations 

laltelled a,lt,c in the diagram will contain the addr"lsses of the 

aamod varialtles, since they correspond to output parameters. The last 

four locations correspond to the array fn declarations in the ltody •f 

the routine. The altove are the fixed variables of the routine; any array 

declarations in the routine would cause St to be further advanced lty an &JIOWlt 

dependin: on the current values of the parameters in the declaration•• When 

altove routine, the stack pointer reverts t• BtI and 

tile information between StI and St2 is lost. A further description of the 

stack is 1iven in the section on the use of machine 

We see from the aDove description of the stack that when a 

left the information stored in the local variables of the 

lost, and no further reference may De made to it. In some 

es it may Ito desirable to retain some of this information and -e altle 

refer to it on a subsequent entry to the routine. This 1118.Y lte 

prefixin~ the relevant declaration lty ~, 

own real a, b; own array A(I:IO) 

The effect of ot'ln is to allocate storage space for the named 

of the store which is not overwritten when other 

called in. This is done at compiler time and hence does not 

dynamic significance; as a consequence, an own array statement lllUSt 

parameters which are inte~er constants. 

IONS AND ROUTINES AS PARAMETERS 

This ls illustrated ay the following example involvinc a 

library inte~ation routine 

routines ec inter;rate (real name y, ~ a, b, integer n, real f n t) 

integrates a function f(x) over the range ( a , a) •Y evaluatinc 

• (f(O) + 4f.,f(I) + Zf(2) + ••• + 4f.,f(2n-I) + f(2n))(lt-a)/6n 

f(i) = f(a + .51.(1,-a)/n) 

routine is required to evaluate f(x) and details of it 

to the library routine. This is done •Y means of the 

type [RT] as defined earlier, and the body of the routine 



routine integrate (real name y, real•••• inte1er n, real fn f) 

real h; inte,er i 

real fn spec f(!:!!_! x) 

b = .5(11-a)/n 

1 = 0 

cycle i ~ o, 2, 2n-2 

y = y + 2f(a + i.h) + 4f(a +(i+l)h) 

repeat 

y ~ (y - f(a) + f(11))h/3 

end 

How consider a prograJll!De to evaluate 

1 

z = J exp(-y)cos(a.y)dy 
0 

for various values of 11 read from a data tape, the last value 11einc 

followed lly 1000, using the integer value of n nearest to 1011. 

llegin 

library routine spec intecrate (real name Y,!!!!, a,11,integer n,real ta 
real z, b 

real fn spec aux (.!:.!!! y) 

comment Simpson rule intecration 

:uread (11) 

if 11 = 1000 ~ stop 

integrate (z, o, I, int(lOII), aux) 

newline 

print (b, 1, 2);space;space;pr1nt (z, 1, 4) 
-► l 

real fn aux(~ y) 

result= exp(-y) cos(a.y) 

end 

end of program 

Note that the names given to the auxiliary reutine and its 

parameters need not lie the same in the lillrary programme and the 

main programme, llut they must correspond in type. 

The function routine 'aux• in the allove example is an example 

of a routine referrinc to a non-local name b. 
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5 INPUT AND OUTPUT ROUTINES 

BASIC INPUT ROUTINES 

The input of data is handled by permanent routines, 

1ome examples of which were given in an earlier section. 

The •asic input instructions are: 

routine spec select input ( integer i) 

This selects an input channel from which subsequent data 1• 

read. This channel remains selected until another 'select input' 

instruction is encountered. If no channel is specified, channel Ota 

automatically selected. 

routine spec read ([VARIABLE]) 

This reads a decimal numbers from the currently selected data 

channel and places it in the location specified by the [VARIABLE] 

which may be either a real name or an integer name. The routine reads 

IDabers in either fixed or floating point form. 

e.g. -0.3101 18 7.I32a-7 3.1872.a Lf. 

A number is terminated by any character other than a decimal 

digit, the first decimal point, or an exponent. An exponent consists 

of a followed by an optional number of spaces, an optional sign, and 

tilt decimal digits. It is terminated by the first symbol which is not 

a deci111al digit. Spaces and newlines precedin~ nwnbers are ignored, ltut 

all other symbols cause the routine to signal a fault. A fault is also 

an integer variable is not intecral. 

It should be noted that a single space is sufficient to 

that no spaces are allowed within the mantissa 

part of the exponent ( c.f. constants appearing 

the programme where all spaces are irrelevant and numbers are 

ted •Y the following name or delimiter). 

If individual numbers are separated only by spaces or newlines, 

can lte read by the call 

read ([VARIABLE LIST]) 

e.g. read ( a,i,X(i)) 

This is treated as if it were a series of calls 

read (a)J read(i); read (X(i)) 

hence the subscript of X(i) takes the value just 

to 1. 

The read routine 1s an exception to the general form of a 

, since it may have an indefinite number of real names and 



Another pcrm:mcnt :Input routine is 

routine spec r end symbol (intetzcr name 1) 

This reads the next symbol (single or compound) from the 

selected channel, converts it into its numorical equivalent 

and places the result in the specified inte~er location. A taDle of 

numerical equivalents and a description of the formation of compound 

symlaols is given in Appendix 3. 

!!Q!!. Erases are ignored completely on input to the computer and 

therefore do not exist as a character inside the machine. 

BASIC OUTPUT ROUTINES 

The basic permanent output routines are: 

routine spcc select output (inter:cr 1) 

which corresponds to the 'select input• routine . Again channel O is 

selected unless otherwise specified. 

routine sp~c print fl (~ x, inteqer m) 

routine .spec print(~ x, inte~er m, n) 

The :first of these prints the value of X'. (which mat of Cour•• 

lte any [EXPR] in floatin~ point form standardised in the rani:e [I, xol, 
with m decimal digits after the decimal point. The number is preceded ~1 

a miaus sign if negative, and a space if positive. 

The second routine prints the value of x in fixed point form Yitl 

m digits boforo the decimal point and n after. Insicnificant 

than one iJJUT1ediately before the decimal point are suppres3ed 

sign or space precedes the f irst di~it printed. If lxl ~ 10 then extra 

digits are included before the decimal point, the effect lteinr to spoil 

any vertical alignment of the printed pace. 

It should be noted that no terminating characters are included 

lty the aklove routines. Terminating characters should lte included_, tht 

user by means of the permanent routines given belbWl 

routine spcc newline 

routine spec space 

routine srec spaces(integer n) 

r uutine tab 

The first of these resets the carriage of the appropriate 

printer (or punches the newline character), and the second cause• 

the printer to skip a character position. If a number of successive 

spaces are required, the third routine may lte used ••I• spaces(S) • 

The fourth routine causes the printer to move to the next 

talt settinc or punches the tab character. 

Another permanent routine is 

the 
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There 1~ a special facility for printtnc captions, 

e.&. caption ~~~~TABLE~OF~TJn.lP}IIAGAINST~VOL; 

Thi• prints the in:fonuLtion after caption up te, aut not includinc, 

the terminating symbol 'newline• or 'semi-colon'. Since spaces and underlined 

•paces are icnored on input and, is a terminatin& symbol, the compeund 

•JlUOls - t Sare used Within the caption statement to denote 'space,' 

'underlined space', and 'sel!l.1-colon' respectively. 

Thus 

newline 

cnpt1on A~=~~• print (y,I,3); newline 

cnption B - = -- ; print (z,I,3); newline 

would be printed as 

A"" I.712 

B = -2.389 
To enn•le a caption to appear in the same vertical alignment on the 

printed progra.rrrne pa~e and the output pn~e, the followinc device can lte us~J 

newline 

cnption c 

TABLE~OF~TE?ilP~AGAINST-VOL 

C7nW.R INPUT / OUTPUT ROUTINES 

Input and output of birulry information is performed ay the routines 

routine spcc read •inary (inte,er name 1) 

routine spoc punch binary (intecer 1) 

The first reads the ne.""Ct row of holes on the tape as a ltinary nwger 

and places it in the nam~d vn.riable. The second punches the seven 

1 .. t significant binary digits of the intec::ral part of the integer 

holes on the output tape. In t.oth eases the 

must have been desipated 'binary' in the jolt 

The following two routines a.re useful in constructinc special purpose 

integer fn spec 

routine spec 

The 1Dstruction 

p = next symbol 

next symbol 

skip symbol 

the numerical equivalent of the next simple or compound symltol o• 

named varialtle without 110ving on the data tape. 

tbe information is still available for a sultsequent read instruction. 

tile HCond routine skips a syaltol on the data tape and is equivalent to 

read •vmltol ln) 



6.1 

6 MONITOR PRINTING AND FAULT DIAGNOSIS 

FAULT MONITORING 

There are two types of fault which can 1le detected ~y the Compiler, 

tirstly those which can be found during compiling and secondly those which 

•ecome evident durin~ the running of the compiled program. To aid 

the programmer in correcting these faults information is automatically 

printed out where a fault occurs. 

