S-algol Reference Manual

Ron Morrison

University of St. Andrews,
North Haugh,

Fife,

Scotland.

KY16 9SS

CS/79/1

Contents
Chapter
1. Preface
2. Syntax Specification

3. Types and Type Rules
3.1 Universe of Discourse
3.2 Type Rules

4. Literals

4.1 Integer Literals
4.2 Real Literals
4.3 Boolean Literals
4.4 String Literals
4.5 Pixel Literals
4.6 File Literal

4.7 pntr Literal

5. Primitive Expressions and Operators
5.1 Boolean Expressions
5.2 Comparison Operators
5.3 Arithmetic Expressions
5.4 Arithmetic Precedence Rules
5.5 String Expressions
5.6 Picture Expressions
5.7 Pixel Expressions
5.8 Precedence Table
5.9 Other Expressions

6. Declarations
6.1 Identifiers
6.2 Variables, Constants and Declaration of Data Objects
6.3 Sequences
6.4 Brackets
6.5 Scope Rules

7. Clauses
7.1 Assignment Clause
7.2 if Clause
7.3 case Clause
7.4 repeat ... while ... do ... Clause
7.5 for Clause
7.6 abort Clause

8. Procedures
8.1 Declarations and Calls
8.2 Forward Declarations

9. Aggregates
9.1 Vectors
9.1.1 Creation of Vectors
9.1.2 upb and Iwb
9.1.3 Indexing
9.1.4 Equality and Equivalence
9.2 Structures
9.2.1 Creation of Structures
9.2.2 Equality and Equivalence
9.2.3 Indexing
9.3 Images
9.3.1 Creation of Images
9.3.2 Indexing
9.3.3 Depth Selection
9.3.4 Equality and Equivalence

10. Input and Output
10.1Input
10.20utput
10.3i.w, s.w and r.w
10.4End of File

11. Standard Procedures and Identifiers
11.1Standard Procedures
11.2Standard Identifiers
11.3S-algol Prelude

12. References

Appendices
I S-algol Syntax
I S-algol Type Rules

I Program Layout

1. Preface

Programming language design is probably the most emotive subject in Computational
Science today. Nearly everyone uses a programming language and most people have
something to say about their design.

S-algol is presented as a member of a family of languages in the algol tradition that are
constrained by a design methodology. This design methodology is based on the belief that
most programming languages are too big and intellectually unmanageable. In addition it is
believed that these problems arise in part from the languages being too restrictive. The
number of rules to define a language increases when a general rule has additional rules
attached to constrain its use in certain cases. Ironically these additional rules usually make
the language less powerful. Power through simplicity, simplicity through generality is the
guiding tenet.

The design methodology is based on three semantic principles which can be attributed to
Strachey [9] and Landin [5] and later developed by Tennent [10] and Morrison [7]. These are

(@) The principle of data type completeness
(b) The principle of abstraction

(¢) The principle of correspondence

The principle of data type completeness states that the rules for using data types must be
complete with no gaps. This does not mean that all operators in the language need be defined
on all data types but rather that general rules have no exceptions. Examples of lack of
completeness can be seen in Pascal [12], for example, where only some data types are
allowed as members of sets. The Principle of Data Type Completeness is bound to lead to
simpler languages since it avoids the complexity of special cases.

Abstraction is a process of extracting the general structure to allow the inessential details to
be ignored. It is a facility well known to mathematicians and programmers since it is usually
the only tool they have to handle complexity. The principle of abstraction when applied to
language design is invoked by identifying the semantically meaningful syntactic categories in
the language and allowing abstractions over them. The most familiar form of abstraction is
the function which is an abstraction over expressions.

Finally, the principle of correspondence states that the rules for introducing and using names
should be the same everywhere in a program. In particular there should be a one to one
correspondence between introducing names in declarations and introducing names as
parameters.

Armed with the above rules the language may be designed as follows
Data Types

Decide which data types, both simple and compound, are required by the language and define
the operations on these data types. The flavour of the language will be determined by the data
objects it can manipulate. The principle of data type completeness is invoked to ensure that
all data objects have the same civil rights. Ignoring the principle means introducing rules to
handle exceptions thus making the language more complex. For example, if arrays are
allowed then arrays of arrays should be allowed as should expressions and functions with
array results.

The Store

Introduce the store, if any, and the manner in which it may be used. First of all the
relationship between the store and the data types should be defined. This includes the
implementation of pointers, data locations and protection on these locations. For example,
constants may be regarded as storage locations which may not be updated [4].

The introduction of the store forces consideration of the language control structures. The
designer can take his pick and is well advised to read the excellent paper by Ledgard and
Marcotty [6] on the subject.

Abstraction

Tennent [10] has suggested that the method of applying the principle of abstraction is to
identify the semantically meaningful syntactic categories and invent abstractions for each.
This he does for Pascal and proposes some extensions to complete the abstractions. However,
he points out that it is not always an easy matter to identify these categories in the first place.
Examples of abstractions are functions which are abstractions over expressions and
procedures which are abstractions over statements. An important point about abstractions is
that they may be parameterised.

Declaration and Parameters

Invent the declarations and the parametric objects together. There must be a one to one
correspondence between the two. This does not mean that they necessarily have the same
syntax but that for every type of declaration there is an equivalent parametric type. Parameter
passing modes are also included in this correspondence. For example, the declarative
equivalent of call by value is an initialising declaration. If functions, record classes etc can be
declared then they can be passed as parameters even though they are not defined as data
objects in the language. Finally, if the language has a facility to define new data types and
give them a name then the type can be passed as a parameter.

Input and Output

The I/0 models for most high level languages tend to reflect the environment in which they
were designed. Some attempts have been made to design and implement comprehensive 1/O
systems. Unfortunately where it has not been tied to particular hardware it has never been
very successful. Nowhere else in the design of a programming language does the hardware
intervene as much as it does in the I/O system. When a new I/O device becomes available the
language must be able to make use of it. Of course, this situation is hopeless and perhaps the
wisest approach to I/O is to allow the implementor to deal with it for a particular
environment, as the Algol 60 designers proposed.