COMPILER Tilil.E UONITORING 

During compiling an outline of the program is produced in which the 

~eginning and end of each routine are printed ap.inst the physical 

line number. This cives a broad outline of the program as an aid in 

finding the faulty instructions and also correlates each routine with 

its routine number, for uso in tracing faults found at run time (see later), 

Also all faults during compiling are monitored. Those to which a line 

number can be attached, such as NAME NOT SET, are preceded ay it, while 

those which can only be found at the end of a routine such as TOO FEW 

REPEATS are monitored after the END. Finally at the end of each routine 

all the non-local variables except the reserved names are printod out. 

Although these do not necessarily indicate a fault, they may indicate a 

name which should have been declared locally. A typical program monitor 

might be 

I BEGIN 

z6 NAME NOT SET 

55 LAilEL 7 SET TWICE 

70 BEGIN ROUTINE POLY r:: 24 
115 NAME NOT SET 

II5 REAL QUM'TITY IN EXPR 

180 END OF 24 
LAllEL 18 NOT SET 

NON-LOCAL VARIA1lLES 

A 

TEMP 

SI 

:i:82 END 

The alK>ve should~• aelf-explana~ory. It indicates that the procraa 

started at line I and finished on line 182. These are physical line1 

and include all ltlank lines on the print-out. 

lines 26 an4 

•n• •tateineJ 

Which statea 

which they 8 
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lines 26 and 5S and two in line 115. Since there may ~e 110re than 

•n• atatefflent on a line, it is not possible to tell ■pecifically 

which statement is involved ~ut the faults are printed in the order in 

which they are discovered. A full list of faults is given in 

Appendix• together with a brief description of their nature. 

RUN TIME MONITOR~ 

During thG runninc of a program certain faults may 1H, detected 

"°th ~y the compiler and by the machine and its supervisor program. 

For example, the supervisor program detects the case where the square 

root of a negative argument is being requested and the compiler detect■ 

taalts connected with switch instructions and ,!!!.! instructions. 

The standard procedure is to print out a line of information 

1pecifying the fault followed by a list of the FIXED variables used. 

for example 

ALL TESTS FAIL 

ROUTINE 38 LINE II7 

FIXED VARIABLES 

• 

• 
• 
• 

instruction in line 117 routine 38 
0. line number g1 ves the line in the whole program not in the routine), 

of the [COND]' s on the labels were satisfied. Then follows a 

of the fixed varialtles of the routine. 

A full list of run time faults appears in Appendix 4. 

The above standard monitoring procedure involving the tel"Dlination 

.. program, may prove inconvenient. For example, if a program has 

of sets of data, rather than stop if the accumulator overflows 

so large as to be out of the machine's 

), in the middle of one set, it •Y 1te preferable to restart on 

6.2 



The usor may write a set of instructions in his main 

program (at label I) and label them, for the accumulator overflow 

case, with 

fault (I) : 

The action taken by the machine is first to print out the nature 

of the fnnlt, then to test whether the appropriate fault label has 

eeen set; if it has it then obeys the instruction labelled and carries 

on; if not it gives the standard fault monitoring. 

label nwnhers are given in Appendix 4. 
nie relevant fault 

FAULT DIAGNOSIS 

There are many program faults which manifest themselves only in 

wrong answers, and the following facilities are incorporated to aid users 

in tracking down such faults. 

QUERY PRINTING 

All arithmotic instructions, including complex, may be followed 

•Ya query(?). 

a z:: b(i) + C ? 

After obeying such an instruction, the value of the l.h.s. is printed 

out in floating point style with ten significant figures. The compilin1 

of the query print instructions may be controlled by the statements 

compile queries 

ignore queries 

The first instruction causes the subsequent queries in the program to 

be compiled, until an ignore queries statement is reached where subsequent 

queries nre ignored. 

ROUTINE and LABEL TRACING 

There are two tracing facilities available, the routine trace and 

the label trace. In the areas where the routine trace is operative it 

causes the routine number to be printed out each time it is entered. 

The correspondence between routine nwnber and its name can be found fl'Oll 

the projp"ain outline produced during the compilation. 

may appear 

Thus a print-oat 

RI R5 R3 R2 RX RS R3 R2 ••••••••••••••••••• 

The label trace facility allows the flow of the program to he followed 

in eater detail. For ever si le instruction ob d th 

number 1 
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number is printedJ for every.!!!! the value of the la~el at which the 

[COND] is satisfied is printed} for every switch it is the value of 

the switch that is printed. Thus a print-out might appear 

-> 3 ~I-> 4 -> 6 switch 3 -> 7 -> 8 -> 9 •••••••• 
If the label and routine trace are both operative the print-out might 

appear 

RI -> 3 test I-> 4 -> 6 RS switch 3 •••••••••• 
Al with queries the areas in which the traces are operative are delimited 

lly the instructions 

compile jump trace 

stop Jump trace 

compile routine trace 

stop routine trace 



7 PnESENT!t.TION OP' COMPLETE PROGRAMS 

JOB DESCRIP'T'IONS 

The running of progrnms on the computer is controlled •Ya superviaor 

program held permanently in the machine. The supervisor accepts 

co~plete prograJ'.!'ls as a series of tapes(progran and data) and a 

JOB DESCRIPl'ION which J11&Y •e in a separate tape or included with the 

program or data. A full description of the syste• is pven elsewhere••• 

and in this section we ~ive examples to illustrate the general 

principles of job descriptions. 

We give first an example of a progra~ with its data on the 

aame tape. 

JOB 

(Title) 

COMPILER ATLAS AUTOCODE 

OUTPUT 

O LINE PRINTER 5 BLOCKS 

l TELETYPE 2 BLOCKS 

STORE 30 

co:.1Plfl'INO 1.5 l!INUTBS 

end of proe-ram 

DATA 

•• Howarth, D.J., Payne, R.B., Sumner, F.H., ''The Manchester Univen1 

Atlas Operating System. Pa.rt 2l Users' Description" Computer Jo 

OCtoller 1961. 
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~ 
1. The title identifies the program. The first ff!fl character• rill 

•ea code to identify the particular organisation and the rest will 

•e information of an arbitrary form to identify the programmer and 

the program within the organisation. 

2. The OUTPUT information says that reference to channel o in the 

pror;rnm means the line printer and channel I means a Teletype punch. 

'lbe •lock numbers give an upper limit to the numaer of alocks of 

output that is to be permitted on each device (~<>96 characters per 

•lock). If the limit is reached the prograa is tenrlnated. In the 

aaaence of an OUTPUT section the following is assumed 

OUTPUT 

O ANY .I BLOCK 

ANY indicates that any of the output devices may •e used. 

3. The STORE and COMPUTING sections are optional. SI'ORE ctves an 

upper limit on the numaer of 512 word main store •locks used by 

the program and data, while COMPUTING gives a limit on the runnins 

t ime of the program. If either limit is exceeded, the program is 

terminated. If the above information is not present, the 

following is assumed 

STORE 20 

COMPUTING 4 SECONDS 

4. A program. tape is always assumed to be on prortram channel o so 

that in the above case, the data for the problem is also on channel o. 
5. •••z is an end of tape marker and indicates that all the information 

on the tape has been read. 

A second common form of complete program is a program tape 

and a separate data tape. In this case the program type might be 

COMPILER ATLAS AUTOCODE 

(Title I) 

begin 

end of program 

•••z 



The dntn tapo. which this time includes the jolt description, 

Jai&ht llte 

J'OB 

(Title 2) 

INPUT 

o (Title l) 

SELF= I 

OUTPUT 

O ANY IO BLOCKS 

STORE 20 

COMPUTING 30 SECONDS 

DATA 

□ •••z 

The INPUT description gives the relevant prop-an a• lteing 

channel O (the program channel) and SELF• I indicates that the data 

tape is to be read as channel I. Thus an instruction 'select input (I)' 

would be required in the program. 

CORRECTIONS TO PflOGRAMS 

It is possible to insert corrections automatically in 

a program by reading in a correction tape, which is designated 

channel IS in the job description. 

The availalltle instructions are 

delete line [N] 

replace line [N] _£l 

end of correction 

end of corrections 

The line numbers refer to the physical line numbers of 

the original program. 