Iterate

Re-evaluate the language and correct or justify any idiosyncrasies in the design. Hopefully
the design process will converge.

Concrete Syntax

The final stage of language design is to propose a concrete syntax. Ideally different groups of
workers could have a different syntax. However, there are many users who do not wish to
design their own syntax and so the language must provide at least one possibility.

It seems very obvious to say that the syntax should be simple and easy to learn. That may be
so but there is no doubt that some of the success of the language depends on the cosmetics.
Also, a carefully chosen syntax can ease the problem of compilation.

How often the rules can be broken is for the designer's own conscience. However, every time
the rules are broken the language becomes more complex. The rules were introduced to help
design simpler and more intellectually manageable languages and should only be ignored
with great care.

S-algol is the first of the family of algols to be produced under this design methodology. It
reflects my own personal preference for data objects and syntax. It also ignores the principle
of abstraction with regard to sequencers and declarations. However there are no exceptions to
the principle of correspondence or the principle of data type completeness in the language. I
see this as the strength of the language.

A number of people must be thanked for their help with the S-algol project. Firstly, Jack Cole
whose enthusiasm and encouragement were responsible for the development of the system.
Peter Bailey must be thanked for his help in testing the initial system on the PDP11 and in
proof reading the original manual, as well as his enormous willingness to help when
difficulties arose. Pete also wrote the VAX interpreter with Paul Maritz and the S-algol code
generators. Paul Maritz implemented S-algol on the Zilog Z80 and pointed out a discrepancy
in the application of the principle of correspondence to the language. Paul must also be
blamed for the old binder for separately compiled modules. Fred Brown implemented a fast
version of the Outline graphics for the Z80. Mike Livesey must be thanked for our
discussions of the semantic principles on which the language is based and David Turner, now
in Canterbury, with whom I started on language design deserves a special mention for his
contribution [11]. Tony Davie, Michael Weatherill, Hamish Gunn and Ian Sommerville also
may useful comments during the early design and implementation of S-algol. Tony also
made numerous comments for improving this reference manual.

In 1983, S-algol was used as a basis for PS-algol as part of the research in the PISA project.
Al Dearle wrote versions of the interpreter in C and altered the compiler to generate new
object code. It is on these versions that Dave Munro tailored the system to fit into the
Macintosh environment. For this he rewrote the compiler in C, adapted the interpreter and
surrounded it all with a Mac environment. To the language he added the raster graphics
facilities of PS-algol [8] built by Al & Fred [2]. In parallel with this Dave made an equivalent
system available on the SUN workstations. Al, Ray Carrick and Tony Davie have now
written an introductory text based on S-algol. I hope you enjoy reading it and using the
system.

Ron Morrison
18-9-88

2. Syntax Specification

It is important that a programming language can be formally defined since it gives
implementors a standard to work on. There are two levels of definition, syntactic and
semantic. A formal semantic description, a denotational semantics, of S-algol is given by
Adamson [1]. Here we will deal with the formal syntactic rules giving an informal semantic
description of the syntactic categories. That is, we will define the set of all syntactically legal
S-algol programs remembering that the meaning of any one of these programs is defined by
the semantics.

To define the syntax of a language we need another notation which we will call a meta
language and in this case we choose a variation of Backus-Naur form.

The syntax of S-algol is specified by a set of rules or productions as they are normally
called. Each production specifies the manner in which a particular syntactic category (e.g. a
clause) can be formed. The syntactic category name is enclosed in the meta symbols '<' and
>' thus distinguishing it from names or reserved words in the language. These syntactic
categories can be mixed in productions with terminal symbols which are actual symbols of
the language itself. Thus, by following the productions until we have only terminal symbols,
we can derive legal programs. We can also use the productions in a compiler to check that a
program is legal and a very efficient method of doing this, called Recursive Descent is
described by Davie & Morrison [3].

Other meta symbols include 'I' which allows a choice in a production. The square brackets '['
and 'l' are also used in pairs to denote an object is optional. When used with a '*' we have a
zero or many times repetition. You should not confuse the meta symbols 'I'\'<', '>', "*', and '[',
'l with the actual symbols in S-algol and we will be careful to keep the two concepts
completely separate in our description. In the syntactic description of S-algol these symbols
are defined by the following non-terminal symbols:

<bar> = |
<lab> 1= <
<rab> 1= >
<star> 1= %
<lsb> = [
<rsb> =]

As you may expect with any reasonable programming language, the productions for S-algol
are recursive which means that there are an infinite number of legal S-algol programs.
However the syntax of S-algol can be described in about 60 productions. We will break
ourselves in gently with an example.

<integer_literal> [<add_op>]<int_literal>

<int_literal>

<digit>[<digit>]*
<add_op> = +1-

<digit> 1121314151617181910

The above syntax indicates that an integer can be formed as an optional + or - followed by
one or many digits. The full context-free syntax of S-algol is given in Appendix L.

3. Types and Type Rules

The S-algol type system is based on the notion of types as sets of objects from the value
space. These sets may be built in, like integer, or they may be formed by using one of the
built in type constructors, like structure. The constructors obey the Principle of Data Type
Completeness. That is, where a type may be used in a constructor, any type is legal without
exception. This has two benefits. Firstly it allows a very rich type system to be described
using a small number of defining rules since all the rules are very general without exception
to them. This reduces the complexity of the defining rules. The second benefit is that the type
constructors are as powerful as they can be since there is no way to restrict their domain. This
increases the power of the language.

3.1 Universe of Discourse

There is an infinite number of data types in S-algol defined recursively by the following
rules.