A correction tape might lte as below 

DATA 

(Title) 

replace line 30 .!l 
a= a•x - b 

z = cos (a) 

delete line 35 
end of corrections 
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8.1 

8 COMPI..EX ARITHMETIC 

As indicated previously, facilities exist for the manipulation 

of complex aB well as~ and integer quantities. Complex quantities 

are stored as a pair of real numbers in consecutive locations (the real and 

illla.ginary parts respectively). The address of the complex quantity 1• 

that of the real part. 

DECLARATIONS 

All quantities must ~e declared at the •ectnnin1 of the routine. 
For example 

real RI, R2, R3 

COT!lplex z 

complex array P(I1IO), Q(I1IO,I:IO) 

causes 3 locations to N reserved for RI, R2, R3, 2 for z, 20 for P and 

200 for Q. 

Similarly if sI were the starting address of the matrix Q altove, 

then the declaration 

complex array fn for R(sI - 20, IO) 

would define a complex vector R(i) whose elements were the first column 

of the matrix Q. Note that the user noed only •e aware of the method 

of storing complex numDers for evaluating the origin (here sl - 20) 

of an array. The other parameters (in this case IO) refer to elements 

rather than locations and the factor 2 is automatically taken care of. 

STANDARD FUNCTIONS 

The following standard functions are added to those previously 

Shen 

re(z) 

im(z) 

arg(z) 

conj(z) 

(real part of z) 

(imaginary part of z ) 

(argument of z) 

(complex conjugate of z) 



8.2 

The argument z may uo any [EXPR] (in the complex sense u descri•ed ••low) 

The functions 

sin, cos, tan, log, exp, sq rt, mod 

may also have complex [EXPR]'s as argument• and they are interpreted in 

the normal fashion. 

For example if 

zax+!Y 

then exp(z) • exp(x)(cos(y) + ! sin(y)) 

The functions 

arctan, radius, frac pt, int pt, int 

are meaningless if their arguments are complex. 

ARITID.tETIC EXPRESSIOUS 

The arithmetic expression [EXPR] is still of the fora 

[:t?][OPERAND][OPERATOR][OPERAND][OPERATOR] •• •• •• •• [OPERAND] 

•ut [OPERAND] is now expanded to be 

[VAR],[CONST],([EXPR]),l[EXPR]l,[FUNCTION] or i 

Here 1 is a delimiter denoting the i (or j) of complex algebra notation. 

Examples of this more general expression are 

NOTES 

(v.conj(I) - I.conj(V))/(!2) 

(ZIZ2 + Z2Z3 + Z3ZI)/Z3 

Y(I,2) + sin(conj(Y(2,I))) 

RO( I + !2QOd) 

i 

I. When a complex number is written out explicitly (say x + !Y), 

then it is regarded as 3 operands (x,! and y) connected ~7 the two 

operators+ and (implied)•• Thus if the •rackets were oaitted 

from the denominator in the first example it would mean 

((V.conj(I) - I.conj(V))/!)2 
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ARITTIMETIC INSTRUCTIONS 

The form of tho instruction remains 

(V,\R) • [BXPR] 

wt [VAR] now includes complex scalar• and complex array el ... nt•• Por 
example 

NOTEs -

Z = ZIZ2/(ZI + ZZ) 

Y c o + .!,2rf•c 

A(p.q) c 2sin (Zrz) 

R c RI + re(Z) 

P = ~(V.conj(I) + I.conj(V)) 

l, Just as.!:!!! quantities ,nay not appear on the r.h••• of an inte5er 

iutruction (except as arguments of int(x) or intpt (x)), so complex 

quantities may not appear in~ or integer inatructiona. 
lc,wover • the functions 

ro(z), im(z). tn<>d(z), arg(z) 

COn.ert from corylcx to ~ quantities and may therefore appear on 

the r.h.s. of a ~ instruction. In fact any fu.nction whose 

regardless of its arguments aay lte used in a!!!.!, 

Thus if X and Bare~ then 

X = B + im(Y) is valid 

re(z) and im(z) are actual locations in the store and can therefore 

l.h,s. of an instruction (whose 110de 1• then real). -
re(z) a sq rt (2) 

re(y) a S +1• (zI) 

8.3 
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However, JDOd(z) and arg(z), even though they do define z, are not lecatiou 

in the •tore and cannot~• used on the l.h.a. If a complex quantity 

ia being evaluated ~y moans of the evaluation of it• modulus (m) and 

argument (n), the assignment is done by 

z ~ m•(cos(a) + ! sin(a)) 

or z u m•exp (_!a) 

When the functions 

sin, cos, exp, mod 

appear in a co~plex instruction, a test ta made to see whether the 

arguments are~ or complex, and the appropriate method used. 

~. Howover, when the functions 

sq rt, log 

appear in a complex instruction, then arguments are regarded as complex. 

Consequently, in a complex instruction, the evaluation of sq rt(-~) 

!2i and does not cause the machine to atop as it would in a real 

instruction. 

DATA 

complex numbers on a data tape are punched using similar conventions as 

for real numbers. For example 

Within the number spaces may only appear immediately ~fore or immediatt 

after +1 or-!• 

They may be read by the usual read instruction 

e.g. read (zI,z2,z3) 

8. 
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CONDITIONS 

In conditional oporators, [EXPR]'s must ~e !!!,!. (In the sense 

of note I of t he previous section ). Hence the following are legitimate. 

g arg (z) ~ •12 ~ -► 3 

3 case lzl ► I l 

ROUTINES AND FUNCTIONS 

Since routines and functions are allowed to operate on complex 

quantities, the parameter types have been expanded to include 

roraal parameter type 

COlll)lcx name 

Actual parameter type 

name of a complex variable 

any expression (which will be 

evaluated as if for a complex 

aasignment) 

The routine types [RT] have also been expanded to include complex fn 

complex map. As an example we will rewrite the function routine for 

Ille polynomial 

a(O)+a(I)x+ •••••••• a(n)x 

nix and the coefficients a(i) to be complex. 

comelex fn seec poly(~ s, complex x, integer n) 

complex fn poly(~ a, come~!! x, _!nteger n) 

complex array fn a(s,I)i integer 1, comElex y 

y = a (n) 

cicle i m n-I, -I, 0 

y = y.x + a(1) 

repeat 

result = y 

!!2 



9 HALF-WORD OPERATIONS AND LIST FROCESSING FACILITIES 

OPERATIONS ON UALF-wonos 

In the previous sections we have regarded the ~8-~1ts of a word as a 

single entity, as a numoer in fact. There are many applications in non­

numerical work where we can conveniently regard the 4-8-bits •plit int• 

a number of independent entities and even into single digits.(We will tn 

these cases consider the 48-bit words as two 24-bit words often called 

half-words)• For example, characters are represented lty their numerical 

equivalents (see Appendix 3) in the ranee o - X2T • Since this number can 

ltft represented in T hits it is possiltle to pack three such character• to a 

word. For example a D c could lte packed 

a h C 

(~1uooofolm@ffibool 

i.e. •6070 5430. 

Facilities are provided for performing operations on 24-bit words, to 

pack and unpack information so stored, and for manipulation in list 

structures etc. These are very similar to those used in the Compiler Compiler, 

the system used to write the Atlas Autocode Compiler. 

The scheme embraces the B-lines of Atlas which are elven the special 

OI, ~2, ~3 ••••••••••••••• 
The restrictions on the use of B-lines described in the section on machine 

instructions must be observed. Thus only tJIX - tJ59 are generally available 

to the user. Theso are 'global' variables and do not have to be declared nor 

handed down fro~ one routine to another as a parameter. 

1• assurned to •e one octal place up from the end. 

For local variables we may use the least significant half of an 

integer type variable. (This is due to the method of storinc an inteGer 

quantity. As explained in the section on machine instructions, the inte,er 
~ -I). 

10 is atored as 8 x(IOx8 ) i.e. 

03000000 00000.120 

and if the least si(P'lificant half is interproted in the same way aa a B-11 

it has the value .10. 

If for example K, MIN, I3, 12 

have been declared inte~er quantities then we can refer to their least 

significant halves as aK, aMIN, aI3, aI2. In the particular case of the 

names aI3, al2 ••••• we can •-breviate them to a3, cr2 ••••• This facilitJ 

is peculiar to the names II, 12, 13 ••••• etc. which JIUSt still be decl 
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Half-word operations are effected by the instruction 

[H-VAR] "" [H-EXPR] 

and [H-EXPR] is defined as 

[:!;_?][H][HO][H] •••••••••••••• [H] 

Where [H] denotes a half-word operand and [HO] a half-word operator 

[BJ is defined as 

[H-VAR),[CONST],[OW),([H-EXPR]) 

and [H-VAR] as 

tJ [N) ,a[NAME] ,a( [H-EXPR]) 

~[M) describes the B-lines and a[NAJim] the least sicnificant 

llalf of inte,..~ [NAJ,IE]'s as descri~ed previou•ly. a([H-EXPR]) denotes 

the 24-bit word in the address given by the value of [H-EXPR]. Note 

that this address will not in genoral lte intep-al but will take the fora 

1/2, [CONST] and [OW] have the moo.nings described in the section on machine 

iutructions and ([H-EXPR]) has the usual significance of an expression in 

parenthesis. In addition each half-word operand [H] may be preceded by a 

•cation operator(-) which causes the operand to be negated (i.e. all I'• 

Changed to o's, all o's to I's) before it is used. 

operator [HO] is defined as 

+, -, *, t, &, .Y, /, ►, ~. (+) 

!Mir operators are described in detail below but note 

The oporntors have uniform precedence (c.f. ordinary arithmetic 

operators) and are ap~lied to successive partial results in order 

from left to right. Thus 

al+ a2 - a3 & a4, .Y a5l6.125 

interpreted 

(((((al+a2)-a3) & 04,) .Y aS)/6.125) 

If any other interpretation is required it must be indicated by the 

use of brackets which have the usual over-ridinc precedence. 

The operations are carried out on all 24-bits includinc the three to 

the richt of the binary point. 

have their usual meanin~s. • denotes multiplication 

result with the decimal point three places up frou the least 

end. Thus 

3.5 • 4.5 yields 15.75 
be lost at the least significant end, the exact 

t is rounded by the addition n~ TIT~ T-~---•~-- A , 



9.J 

/ den•tea division and ci•e• a quotient with the deciaal point three place■ up. 

•• !, t (Called 'and', 'or' and 'not equivalent' respectively) are logical 

operations which are performed between each pair of correspondtnc dicit■ 1• 

parallel. For any pair of di&its the result is Cf.ven ~y the followiDC ta~lea 

Thus 

i.e. 

IIIGllld 

i.e. 

O & I= O 

I & 0 a 0 

the operation 

o Vo= O 

0 VI= I 

I V O = I 

I V I == I 

•00000031 & •00000055 

000 000 000 000 000 000 OII 001 

& 000 000 000 000 000 000 IOI IOI 

give 000 000 000 000 000 000 00I OOI 

*0OOOO0II 

OtO=O 

O_EI•I 

It O • I 

I ,E I a O 

The operators• and ◄ refer to left and right shifts respectively 

(n•te that ► must not be confused with->, the arrow sip) 

l'hese shift the digits up or down circularlyJ i.e. digits which are shifted 

~ver the top reappear at the bottom. 

l'hus if al = *0707 0707 then a2 = al ◄ 3 

and a3 =al ► 2 

sets 

sets 

Cl2 ::a *7070 7070 

a3 a •6161 6161 

These instructions allow us to unpack informatioa packed in the 

escribed at the beginning of the section. Thus if al contains a, It, and c 

i.e. 1! al= •6010 5430 

then a2 = al & *0037 6000 > 7 

sets a2 to •oooo 1420, the numerical equivalent of b. 

The operation(+) refers to the chaining of information and is 

described later (see section on lists). 

The form of the conditional operators is expanded to allow 

[H-EXPR][~][H-EXPR] as a form of [SC]. For example a conditional instruct 

may lte 

!! '31 ~ al+I0 ~ ->I0 

or !! tl3+tJ-i , IOO0 ~ al = al+I 

CONVERSION TO INTEGER OR REAL 

The definition of [EXPR] has been extended to include [H-EXPR] u 
ILll alternative form, thus 

= 

constants. If an 
1 

as part of an (EXPJ 

•icn1~icant half o: 
to £!!! the result 
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With the treatment ' 
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If an [H-EXPR] app~ars in place of an [EXPR] (or within parentheses 

an [EXPR]) it is converted to 48-bit form ay civing it a most 

half 0300 0000 if it is +ve, 03I7 7777 if it 1s -ve. To convert 

result is then simply standardised, otherwise it is left unstandard­

• Note however that all 24 Dits are preserved, the three least si&:nificant 

~eing asswned to be zero or in some way relevant. This is consistent 

of the instruction i = 2.5, which is recognised as 

1 = [EXPR']. Strictly speaking the [EXPR'] should be an 'integer' expression, 

result should be an exact inte&er. The checks applied, however, 

t constants which are a multiple of I/8. 

Quite often in non-numeric work, the data WlY ae divided into 

1ections which may have a length which varies over wide limits but where 

the sections generally is much more constant. The straii:bt­

is to allocate storage for each section aig enough to 

the largest possible length which may appear. However, this is vory 

ful of storar;e and the idea of a gg has been developed to overcome this. 

consists of a number of full-word re~isters which may be considered 

half-word registers. The first half-~ord contains useful 

tion and the second the addross of the 'next' word in the chain. 'Next' 

commas since the actual location of the 'next' word may be anywhere 

it 

and 

~ indicates an 'information' word 

□ the linking addresses, 

Ui 
to utilise AI.L the working space as all words may be linked 

deal with CIRCULAR chains, i.e. chains in which 

word contains the address of the first word. 

type of structure that the operator(+) refers. Thus 

address of (often shortened to 'if aI points to') a 

the chain, al(+)l points to the next, and al(+)Z to the one after. 

lists are circular, in the above aI(+)S.:: al. Again from the nature of 

(+)I,: a(aI+i). 

traversed in one direction (the direction of 'the 



LIST PROCESSING FACILITIES 

The Autocode contains a number of facilities for forminc and manipulatiDI 

liata. All the operations make use of a central or znain chain, whose 

address is kept in ~89 

A lar&e area of tho store is initially chained up in thia way and it 

is assumed that while reiisters may be 'borrowed from and returned to it, 

it is novcr exhausted. 

Lists are referred to by.!!,!! [H-VAR]. Thus.!!!! al is the list whose 

address is given by al. The main chain then is effectively_!!!! ~89. Empty 

lists are characterised by havin~ this address zero. 

For setting up lists initially the instruction 

sot up list [H-VAR] 

is provided. It creates an empty list for use later on. To do this, of course, 

it merely sets [ II-VAR] = o. (In fact for example al= O could be writtea 

and it would have the samo effect. The above format is essentially to 

increase readability of pro~runs). 

Items can then be added to this list by the instruction 

~ [H-EXPR] to list [H-VAR] 

For the first variable to be added the instruction causes the [H-BXPR] t• N 

evaluated and placed in the next word in the main chain• and then the word 1' 

detached and made into a circular list of one word. 

Thus the instructions 

sot ltp list al 

Arld ~IO to 11s~ al 

would result inn chanr:;e from 

to 

location• 

li•t, al I 

[ 

A ceueque1 

1POuld cause 
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JIOTES 
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• 

location of the main chain, which ia then detached and added to the 

li1t, al ~einc updated in the proce••• The liat then appearas-

~~10 I ) t··~ 
t 

ed. 

~ 
A ceuequent 

add 10 to list al 

would cause list al to become 

10 

cd 
111'!S -
I, In!!!! [H-VAR], the [H-VAR] always points to the laat word added • 

The words are added in such a way that on traverainc the chaia 

(which can only be done in one direction), the iteu are ■et in the order 

in which they are entered. 

A number of items can~• added at the same time ~Y meau of the 

~ [H-EXPR-LIST] to list [H-VAR] 

lllere [B-EXPR-LIST] is defined as a series of [H-EXPR]'a •eparated ~Y comuas. 

set up list al 

~ PIO, ~+IS, IO to list al 

rise to the same list as above. 

lteJD8 may be placed in a chain in another way and the resulttnc chain 

called a NEST. In contrast to a list the nest bas the followinc properties. 

The [B-VAR] always points to the first word added. 

On traversing the nest, items are encountered in the reverse 

order in which they are entered. 

II this latter property which is important in nests. It is a 'fir•t-

set up nest a2 

the correspondinc listinc instruction, sets a2 • o. 
lJ the instruction 



yp,0 1 µ 
i 

act 

However a followinc instruction, say, 

~ <r4 + 15 to nest a2 

results in 

where a2 is unchanged and the consequent 

add 10 to nest a2 

results in 

H~10l 
t 

all 
where the i tem added is inserted immediately after the itea at the head ot 

the chain (i.e. the one whose address is in a2) and where a2 does not chanp. 

The instruction 

add [H-EXPR-LIST] to nest [H-VAR] 

adds a series of [H-EXPR]'s to the nest. 