1. The scalar data types are integer, real, boolean, string, picture, pixel and file.

2. #pixel is the type of an image made up of pixels arranged as a rectangular matrix.
3. For any data type T, *T is the data type of a vector with elements of type T.

4. The data type pntr comprises a structure with any number of fields, and any data

type in each field.

In addition to the above data types there is a number of other objects in S-algol to which it is
convenient to give a type in order that the compiler may check their use for consistency.

5. The type of a procedure with parameters Tj,..., T}, and result type Ty, is (Tq,..., Ty, -
>Tpy.

6. Clauses which yield no value are of type void.

7. The class of a structure with fields of type Ty,..., T}, is of type (Ty,...,Tj)-structure
and its fields are of type Tj-field.

The universe of discourse of the language is defined by the closure of rules 1 and 2 under the
recursive application of rules 3 and 4.

3.2 Type Rules

The type rules form a second set of rules to be used in conjunction with the context free
syntax to define well formed programs. The generic types that are required for the formal
definition of S-algol can be described by the following:

type arith is int | real

type ordered is arith | string

type writeable is ordered | bool

type literal is writeable | pixel | pntr | file
type image is #pixel | #cpixel

type nonvoid is literal | pic | image | vector
type vector is *ponvoid | *cnonvoid

type type is nonvoid | void

For example, in the above, the generic arith can be either an int or a real, representing the
types integer and real in the language. In the type rules, the language types and generic types
are written in shadow font to distinguish them from the reserved words.

To check that a syntactic category is correctly typed the context free syntax is used in
conjunction with a type rule. For example, the type rules for the two-armed if clause is

t : type, if <clause>: bool then <clause> : t else <clause>:t =>t

This rule may be interpreted as follows. t is given as a type from the table above. That is, it
can be any type including void. Following the comma, the type rule states that the reserved
word if may be followed by a clause which must be of type boolean. This is indicated by :
bool. The then and else alternatives must have clause of type t, whichever type it is. That is,
both alternatives must have the same type. The resultant type, indicated by =>, of this
production is also t, the same as the alternatives.

The type rules will be used throughout this manual, in conjunction with the context-free
syntax rules to describe the language. A complete set of type rules for S-algol is given in
Appendix II.

4. Literals

Literals are one of the basic building blocks of a program and allow values to be introduced.
A literal is defined by

<expb> = <literal>

<literal> ::= <integer_literal> | <real_literal>| <bool_literal> |
<string_literal> | <pixel_literal> | <pntr_literal> | <file_literal>

4.1 Integer Literals

These values of type int are defined by

<integer_literal> = [<add_op>]<int_literal>
<int_literal> n= <digit>[<digit>]*
<add_op> = +1-

<integer_literal> => int

An integer literal is one or more digits possibly preceeded by a sign.

eg. 1 0 -1256 8797

4.2 Real Literals

These are of type real and are defined by
<real_literal> = <integer_literal>.[<int_literal>][e< integer_literal >]
<real_literal> => real

Thus, there are a number of ways of writing a real literal. For example

1.2 3.1e2 5.e5
1. 3.4e-2 3.4e+4

3.1e-2 means 3.1 times 10 to the power -2 (i.e. 0.031)
4.3 Boolean Literals

There are only two literals of type bool. They are the symbols true and false. They may be
used with obvious meaning when a boolean literal is required.

<boolean_literal> = true | false
<boolean_literal> => bool
4.4 String Literals

A string literal is a sequence of characters in the character set (ASCII) enclosed by double
quotes. The syntax is

10

<string_literal>::= <double_quote>[<char>]*<double_quote>

<char> :>= any ascii character except ' or " | <special_character>
<special_character> ::= <single_quote><special_follow>

<special_follow> 2= nlploltlbl<single_quote>| <double_quote>

<string_literal>=> string
The empty string is denoted by "". Examples of string literals are

"This is a string literal"
"I am a string"

The programmer may wish to have a double quote itself inside a string literal. This requires
using a single quote as an escape character and so if a single or double quote is required

inside a string literal it must be preceded by a single quote. For example

narnn

a has a value a" and
"a"" has a value a'

There are a number of other special characters which may be used inside string literals. They

are

newline
newpage
carriage return
horizontal tab
backspace

o T o B

These characters are normally used in strings to represent special ASCII characters.
4.5 Pixel Literals
A pixel literal specifies the values in the planes of the pixel. It is defined by
<pixel_literal> = on[&<pixel_literal>] | off[&<pixel_literal>]
<pixel_literal> => pixel
For example
on off & on & off
4.6 File Literal
There is only one file literal. It is used to denote an inactive file.
<file_literal> = nullfile
nullfile => file
4.7 pntr Literal
There is only one pntr literal. It is used to denote an empty structure.

<pntr_literal> x= il

nil

=>

pntr

11

12

5. Primitive Expressions and Operators

The order of execution of an S-algol program is strictly from left to right and top to bottom.
This rule becomes important in understanding side-effects in the store.

5.1 Boolean Expressions
Objects of type bool in S-algol can have the value true or false. There are only two boolean

literals, true and false and three operators. There is one unary operator, ~, and two binary
operators, and and or. They are defined by the truth table below.

a b ~a aorb aandb
true false false true false
false true true true false
true true false true true
false false true false false

The precedence of the operators is important and is defined in descending order as

~

and
or

Thus
~aorbandc
is equivalent to
(~a)or(bandc)

This is reflected in the syntax rules which are

<expression> = <expl>[or<expl>]*

<expl> = <exp2>[and<exp2>]*

<exp2> = [~]<exp3>

<expression> : bool or <expression>: bool => bool
<expression> : bool and <expression>: bool => bool
[~]<expression> : bool => bool

The evaluation of a boolean expression in S-algol is non-strict. That is, in the left to right
evaluation of the expression, as soon as the result is found, no more computation is
performed on the expression. For example

true or <expression>
gives the value true without evaluating <expression> and

false and <expression>

gives the value false without evaluating <expression>.