There are two instructions for retrieving infonsation stored in liat• 

and nests. 

withdraw [H-VAR] from list [H-VAR] 

sets [H-VAR] to the value of the FIRST item entered in the list and 

returns the word which contained it to the main chain. For example, 

considering the list al previously ~uilt up, the instruction 

withdraw IJ5 from list al 

sets /JS to the value of tJIO and contracts the list to 

•am\J orde.r 

The corres 

Yi 

sets [H-VA 

word it us, 

wi· 

••ts IJ5 to 

and .further 

the REVERSE 

NOTES 

I. The two 

difference 1 

the differen· 

aet the [ H-V, 

the Chain anc 

2. I:f the 1 :1 

or ~ to 2 

Lists 

OJ 

• effect is 



•u~ order in which it was entered. 

The corresponding nesting instruction 

withdrnw [B-VAR] from nest [H-VAR] 

set• [H-VAR] to the value of the~ item entered and returns the 

word it used to the main chain; for example• 

withdraw PS from nest a2 

aets ~5 to 10 and contracts the nest to 

and further withdraw orders cause the intorma tion to 1te retrieved in 

the REVERSE order to which it was entered. 

NOTES -
1. The two operations are exactly the sam~ physically; it is the 

difference in entering information in a list or nest which results in 

the different order in which items are withdra'Wll. The action is to 

aet the [H-VAR] to the information in the next word after the head of 

the chain and return that word to the main chain. 

a. If the list or nest contains only one word. withdrawing a word sets 

aI or a2 to zero. It is impossible to withdraw information from an 

epty list or nest and any attempt to do so will cause trouble. 

Lists or nests may be deleted by 

delete list [H-VAR] 

or dolete nest [H-VAR] 

is to break open the list or nest and return it to the main 

to the following diagram 

lete list P4 would result in 



10 TJIE US!_OF MACHINE INSTRUCTIONS 

STACK STRUCTl!RE 

10.1 

Machine instructions can be used in routines either to make an 

inner loop more efficient or to effect some operation which cannot easily 

be done otherwise. It is essential however, before using such instruction• 

to krow how data is stored in the stack. We shall assume from here 

that the reader is rensonably familiar with the logical structure of the 

machine, that is with the basic order code. We shall illustrate the 

use of machine instructions by recoding the inner loop of the routine 

'line fit' described earlier. The local data of the routine is stored 

as follows: 

Bd 

0 I 2 

s 

3 6 7 

n C X 

8 IO I2 13 l 

XX X i s 2 

~,-________ _.,\ V I\ 
LINKS l floating point numbers._ ____ ] 

unstnndnrdised floating point integers 

0 

17 

Here Bd refers to the B-line associated with the routine, and corresponds 

to the textual depth of the routine in the proc;ramme in which it is 

embedded. If (sny) this is 2 then Dd.:: D2. The addresses 2, 3, 4, • • • ••• 
associated with s, n, a, etc., arc assigned of course at compiler time. 

The coefficients s, 2 and s+l, 2 of the array functions are evaluated at 

run time however when these stater.tents are encountered. All the above 

qunntities nrc referred to as the 'fixed' variables. There are no 

local arrays involved in this routino. ngo always points to the next 

available location in the stack. Bd points to the old position of B(JO 

before the routine was called in. The previous contents of Bd (if any) 

aro stored in (Drl,½) and the control numhcr link in (Bd, O). The 

location (Dd, I) is used in test instructions while (Dd,3/2) holds the 

number of fixed variables in the routine.ngo is advanced from its original 

7alue to the value shown Rd+ I7 iremediately on entering the routine. 

The unstandardised integers are obtained by adding o.8 
version with the add instruction 0330. 

ll ~r,._ 
as 8 .(10.8 J, i.e., as 

03000000 OOOOOI20 in octal form 

ITACK INSTRUCTIONS 

The following autocode formats involving the stack pointer (BgO) 
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!.! repres 

must bo 1 , 

fault is j 

MACHINE CO 

We shnll nt 

I. Where 

written in 

(and termina 

function digl 

to the addres 

(preceded P<>s 

located 3 pla, 

in octal notat1 

The eff 

•et the address 

The format 

·1■ similar to (I) 

number. This co 

any sigt 

00. 

notation. 

The format 

to plant a s1 

ent location nf • - --



•• 

.!! represents the contents ot ego. In the last instruction the [KAME] 

~ust bo local to the routine containing the instruction, otherwise a 

fault is indicated. 

MACHINE CODR FORMATS 

We shall now describe somo 'machine code' formats. 

I. Where there is no symbolic address involved an iutruction 1• 

written in the form 

[FD],[N],[Nl,[±?l[CONST] 

(and terminated as usual by; or newline). Here [FD] refers to the 

function digits, [N] to the Ba and Bm digits, and [+?)[CONST] 

10.2 

to the address part. This last is written as a constant in the usual way 

(preceded possibly by a sign) bearing in mind that the binary point 1s 

located 3 places from the right band end. Thus 

0I0I, 80, 2 1 2.5 
04064002 00000024 

is equivalent to 

in octal notation • 

The effect of this instruction in the above routine would be to 

Ht the address s in B8o. 

2, The format 

[FD],[N],[N),[cn] 

ii similar to (I) but here the address part is written as an octal 

llllllber. This consists of an• followed by up to 8 octal digits, 

any significant zeros. Thus •0041 is equivalent to the 24 

00410000 

The format 

C±?l[CONST] 

to plant a standardised 4-8-bit floating point numher in the 

location of the prograta111e. 
,,..._ ,. ___ .... 



plants a pair of 24-bit words, each simil~r to the address part of (I), 

in the current location. 

The format 

[OW],(OW] 

plants a pair of half words, each similar to the address part of (2). 

address. 

6. 

We now have three instruction formats which use a symbolic 

[FD],[N], - ,[NAME] 

Here the [NAME] must refer to an integer (or~),~• integer name, 

real name. In the case of an integer or~ name, the resulting 

instruction is as follows 

(FD],[N], d, p 

10.3 

where (Bd, p) is the 'address' of the name, Bd being the B-line pointinc 

to the appr~priato section of the stack, and p being the address relative 

to the origin of that section. Thus an instruction 

0324, 0 1 -, X 

appearing in the routine under discussion would be translated as 

0324, o, 2, 7 

The effect would bo to put x in the accumulator. In case of inteGer !!!!! 
and real n~me the symbolic instruction always corresponds to a pair of 

instructions, thus 

0324, o, -, a 

0101, 99, 2, 4.5 
0324, o, 99, 0 

is translated as 

If the [NA.J,O:] refers to an unstandardised floating point integer then•• 

may wish to select the integral half for use in a &-line. 

done by writing a before the [NAME]. Thus 

0101, 80, -, as 

is equivalent to 

0101, Bo, 2, 2.5 

This can be 

If ' 
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If• were an integer name then the in8truct1on would corresponcl to the 

pair of instructions 

0101, 99. 2, 2.5 
0101, 80, 99, 0.5 

T. In the instruction format 

[FD],[N],[N],[H]I 

[M]z refers to a simple label. It is replaced -1 the control num'IHtr 

corresponding to the label. We may refer to labelled constants in 

this way. For example 

• 
• 
• 

141 •03, •0000012 

puts an unstandardised 10 in the accumulator 

8. Finally, we have a special purpose format, the use of which requires 

a mre detailed understanding of the operation of the translated 

programme. 

[FD],[N], -, [-?][N][NA.ME][,:tCONST?] 

where again the [NAME] can lte preceded by er if necessary• Here the 

actual address is obtained by selecting a particular address associated 

11th the [NAME], adding to it the [±CONST] if present, and finally adding 

0.5 if a is present. The particular address referred to is specified by 

[-?][N]. It is obtained by looking up a property list which 

the compiler for each name quantity. The significance of the 

cussed earlier,thus 

can be o~tained in this way is explained elsewhere. 

we may refer to the storage layout of the routine 

0101, 80, -, IcrX 

the origin of the X vector in B8o. Here X was defined as the 

2). However, in the following version of the 'line fit' 



routine line tit(~•• inte1er n, real naae a, 11, c) 

!:!!,! x, y, :xx, xy, yy 

X • OJ y a OJ XX a OJ xy • OJ yy a 0 

OIOI, 80, -, as 

0101, BI,-, an 

0124, 81, 81, -2 

2S 0324, Bo, 8I, 0 

0320, 0, -, X 

0356, 0 1 -, X 

0324, 80, 81, 0 
0362, 80, 81, 0 

0320, O, -, XX 

0356, O, -, XX 

0324, 80, 81, 0 

0362, 80, 81, I 

0320, o, -, xy 

0356, o, .. , xy 

0324, Bo, 81, 1 

0320, o, -, y 

0356, o, -, y 

0324, 80, 81, I 

0362, Bo, 8:r, I 

0320, o, -, yy 

0356, o, -, yy 

02J.:4, 127, 81, IS 

0122, 81, o, 2 

012:r, 127, o, :ii 

} 

Ii a= (n.xy - x.y)/(n.xx - x.x) 

11 = (y - a.x)/n 

load• into B8o 

load n into B8I 

fora 2n - 2 

X(i) + X -> X 

~ 
X(i) + XX: --> XX 

X(i)Y(i) + xy --> xy 

Y(i) + y --> y 

Y(i)~ + YY -> YY 

!! 'B8I a o• then-> I 

B8I = B8I • 2 

--> 2 

1 1 c = yy - 2(a.xy + b.y) + xx.a - 2a.11.x + n.11 

end 
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US! OF B-LINES 

The user of aachine 1natruct1ona IIU•t take care to avoid uains 

those B-lines which are used by the ayste~. These are 

BI, B2, B3, ---

which are associated with routine• of textual depth I, 2, 3, etc. The 

eueddinc of routines within each other would not normally extend very 

far1 it would 1-e a very complicated prograJ1 indeed that ran to IO 

deep. 