13

5.2 Comparison Operators

Expressions of type boolean can also be formed by some other binary operators. For
example, a = b is either true or false and is therefore boolean in nature. The operators are

called the comparison operators and are

less than

less than or equal to (written <=)
greater than

greater than or equal to (written >=)
equal to

not equal to (written ~=)

is a pntr has the given class

isnt a pntr does not have the given class

vV V IAA

R S

The syntactic rules for these are

<exp2> [~]<exp3>[<rel_op><exp3>]
<rel_op> = <eq_op>| <compar_op> | <type_op>

t : nonvoid, <expression>: t <eq_op> <expression>: t => bool

where <eq_op>:i==1#

t : ordered,<expression>: t <compar_op> <expression>: t => bool

where <compar_op>::i=<I<|>|=>

<expression>: pntr <type_op><identifier> => bool
where <type_op>::=is | isnt

Note that the operators <, <, > and = are defined on integers, reals and strings whereas = and
are defined on all S-algol data types. Their interpretation for these data types is given with
each data type as it is introduced below. The operators is and isnt are for testing a structure

class.

5.3 Arithmetic Expressions

Arithmetic may be performed on data objects of type integer and real. The syntax of

arithmetic expressions is

<exp3> = <exp4>[<add_op><exp4>]*
<exp4> = <exp5>[<mult_op><expS5>]*
<exp5> = [<add_op>]<exp6>
<add_op> = +|-

<mult_op> w= <star>|/|div|rem

t : arith, <expression>: t <add_op> <expression>: t => t
t : arith, <add_op> <expression>: t => t

<expression>: int <int_mult_op> <expression>: int => int
<int_mult_op> ::= <star>| div | rem

<expression>: real <real_mult_op><expression>: real => real
<real_mult_op> ::= <star> 1|/

where

where

14

The operators mean

+ addition

- subtraction

* multiplication

/ real division

div integer division throwing away the remainder
rem remainder after integer division

In both div and rem the result is negative only if exactly one of the operands is negative.
Some examples of arithmetic expressions are
a+b 342 1.2+40.5 -2+a/20
The language provides automatic coercion from integer to real where necessary.
5.4 Arithmetic Precedence Rules

The order of evaluation of an expression in S-algol is from left to right and based on the
precedence table

* /[div rem
+ -

That is, the operations *, /, div, rem are always evaluated before the binary versions of + and
-. However, if the operators are of the same precedence then the expression is evaluated left
to right. For example

6 div 4 rem 2 gives the value 1

Brackets may be used to override the precedence of the operator or to clarify an expression.
<expb> = (<clause>)
t : nonvoid,(<clause>: t) =>t

For example
3%(2-1) yields 3 not 5

5.5 String Expressions

There is only one string operator ++ defined on strings. It concatenates the two operand
strings to form a new string. For example

"abc" ++ "def"
results in the string
"abcdef"
The syntax rule is

<exp4> n= <expS>[++<exp5>]*

15

<expression>: string ++ <expression>: string => string

A new string may be formed by selecting a substring of an existing string. For example, if s
is the string "abcdef" then s(3 | 2) is the string "cd". That is, a new string is formed by
selecting two elements from s starting at element 3. The syntax rule is

<expb> 1= <expression>[(<clause><bar><clause>)]

<expression>: string(<clause>: int <bar> <clause>: int) => string

For the purposes of substring selection the first character in a string is numbered 1. The
selection values are the start position and the length respectively.

The characters in a string are ordered according to the ASCII character code. Thus
Ilall < NZN

To compare two strings, the characters are compared in pairs, one from each string, from left
to right. Two strings are considered equal only if they have the same characters in the same
order and are of the same length. Otherwise they are not equal.

The null string is less than any other string. Thus the less-than relation can be resolved by
taking the characters pair by pair in the two strings until one is found to be less than the
other. This is the lexicographic order commonly used in dictionaries. The other relations can
be resolved by using '="and '<'.

5.6 Picture Expressions

The picture drawing facilities of S-algol allow the user to produce line drawings in two
dimensions. The system provides an infinite two dimensional real space. Altering the
relationship between different parts of the picture is performed by mathematical
transformations which means that pictures are usually built up of a number of sub-pictures.
The syntax of picture expressions is

<exp4> <expS5>[<pic_op><exp5>]*
<pic_op> n= A&

<expression>: pic <pic_op><expression>: pic => pic

<picture_constr> ::= shift<clause>by<clause>,<clause> |
scale<clause>by<clause>,<clause> |
rotate<clause>by<clause> |
colour<clause>in<clause> |
text<clause>from<clause>,<clause>to<clause>,<clause> |
<Isb><clause>,<clause><rsb>

shift<clause> : pic by<clause> : real,<clause> : real => pic
scale<clause> : pic by<clause> : real,<clause> : real => pic
rotate<clause> : pic by<clause> : real => pic

colour<clause> : pic in<clause> : pixel => pic

text<clause> : string from<clause> : real,<clause> : real

to<clause> : real,<clause>: real => pic
<lIsb><clause> : real,<clause> : real <rsb> => pic

In a line drawing system the simplest picture is a point. For example, the expression

16

[0.1,2.0]
defines the point 0.1,2.0.
Points in pictures are implicitly ordered. A binary operation on pictures operates between the
last point of the first picture and the first point of the second. The resulting picture has as its
first point, the first point of the first picture, and as its last, the last point of the second.
There are two infix picture operators. They are 'A', which joins one picture to another by a
straight line from the last point of the first picture to the first point of the second, and '&'
which includes one picture in another. The other transformations and operations on pictures
are
shift The new picture consists of the points obtained by adding the x and y shift
values and the x and y co-ordinates of the points in the old picture. The
ordering of the points is preserved.
scale The new picture consists of the points obtained by multiplying the x and y
scale values with the x and y co-ordinates of the points in the old picture,
respectively. The ordering of the points is preserved.
rotate The new picture consists of the points obtained by rotating the x and y co-
ordinates of the points in the old picture about the origin by the angle
indicated in degrees. The ordering of the points is preserved.

colour The new picture is the old one in a new colour.

text Form a picture consisting of the text string. The two co-ordinates represent
the start and end points of the string which will be scaled to fit.

5.7 Pixel Expressions

Pixels may be concatenated to produce another pixel of a greater depth using the operator '&'.
<exp4> n= <exp5>[&<exp5>]*
<expression>: pixel &<expression>: pixel => pixel

A pixel has depth representing the number of planes in the pixel. The planes are numbered
from O and new pixels can be formed from subpixels of others. The syntax is

<expb> = <expression>[(<clause><bar><clause>)]
<expression>: pixel (<clause>: int <bar><clause>: int) => pixel
For example

let b = on & off & off & on
b (112) is the pixel off & off

This last expression is interpreted as the pixel formed by starting at plane 1 in 'b' and
selecting 2 planes.

17
5.8 Precedence Table

The full precedence table for S-algol is now

/[* div rem A &

+ - 4+

= # < < > > is isnt
and

or

5.9 Other Expressions

All the S-algol operators have now been described but we have not exhausted all the ways of
writing down expressions. There are vector expressions, pntr expressions, vector and
structure indexing expressions, if and case expressions as well as block expressions and

the fact that literals, identifiers and procedure calls on their own constitute expressions. All of
these are dealt with elsewhere in this manual.

18

6. Declarations

Declarations are of four kinds defined by the following syntax:
<declaration> ::= <let_decl> | <structure_decl> | <proc_decl> | <forward>
<declaration> => void

Procedure, forward and structure declarations are dealt with in later chapters.

6.1 Identifiers

In S-algol an identifier may be given to a data object, a procedure parameter, a structure field
and a structure class. An identifier may be formed by the syntactic rule

<identifier> <id> | <standard_id>

<id> n= <letter>[<id_follow>]

<id_follow>

<letter>[<id_follow>] | <digit>[<id_follow>] | .[<id_follow>]

That is, an identifier consists of a letter followed by any number of dots, letters or digits. For
example

x1 ron look.for.record1 Ron

Note that case is significant in identifiers. The standard identifiers are those predefined for
the user. They are given in section 11.2.

6.2 Variables, Constants and Declaration of Data Objects

Before an identifier can be used in S-algol it must be declared. The action of declaring a data
object associates an identifier with a location of a certain type which can hold values that the
identifier may take. In S-algol the programmer may specify whether the value is constant or
variable. A constant may be manipulated in exactly the same manner as a variable except that

it may not be updated.

When introducing an identifier the programmer must indicate the identifier, the type of the
data object, whether it is variable or constant and its initial value. Variables are declared by

<let_decl> = let <identifier><init_op><clause>

let <identifier><init_op><clause>: nonvoid => void
For example

leta:=1
introduces an integer variable with initial value 1. Notice that the compiler deduces the type.
A constant is declared by

let <identifier> = <clause>

For example

19

let discrim=b*b-4.0*a*c

introduces a real constant with the calculated value. The compiler will detect and flag as an
error any attempt to assign to a constant.

6.3 Sequences
A sequence of clauses is made up of any mixture, in any order, of declarations and clauses.

The type of the sequence is the type of the last clause or declaration. If there is more than one
clause in a sequence then all but the last must be of type void.

<program> <sequence>?

<sequence> := <declaration>[;<sequence>] |
<clause>[;<sequence>]

<sequence> : void => void
t : type, <declaration>: void ;<sequence>: t =>t
t : type, <clause>: void ;<sequence>: t =>t

6.4 Brackets
Brackets are used to make a sequence of clauses and declarations into a single clause.

<expb> ::= begin[<sequence>]end |
{[<sequence>]}

begin end => void

{}=> void

t : type, begin[<sequence>: t Jend =>t
t : type, {[<sequence>:t]} =>t

The {} method is there to allow a clause to be written clearly on one line. For example

leti:=2
forj=1to5do {i:=i*1i;writei}

However, if the clause is longer than one line the first alternative should be used for greater
clarity. Nonvoid blocks are sometimes called block expressions.

6.5 Scope Rules

Any identifier that is declared has its scope limited to the following sequence. This means
that the scope of an identifier starts immediately after the declaration and continues up to the
next unmatched } or end. If the same identifier is declared in an inner sequence, then while
the inner identifier is in scope the outer one is not.

20
7. Clauses
The expression is a special type of clause which allows the operators in the language to be
used to produce data objects. There are other clauses in S-algol which allow the data objects
to be manipulated and some which are there to control the flow of the program.
7.1 Assignment Clause

The assignment clause has the following syntax.

<clause>::= <name>:=<clause>

t : nonvoid, <name>: t :=<clause>: t => void
For example

discriminant:=b*b-4.0*a* ¢
gives 'discriminant' the value of the expression on the right. Of course, the identifier must
have been declared as a variable and not a constant. The clause alters the value denoted by
the identifier.
7.2 if Clause

There are two forms of the if clause defined by

<clause>::= if<clause>do<clause> |
if<clause>then<clause>else<clause>

if <clause>: bool do <clause>: void => void
t: type, if <clause>: bool then <clause> : t else <clause>:t =>t

In the single pronged version, if the condition after the if is true then the clause after the do is
executed. For example

ifa<bdoa:=3

The second version allows a choice between two actions to be made. If the first clause is true
the second clause is executed, otherwise the third clause is executed. Notice that the second
and third clauses are of the same type and the result is of that type. For example

ifx=0theny:=1lelsex:=y-1
let temp =if a < b then 1 else 5

7.3 case Clause

The case clause is a generalisation of the if clause which allows the selection of one item
from a number of possible ones. The syntax is

<clause>::= case<clause>of<case_list>default :<clause>
<case_list> = <clause_list>:<clause>;[<case_list>]

t:type ; tl : nonvoid, case <clause>: t1 of <case_list>

default : <clause> : t =>t
<clause_list>:<clause> : t ; [<case_list>]
<clause>: t1 [,<clause_list>]

where <case_list>
where <clause_list> ::

21

An example of the use of the case clause is

case next.car.colour of

1.4 : "green"
2 : "blue"
default : "any"

The value 'next.car.colour' is compared in strict order, i.e left to right, top to bottom, with the
expressions on the left hand side of the colon. When a match is found the clause on the right
hand side is executed. Control is then transferred to the next clause after the case clause. If no
match is found then the default clause is executed. The above case clause has result type
string.