The extracode sequences use BgI - Bg7. Bg8, B99 are only used 

~J certain extracodes ~ut on the other hand they are used DJ almoat 

••ery autocode instruction and indeed ~y certain 'aachine• instructions 

of the type 6. 

Also B6o - B79 are used 1ty permanent &l\d li~rary routine•• 

Therefore the user should con.fine himself to BIO - B59. 

10.6 



Al.l 

APPENDIX I PHRASE STRUCTURE NOTATION 

In describing Atlas Autocode we use aquare ~rackets round an 

entity to d~note that it represents a class of entities and JOaY ~e replaced 

by any member of the class. We call an entity in square brackets a PHRASE. 

For example we could define a decimal digit by 

PHRASE [DIGIT]= O,I,2,31 ~,5,6,T,8,9 
whero the comm.~s are interpreted as meaning 'or'. Thus there are ten different 

things which can be called [DIGIT], and when we refer to [DIGIT] elsewhere 

we menn that any of tho ten will be legitimate. 

We can then build up from this basis and describe, for example, 

a signed digit as 

PJIB,\SE [SI~:I:D DIGIT] = +[DIGIT], -[DIGIT] 

Th~re arc many phrases in which a particular component may appear 

an indefinite n11m1>cr of times (for example an integer 111ny have any nwnber 

of d'gits), and n special qualifier* is used in a phrase to indicate that 

it appears nt least once, but may be repeated any number of times. 

Thus, havinr, defined [DIGIT] we mny define an integer and call it [N] by 

~IRASE [N] = (DIGIT* ] 

There arc also places where a phrase JIUlY or may not appear and t he 

qualifier? is used. For example a name in Atlas Autocode may be formally 

defined by 

PlffiJ\SE [N,\UE] =- [LETTER•][DIGIT•?](PRDm•?] 

PiffiASE [LETICR] = a,b,c,d,c,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x, y,1 

A, n,c,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,1 

and Plllt\SE [PRIME] = ' 

The Atlas Autocode language iJ recut"sive and phrase definitions mny use 

themselv{.s. For oxnr.:ple wo may define a 'list of names separated by Co11111U1 

PlffiASE [l'l'Al.lE LIST] = [NAME][, ](NAME LIST], [NAME] 

Thus C is a [NAME LIST] since it is a [NAME], 

b,c is a [NAME LIST] since b is a [NMIB] and c, a [NAME LIST] I 

a,b,c is a [NAME LIST] since a is a [NAJ.IE] and lt, c, a [NAME LIST] etc. 

Note that if a comma is a component of a phrase it must appear in squar e 

ltrackots as above, to distinguish it from the comma which separates the 

alternatives of a phrase. 

Tho qualifier• also indicates recursiveness and a [KAME LIST] 

could be defined as 

PHRASE [NAME LIST] = [NAME][,NAMB•?] 

wher~ PHRASE [,NAJ.IE] a [,][NAJdE] 

Gi ven 1 

a llowoc 

we can 

Tho [ SS. 

its Olm 

the unco 

thoy may 

unless [ 1 

Note tha1 

These ar e 

but t hose 

F 

complete 1: 

definod a~ 

FC 

In the rou 

the [ NM,IE) 

• function 

Brooker, 

Computer 

Brooker, 

''The Co1 

( ed. Go< 
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Givon tho phrases of tho lant:tJage it is thon possible to describe all the format• 

allowed in a progrnm. For cxnmple, if we introduce the phrase [TYPE] as 

l'JIRASE [TYPE] = intei;;or, ~• complex 

we can then define the format for tho scalar declarations as 

FORMAT [SS] = [TYPE)[NA1,tE LIST][S] 

Tho [SS] indicates that it is a source statement which means it appears on 

its own in an Autocode program. 

In Atlas Autocode there is a further typo or CLASS of format, 

the unconditional instructions [UI], which have the special property that 

they may bo preceded by the conditional operators!!, [COND] .!!!.£.!! and 

unless [COND] then. 

A list of the phrases and formats of Atlas Autocodo follows. 

Note that some phrases ([S],[CONST],[NAME] and [TEXT])aro not formally defined. 

These arc defined by special built-in routines which we will not consider here, 

llut those interested may refer to tho references given below. 

Finally we should point out that some of the definitions are not 

rigid. For example, the arithmetic assignment statement is 

as 

FORMAT [UI] = [NAME](APP] = [EXPR] 

routine which deals with this format, tests are made to ensure that 

does in fact describe a variable, and is not, for exam~le, 

1 function. 

Morris,o. and Rohl, J.s., 

Co111p11tcr Journal, Vol. 5. No. I. 

''Trees and Routines'', 

Maccallum, I.R., Morris,D. and Rohl,J.s. 

" The Compiler Compiler'' 3rd Annual Review of Automatic Programming 

(ed. Goodman), Pergamon Press. 



PHRASES AND FORMATS OF ATLAS AUTOCODE 

PHRASE [EXPR] -
PJffiASE [EXPR'] -
PHRASE [OPERATOR] Ill 

PHRASE [OPERAND] -
PHRASE [APP) = 

PHRASE [EXPR-LIST] -
PJffiASE [TYPE] ... 
PHRASE (QUERY) "" 
PHRASE [NAME LIST] .. 
PHRASE [ARRAY LIST) =r 

PHRASE [ARRAY FN LIST] "" 

PHRASE [OOUND PAIR LIST]n 

PHRASE [OWN ARRAY LIST]= 

f±?][EXPR'], [H-EXPR] 

[OPERAND][OPERATOR][EXPR'],[OPERAND] 

+, -, *, I, i, ., NIL 

[NAME] [APP], [CONST), ( [EXPR]), I [EXPR] I,! 
([EXPR-LIST]), NIL 

[EXPR][,][EXPR-LIST],[EXPR] 

inte~er, .!:.~, complex 

? 

[NAME][, ][NAME LIST], [NAME] 

[NAME LIST]([BOUND PAIR LIST])[,][ARRAY LIST], 

[NAME LIST]([BOUNO PAIR LIST]) 

[NAME]([EXPR][,][EXPR-LIST])[,)[ARRAY FN LIST], 

[NAME]([EXPR][,][EXPR-LIST]) 

[EXPR]t[EXPR)[,)[OOUND PAIR LIST], 

[EXPR]: [EX:PR] 

[NAME LIST]( [CONSTANT BOUND PAIR LIST])[, ][OiVN ARIAf 

[NAME LIST]([CONSTANT BOUND PAIR LIST]) 

PHRASE [CONSTANT BOUND PAIR LIST]=[N]:[N][,][N]:[N),[N]:[N] 

PHRASE [COND] = [AND-C],[OR-C] 

PHRASE [AND-C] C: [SC)~ [AND-C],[SC] 

PHRASE [OR-C] Cl [SC].£.! [OR-C],[SC] 

PHRASE [SC] = [H-EXPR] [ COMP] [H-EXPR], [EXPR] [COMP] [EXPR][COMP]( 

[EXPR](Cm.1P)[EXPR], ( [COND]) 

PHRASE [COMP] "" =, ~. >, ~. <, ~ 

PHRASE [RT] n routine, inte~er ma.2, real ma.e, 

real fn, com~lex fn 

PHRASE (FPP] Cl ( [FP1']), NIL 

PHRASE [FP] = [FP-DELIMITER][NAJ,1'E] 

PHRASE [FP-DELIMITER] n [,?] inteccr name, [,?] real name, [,?] co 

(,?] integer, [,?] ~. [,?] complex, [,?] 