7.4 repeat ... while ... do Clause

There are three forms of this clause which allow loops to be set up with the test at the start,
the end or the middle of the loop. The three forms are encapsulated in the two productions.

<clause>::= repeat<clause>while<clause>[do<clause>] |
while<clause>do<clause>

repeat <clause>: void while <clause> : bool
[do <clause>: void] => void
while <clause> : bool do <clause>: void => void

In each of the three forms the loop is executed until the boolean clause is false. The while do
version is used to perform a loop zero or many times whereas the repeat while is used for
one or many times.

7.5 for Clause

The for clause is included in the language as a bit of syntactic sugar where it is known in
advance how many times the loop will be executed. It is defined by

<clause>::= for<identifier>=<clause>to<clause>[by<clause>]do<clause>

for <identifier>=<clause> : int to <clause>: int
[by<clause> : int Jdo<clause>: void => void

The clauses are the initial value, the limit, the increment and the clause to be repeated
respectively. The first three are of type int and are calculated only once at the start. If the
increment is 1 then the by clause may be omitted. The identifier or control constant is
declared at the start of the void clause taking on the values defined by initial value, increment
and limit. The scope of 'i' is the void clause. An example of the for clause is

let factorial := 1 ;letn =38
for i = 1 to n do factorial := factorial * i

With a positive increment, the for loop terminates when the control constant is initialised to a
value greater than the limit. With a negative increment, the for loop terminates when the
control constant is initialised to a value less than the limit.

22
7.6 abort Clause

The reserved word abort simply stops the program when used.

<clause>::= abort

abort => void

23

8. Procedures
8.1 Declarations and Calls

Procedures in S-algol constitute the abstractions over expressions, if they return a value, and
clauses of type void if they do not. In accordance with the principle of correspondence, any
method of introducing an identifier in a declaration has an equivalent form as a parameter.

Thus, in declarations of data objects, giving an identifier an initial value is equivalent to
assigning the actual parameter value to the formal parameter. Since this is the only type of
declaration for data objects in the language, it is also the only parameter passing mode and is
commonly known as call by value.

Like declarations, the formal parameters representing data objects must have an identifier, a
type and an indication of whether they are variable or constant. A procedure which returns a
value must also specify its return type. The scope of the formal parameters is from their
declaration to the end of the procedure clause. Procedures are defined with the following
syntax.

<proc_decl> procedure<identifier>[([<parameter_list>]

[<arrow><type_id>])] ; <clause>

<parameter_list>

<parameter>[;<parameter_list>]

<parameter> = <typel><identifier_list> |
<structure_decl> |
<proc_type><identifier_list>

<proc_type> = ([<ptype_list>][<arrow><type_id>])
<ptype_list> n= <typel>[,<ptype_list> |

<proc_type>[,<ptype_list>] |
<s_decl>[,<ptype_list>]

<s_decl> = structure(<typel>[,<typel>]*)
<typel> n= [c]<type_id>
<type_id> ::= int | real | bool | string | pixel | pic | pntr | file | <star><typel> |

#pixel | #cpixel
Thus we may declare the integer identity procedure, which we will call 'int.id' by
procedure int.id(int n ->int) ; n

The syntax of the procedure call is

<exp6>

<application>
<application> ::= <identifier>[([<clause_list>])]

There must be a one-to-one correspondence between the actual and formal parameters and
their types. Thus to call the integer identity procedure given above we could use

int.id (42)

24

which will evaluate to the integer 42. The type of 'int.id' is written (int -> int).

To complete the Principle of Correspondence for procedures, the parameters may be made
constant. Variable parameters may be assigned to but since they are local variables this only
has local effect. Constant parameters may not be assigned to. All parameters are passed by
value. For example, the parameter in 'int.id' is not assigned to and is more appropriately a
constant. Therefore the declaration should be

procedure int.id(cintn ->int) ; n

Note that the constancy of the parameter is not part of the type, a notion that is important
when deciding type equivalence.

8.2 forward Declarations

In S-algol all names must be declared before they can be used and a identifier comes into
scope immediately after its declaration. This is awkward when recursive procedure
definitions are involved. Therefore in the case of the procedure, the identifier comes into
scope after the parameter list has been specified allowing procedures to call themselves.

A forward declaration is required for mutually recursive procedures. Its syntax is
<forward> ::= forward<identifier><proc_type>

This is merely an aid to the compiler. However, there is one rule with forward declarations
that has nothing to do with the one pass nature of the compiler but with the decision to allow
clauses and declarations to be freely mixed. To avoid the possibility of an uninitialised
identifier being used by jumping over a declaration, a forward declaration and the actual
declaration may only be separated by structure class declarations and other procedure
declarations. In other words its use is restricted to mutual recursion situations.

25
9. Aggregates

S-algol allows the programmer to group together data objects into larger aggregate objects
which may then be treated as single objects. There are three such object types in S-algol :
vectors, structures and images. If the constituent objects are of the same type a vector is used
and a structure for non-homogeneous collections. Images are collections of pixels. Vectors,
structures and images have the full civil rights as any other data object in S-algol.