[,?][RT],[,] 

PHRASE [N-LIST] i:a [N][,][N-LIST],[N] 

PHRASE [SWITCH LIST] = [NAME LIST]([-?][N]:[-?][N])[,][SWITCH LIST], 

[NAME l,IST]( [-?][N]: [-?l[N]) 

PHRASE[-] ... 
PHRASE [ALPHA] "" er 

PHRASE [H-EXPR] ... C±?lCH-EXPR'] 

I[± CONST] 

[CJ 

[ COR.REcTI< 

[UI] 

(UI] 



I (R-EXPR'] • 

I [NEG] • 

I [R] • 

(HO] • 

-
I C.!!!! or .!!!!! ] • 
I [R-EXPR-LIST] • 

--
[C0RRECTIOK] a 

[NEG?][H][HO][H-EXPR'],[NEO?][H] 

(-) 

[H-VAR],(CONST],(OW'],([H-BXPR]) 

+, •, k, !, Z,, -, /, ►, •, (+) 

~(N], a[NAME], a([H-EXPR]) 

!!!!, nest 

[H-EXPR][,][H-EXPR-LIST],[H-BXPR] 

C±l[CONST] 

delete line [N], replace line [Kl_&, end of [CORRBCTION] 

corrections, correction 

• (NAME][APP] = [EXPR][QUBRY?] 

a 

• 

------
• 
• ----
• 
• 

-

[NAME][APP] 

stop 

return 

-> [N] 

~ [N-LIST] 

-> [NAME]([-?][N]) 

-> [NAME]((EXPR]) 

caption [TEXT] 

[H-VAR] ::a [H-EXPR] 

~ [H-EXPR] !_2 [.!!!!,! or .!!!!.!,][B-VAR] 

~ [H-EXPR-LIST] !_2 [!!!.! or .!!!!,!lCH-VAR] 

withdraw [H-VAR] ~ [ll!,! or !!!!,!1£R-VAR] 

add list [B-VAR] to list [H-VAR] 

split list [H-VAR] ~ [H-VAR] 

set up[!!!! or .!!!!!1 [B-VAR] 

[lJI][S) 

.!! (CORD]!!!!! [UI)[S] 

unless [CORD] then (UI)[S] 



FOR~L\T [SS] 

FORMAT [SS] 

FORMAT (SS] 

FORMAT [SS] 

FORM.AT [SS] 

FORMAT [SS] 

FORM.AT [SS] 

FORMAT [SS] 

FORMAT [SS] 

FOR.'MT [SS] 

FORiMT [SS] 

FORMAT (SS] 

FORMAT [SS] 

FORMAT [SS] 

FORMAT [SS] 

FORMAT [SS] 

FORMi\T [SS] 

FOID.11\T [SS] 

FORMAT [SS] 

FORMAT [SS] 

FORMAT [SS] 

FORMAT [SS] 

FOR'{AT (SS] 

FORM.AT [SS] 

FORMAT [SS] 

FORM.\T [SS] 

FORMAT [SS] 

FORMAT (SS] 

FORMAT [SS] 

FORMAT [SS] 

FORM.AT [SS] 

FORMAT [SS] 

FORMAT [SS] 

FORM.AT [SS] 

FORMAT [SS] 

FORMAT [SS] 

FORMAT [SS] 

-
... 
:1!11 

a 

ae 

Cl 

Cl 

"' 

.. 
= 
a 

Cl 

12 

-
"' 
a 

a 

a 

112 

= 
... 
,.. 

.. 
-.. 
= 

-
a 

.. 

[UI] llnl<'Ht:_ [CONn]ls] 

cyclo [N/\1.m] = [EXPR](,](EXPR][ ,](EXPR)[S] 

rcpe:tt [S] 

[TYPE][NAME LIST][S] 

[TYPE?] array [/\RRAY LIST][S] 

[TYPE?] array fn [ARRAY FN LIST][S] 

~ [TYPE][NAME LIST][$] 

~ [TYPE?] array [crdN ARRAY LIST][S] 

[RT] Spee [NAME][FPP][S] 

[RT][NAME][FPP][S] 

begin [S] 

~ [S] 

end of pro<;ram [S] 

[N]: 

[N] ~ [COND]i 

[NAUE]( [-?][N]): 

switch [SWITCH LIST][S] 

compile queries [S] 

iimore 9ucrics [S] 

compile juMp trnce [S] 

compile routine trace [S] 

stop ,ittnp trace [S] 

stop routine trace [S] 

com~~nt [TEXT](S] 

[FD)[,][N)[,][N][,][;:t?][CONST][S] 

[FD][,](N][,][N][,][OW)[S] 

[;:t ?] [CONST][ S] 

C::t?][CONST](,][z:?][CONST][S] 

[OW)[, ][OW][S] 

[FD][,][N][,]-[,](ALPHA?][NAME][S) 

[FD](,][N][,]-[,][-?](M][ALPHA?][NAMB][+ COJffl 

[FD][,][N](,][N][,](N]s(S] 

result= [EXPR][S] 

[NAME] a ,!! [S] 

!,! a [EXPR][S] 

.!.! • .!.! C±l[EXPR' ]Cs] 

[CORRECTION)[S] 

Al 

an, 

.!t... 

typ 

In 1 

para 

a) 

1,) I 

c) 'I 

e,rpre 

intel!! 

inte1te 

real f : 

comple: 

Content 

in the : 

Minn 
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APPXJmIX 2 LIST OF STANDA.llD P'UNCTIOMS AJro PEIUIAJ{ENT llOUTINES 

All the functions and routines listed ~elow are rleclared at level o 

and hence aro per .. nentl7 aYaila~le unless the na.me■ are redeclnred 

locally ~y the user. 

I. STANDftP.D MATKEMATICAL FUNCTIONS 

s~~e of the functions are special cases in that the function 

type and the type of the formal parameters 111&7 depend on context. For 

example 'sq rt' exists in the following two forJM 

real fn spec sq rt(.!:!!! x) 

co~plex fn spec sq rt (complex z) (see Section 8) 

In the followinc lists we shall assume that n r epresent• a formal 

pa~ameter of type inte~er, x of type !,!!l, and z of type complex. 

The following functions may appenr in inteqer expressions 

int pt(x) int (x) parity (n) 

The following, tocether with (a), may appear in~ expressions 

sin(x) cos(x) tan(x) log(x) exp(x) sq rt(x) 

arc tan(x,y) (-r<9<•) radius (x,y) 

JllOd(z) rc(z) im(z) arg(z) 

frac pt(x,7) 

c) The following, together with (a) and (b), ~ay appear in complex 

A2.l 

expressions 

sin(z) cos(z) tan(z) log(z) 8'lCJ)(Z) sq rt(z) conj(z) 

~, STORAC.F. FU~CTIO~S 

intcr.:er fn SE'-'<" addr ((VAR)) 

inte!'ier fn s r cc intecer (intc&cr n) 

real fn spP.c ronl (inte~e~ n) 

coinplex fn ~2oc complex (inteqer n) 

The address recovory function ia a special case since the 

feml parameter type of the argument may bo integer naffle or real name. 

The functions inte~er (n), real (n), C01TJplex (n) give the 

contents of storage location n •• an integer,!.!!!,, or complex nWl~erJ 

in the lut case the two part• of the complex DWDlter are assumed to 

Nian and n + i:. 



31 INPUT/ OUTPUT ROUTINES (see Section 5) 

routine l'lpec l'lelect input (integer n) 

routine s pec read ((VARIABLE LIST]) 

routine s pec read symbol ~integer nAwie n) 

routin~ s pec read binary (integer nAme n) 

routine spec eelect output (inte~er n) 

rout ine spcc print (real x, inteGer m,n) 

routine f:rl:lc print fl (real x, intoger n) 

r outine cir<'c print symbol (intP.ger n) 

ro11tir" sr"c punch binary ( intci,er n) 

1•011tino :=:pnc !<ipace 

routine !1pN• sp'lco~ (int'!";er n) 

routin" snnr nrwlino 

rou!:in" r-pnc tab 

inteF,cr fn ~~nc next symbol 

r outine /'P'•"C :-kip symbol 

Th" al~Qvc roatincs aro the basic input/output routines, 

but it is anticipated that more comprehensive routines will be 

actdcd l'Jh<>rtly. 

:4• M.'\TR IX R0_~P."F.~ 

A2.2 

111c fol lowing b:\sic 111atrix routines are available. It 1• 

assumed thnt tho w~triccs are stored by rows in the conventional •anner. 

ro••t i1H~ sp,...c mat mult (~ sI,s2,s3, integer wi,n,1) 

1his forms nn m x n matrix in sI onwards, as the product of 

an m x l r~trix in s2 onwards and an l x n matrix in s3 onwards. 

routtnc s pcc mat div (~ sI,s2, intoger m,n) 

This replaces them x n 11\atrix A in sl onwards by the• x n 

~atrix WA, where Dis an m x m matrix stored in s2 omrards. B 1• 

destroyed by the routine. 

routine spec mat trans (~ sI,s2, integer a,n) 

This forms in sl onwards the transpose of then x • -trix 

stor~d in s2 onwards . 

real fn spcc det (~ aI, integer ■) 

This evaluates the determinant of the• x • .. triX •tored 

of fj 

~ 

Given 

where 

• steJ 

to the 

real r 

The re 

•almt • 

places 



5, INTEGRATION OF ORDINARY DIFFERENTIAL ESUA'l'IONS 

A perJMnont routine is a~aila~le for the integration of syatema 

of first order ordinary differential equations. 

routine s_p__e_£ int step(~ s, real na111e x, integer n,m, real h, routine f) 

Given the syst~m of equations 

yi' ~ fi(x,yI,y2, •••••• yn) i = 1,2, ••••• n 

where yi at xo is known, the routine evaluates yi at xO + li'!h by 

Ill steps of a Rungo-Kutta fourth-order integration process. On entry 

to the routine, yt at xO is stored ins onwards and xo in the 

real name x. On exit, yi at xO + mh are ins onwards and xo + Jllh in x. 

The routine requires an auxiliary routine to evaluate the derivatives. 

routine spcc f (~ sI,s2, ~ x) 

This must be written so that when it is entered with a 

valuo of x and values of yi in sl onwnrds, it evaluates the fi and 

places them in s2 onwards. 



APPEffDIX 3 NUMERICAL EQUIVALENTS OF BASIC AND COKPOUND snmoLS 

The nWllerical equivalents for use in conjunction with the 'read •,-,ol' 

and 'print symbol' routines are given in the taltle ovorleaf. 

the numerical equivalents of the basic •ymbol• i.e. •Ylftbol• comprising a 

s i ngle (upper or lower case) character. 

Up to three basic symbols may lte superiJDpOsed (by mean.a of the 

ltackspace facility) to form a compound symbol. 

e .g. 'l. is formed fro••_ / 

The n\ll'l\erical equivalent of a compound syaltol is ,.. ., 
a.2 + De2 + C 

where a , b,c are the numerical equivalents of the individual ayabola, ordered 

so t hnt a>~> c. Thus the numerical equivalent 1• independent of the 

order of punching the individual characters. 

If only two s ymbols are used, the formula 1• 

b.27 + C, ~ > C 

Thus t is equivalent to 86.2 + 28.2 + 15 
and> 1• equivalent to 86.2 + 21 

l 

C 

IG 

II 

12 

13 

14 
IS 

16 
17 

18 

19 
20 

2I 

22 

23 

24 
25 

a6 

21 

28 

29 
30 

3I 
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TABLE OF NUMERICAL EQUIVALENTS 

0 32 • 64 96 
l 33 A 65 space 91 • 
2 34 B 66 98 II 

3 35 C 67 99 C 

4 newline 36 D 68 100 d 

5 37 E 69 IOI a 

6 38 F 70 102 f 

T 3<) G TI 103 g 

8 ( 40 H 12 104 h 

9 ) 4l I 73 105 1 

IO , 42 J 14 106 j 

II ., 43 K 15 107 k 

I2 ? 44 L 76 stop 108 1 

13 " 45 JI 77 109 • 
14 • 46 N 78 IIO n 

15 I 41 0 19 III 0 

16 0 48 p 80 II2 p 

17 I 49 Q 81 [ II3 q 

18 2 50 R 82 ] 114 r 

19 3 51 s 83 115 s 

20 4 5.2 T 84 u6 t 

21 5 53 u 85 II7 u 

22 6 54 V 86 (underline)II8 V -
23 7 55 w 87 Ilg .. 
1.4 8 56 X 88 120 X 

25 9 57 y 89 121 y 

26 < 58 z go a: 122 z 

27 > 59 91 tJ 123 
28 a 6o 92 i 124 
29 + 61 93 125 

30 62 94 126 

3I • 63 95 127 



APPENDIX 4• LIST OF l10NITORED FAULTS 

COMPILING TIME FAULTS 

The following faults are inonitorod at compiling tiae. 

I. Faults due to [NAME]'s not havins ~een declared. 

NAME NOT SET 

SWITCH VECTOR NOT DECLARED 

2. Faults, found in arithn,etic instructions, which give special 

indications but which are most often caused by [NAME]'s not having 

Ileen declared at the current level. These special indications arise 

when similar [NAME]'s appear in the levels above. 

LHS NOO' A DRSTINATION 

ROUTINE NAf~ APPEARS IN EXPR 

CALL.<; FOR .ADDR OF EXPR 

CALLS FOR Annn OF FUNCTION 

CALLS FOR CONTROL NO OF NON-ROUTINE NAME 

SWITCH VECTOR APPEARS IN EXPR 

3. Arithmetic Faults 

COMPLF.X QUANTITY IN Ex.PR 

RRAL QUANTITY IN EXPR 

REAL CONSTANT IN EXPR 

WRONG NUMBER OF PARAMETERS 

NON-INTEGRAL EXPONENT 

i.e. a~ or integer [EXPR] 

i.e. in an integer [EXPR] 

'' 
This may bo due either to the 

wrong number ot parameters appearin1 

or to the omission of a multiplicatioD 

sign before a left bracket. 

4. ~aults found at tho end ot each ltlock or routine 

LABEL ••• NOT SET There is a reference to label ••• 

which hns not been set. 

NO LABELS SET 

TOO FEW ENDS 

TOO FEW REPEATS 

:.. Other faults 

Al' FAULT 

No labels to which rotorences are 

made have been set. 

begins (or routines) do not match 

ends -
czcles do not match repeats 

An actual uaramAtAr .,Anli:t i+ -•• 

KUN T 

the Pl 

laltell 

in the 

in the 

DIV OVl 

EXP OV1 

SQ RT C 

LOG OF 

TRIG ffl 



FP FAULT A formal parameter faultl it •ean• 

that the routine heading ia not 

consistent with the routine 

specification. 

NOT A ROUTINE NAME A ca ll sequence is written in which 

the [NAME] has not appeared in a 

routine specification or routine 

heading. 

LABEL SET TWICE 

SWITCH OUT OF RANGE 

NAME SET TWICE 

ARRAY OF MORE THAN 2 DIMENSIONS 

WRONG FORMAT IM CORRECTIONS 

NAME NOT VALID In [NAME]= st, the [NAME] must 

be local. 

INSTR OUT OF CONTEXT The format result= [EXPR] .. , only 

appear in function rout!nes. 

RUN TIME FAULTS 

I. The following faults are monitored at run time. NorJRally they cause 

the program to be terminated but it may be restarted by a sequence 

laltelled 

fault (n)l 

in the top level (label I). The relevant nulllber• appear 

in the ta~le below. 

DIV OVERFLOW 

EXP OVERFLOW 

SQ RT OP' -VE ARO 

LOO OF -VE ARO 

TRIG ffl LOST ACCURACY 

INV ffl OUT OF RANGE 

division by O or a 

non-standard number 

exponent overflow 

a trigonometrical 

function in which 

all accuracy has 

lteen lost. 

an inverse trig 

function e.g. arcsin 

when the argwnent ia 

fault (I) 

fault (I) 

fault ( 2 ) 

fault (2) 

fault (3) 

fault (4) 



INPUT ENJ)ED 

SPURIOUS CHARACTER 

IN DATA 

insufficient data so 

that a read indtruction 

effectively reads over 

the end of the data tape. 

~purious character (i.e. 

not a decimal digit, 

decimal point, sign or 

«) appears in data. 

fault (S) 

fault (S) 

2. Faults which indicate programming errors Jtut which always cause the 

program to terminate 

INPUT NOT DEFINED 

OUTPUT NOT DEFINED 

ALL TESTS FAIL 

SWITCH VARIABLE TOO HIGH 

SWITCH VARIABLE TOO LOW 

SWITCH VARIABLE NOT SET 

EXPONENT NEGATIVE 

EXPONENT HON-INTEGRAL 

i.e. all conditions in a test 

instruction fail. 

i.e. in an integer expression. 

3. Faults which indicate an error in the 1MCbine or compiler and should 

lte referred to the compiler staff. 

There are a n11mber of these such a• 

SV INSTRUCTION 

SV OPERA.ND 

ILLEGAL BLOCK 
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