All aggregate data objects in S-algol have pointer semantics. That is, when a aggregate data
object is created, a pointer to the locations that make up the object is also created. The object
is always referred to by the pointer which may be passed around by assignment and tested for
equality. The location containing the pointer and the constituent parts of the aggregate data
object may be independently constant or variable.

<exp6> ::= <value_constructor>

<value_constructor> ::= <vector_constr> | <image_constr> |
<subimage_constr> | <picture_constr>

9.1 Vectors
9.1.1 Creation of Vectors
A vector provides a method of grouping together objects of the same type. Since S-algol does

not allow undefined values all the initial values of the elements must be specified. The syntax
is

<vector_constr> = vector<range>of<clause> |
@<clause>of<typel><Isb><clause_list><rsb>
<range> = <clause> :: <clause>[,<range>|

t : nonvoid, vector<range>of<clause>: t => *t

t : nonvoid, @<clause> : int of<typel><lsb><clause>: t
[,<clause>: t]* <rsb>=> *t

where <range>::= <clause> : int :: <clause> : int[,<range>]

For example
@1 ofint[1,2,34]

is a vector of integers, i.e *int, with lower bound 1 and values 1, 2, 3 and 4. The elements are
variable. Also

let abc := @1 of int[1,2,3,4]
introduces a variable 'abc' of type *int and that initial value.

Multi dimensional vectors, which are not necessarily rectangular, can also be created. For
example

let Pascal = @1 of c*cint[@1 of cint
@1 of cint
@1 of cint
@1 of cint
@1 of cint
@1 of cint

1],
1,11,
1,2,117,
1,3,3,11],
1,4,6,4,11,
1,5,10,10,5,1 1]

— o, —

26

'Pascal’ is of type c*c*cint. It is constant as are all its elements. This is a fixed table. The use
of the word cint indicates that the elements are to be constant.

The above form of vector expression is sometimes very tedious to write especially for large
rectangular vectors with a common initial value. Therefore another form of vector expression
is available. For example

vector -1 :: 3 of -2
produces a five element integer vector with all the elements variable and initialised to -2. The
lower bound of this vector is -1 and the upper bound is 3. The element initialising expression
is evaluated only once and assigned to each of the elements. The elements are variable.

9.1.2 upb and Iwb

Since vectors may be assigned, it is often necessary to interrogate the vector to find its
bounds. The reserved words upb and Iwb are provided in S-algol for this purpose.

<exp6>
<bounds_op>

<bounds_op>(<clause>)
Iwb | upb

<bounds_op>(<expression>: *nonvoid) => int
An example of the use of thes procedures is

let a = vector 1 :: 19 of -42

upb (a) yields 19
9.1.3 Indexing

To obtain the elements of a vector, indexing is used. For vectors the index is always an
integer value. The syntax is

<exp6> = <expression>(<dereference>)
<dereference> = <clause_list>

t : nonvoid,<clause>: *t (<clause>: int) => t

t : nonvoid,<clause>: *ct (<clause>: int) => t
For example

a(3+4)
Before indexing is performed, the bounds of the vectors are checked against the index.
9.1.4 Equality and Equivalence
Two vectors are equal if they are the same vector. That is the same pointer. Two vectors are
type equivalent if they have the same dimensionality and equivalent base types. Notice that
the bounds are not part of the type. In order to ensure that constancy can always be checked

statically objects of type *T and *cT are not assignment compatible. That is, they may not be
assigned to the other or substituted for the other in parameterisation.

27
9.2 Structures
9.2.1 Creation of Structures
Objects of different types can be grouped together into a structure. The fields of a structure
have identifiers that are unique within the current scope. The structures are sets of labelled
cross products from the value space.

Structures may be created from a declaration. The syntax of structure class declarations is

<structure_decl >
<field_list>

structure<identifier>[([<field_list>])]
<typel><identifier_list>[;<field_list>]

For example, we may declare such a type by
structure person(cstring name ; bool sex ; int age, height)

This declares a structure class, 'person', with four fields of type string, bool, int and int

1

respectively. The string field is constant. It also declares the field identifiers, 'name’, 'sex’,
'age' and 'height'.

To create a structure from a declaration we use the class identifier as a constructor, followed
by the initialising values for the fields. The syntax is

<structure_creation> ::= <identifier>[([<clause_list>])]
For example

let ron = person("Ronald Morrison", true, 42, 175)
creates the appropriate structure. The initialising values must be in one-one correspondence
with the structure type declaration. Each dynamic use of a class identifier with fields creates
a pointer to a new instance of the structure class.

9.2.2 Equality and equivalence

Two structures are equal if they have the same pointer. All pointers to structures belong to
the universal union pntr.

9.2.3 Indexing
To obtain the field of a structure, the field identifier is used as an index. For example
ron (age)

yields 42 from the above. For the indexing operation to be legal the structures must contain a
field with that identifier.

A comma notation may be used for vectors or structures when the elements or fields are
themselves pointers or vectors. The indexing of vectors and structures may therefore be
freely mixed. For example, if 'v' is a vector of vectors of persons then 'v(i)(j)(name)' and
'v(i,j,name)' and 'v(i,j)(name)' would be equivalent expressions.

9.3 Images

9.3.1 Creation of Images

28

An image is a rectangular grid of pixels. Images may be created and manipulated using the
raster operations provided in the language. The creation of images is defined by

<image_constr> = image<clause>by<clause>of<clause>

<subimage_constr> = limit<clause>[to<clause>by<clause>]
[at<clause>,<clause>]

image<clause> : int by<clause> : int of<clause> : pixel =>#pixel
t : image limit<clause>: t [to<clause>: int by<clause> : int]
[at<clause>: int ,<clause>: int] =>t

The integer values above must be > 0 and are subjected to an upper bound check. An image
is a 3 dimensional object made up of a rectangular grid of pixels. To form an image we could
write

let c = image 5 by 10 of on

which creates 'c' with 5 pixels in the X direction and 10 in the Y direction all initially on. The
origin of all images is 0,0 and in this case the depth is 1.

Full three dimensional images may be formed by, for example
let d =image 64 by 32 of on & off & on & on

Images are first class data objects and may be assigned, passed as parameters or returned as
results. For example

letb:=a
will assign the image 'a' to the new one 'b'. In order to map the operations usual on bitmapped
screens, the assignment does not make a new copy of 'a' but merely copies the pointer to it.

Thus the image acts like a vector or pointer on assignment.

There are 8 raster operations which may be used as described in the following syntax.

<clause>::= <raster>
<raster> ::= <raster_op><clause>onto<clause>
<raster_op> := ror | rand | xor | copy | nand | nor | not | xnor

<raster_op><clause>: image onto<clause>: #pixel => void
thus
xor b onto a

performs a raster operation of 'b' onto 'a' using xor. Notice that 'a' is altered 'in situ' and 'b' is
unchanged. Both images have origin 0,0 and automatic clipping at the extremities of the
destination image is performed.

The raster operations are performed by considering the images as bitmaps and altering each
bit in the destination image according to the source bit and the operation. The operations

mean

ror inclusive or
rand and

29

xor exclusive or
copy overwrite

nand not and

nor not inclusive or
not not the source
xnor not exclusive or

9.3.2 Indexing
The limit operation allows the user to set up windows in images. For example
let c =limit a to 1 by 5 at 3,2

sets 'c' to be that part of 'a' which starts at 3,2 and has size 1 by 5. 'c¢' has an origin of 0,0 in
itself and is therefore a window on 'a'.

Rastering sections of images on to sections of other images can be performed by, for example

xor limit a to 1 by 4 at 6,5 onto
limit b to 3 by 4 at 9,10

Automatic clipping on the edges of the limited region is performed. If the starting point of the
limited region is omitted 0,0 is used and if the size of the region omitted then it is taken as the
maximum possible. That is, from the starting point to the edges of the host image. Limited
regions of limited regions may also be defined.

If the source and destination images overlap, then the raster operation is performed in such a
manner that each bit is used as a source before it is used as a destination.

The standard identifier 'screen' is an image representing the output screen. Performing a
raster operation onto the image 'screen' alters what may be seen by the user. The standard
identifier 'cursor' is an image representing the cursor. The cursor may be altered in the same
manner as any image.

9.3.3 Depth Selection

In systems that support multiple planes the standard identifiers 'screen' and 'cursor' will have
a depth greater than 1. All the operations that we have already seen on images(raster, limit
and assignment) work more generally with depth. Thus the raster operations perform the
raster plane by plane in one to one correspondence between source and destination.
Automatic depth clipping at the destination is performed and if the source is too small to fill
all the destination's planes then these planes will remain unaltered. The limit and assignment
operations also work with the depth of the image.

The depth of the image may be restricted by the depth selection operation. For example

letb=a(112)

yields 'b' which is an alias for that part of 'a'’ which has the two depth planes 1 and 2. 'b' has
depth origin 0 and dimensions 64 by 32.

The full syntax of the depth selection operation is

<expb> = <expression>[(<clause><bar><clause>)]

t : image,<expression>: t (<clause>: int <bar><clause>: int) =>t

30

9.3.4 Equality and Equivalence

Two images are equal if they have the same pointer. All images have equivalent types. In
order to ensure that constancy can always be checked statically objects of type #pixel and
#cpixel are not assignment compatible. That is, they may not be assigned to the other or
substituted for the other in parameterisation.

31
10. Input and Output

The S-algol I/O system operates on files. A file is a collection of data. Two files, standard
input and standard output which have the reserved identifiers s.i and s.o respectively, are of
special interest. They represent in any implementation the standard input and output devices.
In the language s.i and s.o are variables of type file. Other files may be created but this is
implementation dependent.

10.1 Input

The read functions regard the file as a series of ascii characters. The functions mean

read read the next character in the file.

readi skip tab, space and newline characters and read an integer literal.
readr skip tab, space and newline characters and read a real literal.
readb skip tab, space and newline characters and read a boolean literal.
reads skip tab, space and newline characters and read a string literal.
peek look at the next character and return it without reading it.

read.a.line read from the current position up to a newline symbol. Give the result

read.byte read one 8 bit byte as an integer.
read.16 read 16 bits to form an integer
read.32 read 32 bits to form an integer
eof test for end of file.

Of these functions read, reads, peek and read.a.line are of type string, readi, read.byte,
read.16 and read.32 of type int, readr of type real and readb and eof of type bool.

The characters in the file are read until the literal of the required type is formed.
The file clause in brackets may be omitted if the standard input is used. Foe example
let a = readr

'a’' is now a constant of type real with the value of the real literal just read from the standard
input. In the input stream, spaces, tabs and newlines before numbers are elided.

let c =reads (s.i)
reads a string literal, also from the standard input, and initialises the constant 'c' to that value.
The read functions perform their activity on files of ascii characters. It is sometimes useful to
read 8,16 or 32 bits from a file rather than an ascii character. The procedures read.byte,

read.16 and read.32 are provided for this. For example

let q = read.byte (in)

32

will read an 8 bit byte from the file 'in' and form it into an integer.
let q = read.16(in)

will read 16 bits from the file 'in' and form them into an integer. The significance of the
individual bits is determined by the computer's architecture.

let g =read.32(in)

will read 32 bits from the file 'in' and form them into an integer. The significance of the
individual bits is determined by the computer's architecture.

10.2 Output

Output to files may be performed in S-algol by the following syntax:

<clause> <write_clause>

<write_clause> ::= write<write _list> |
output <clause>,<write_list> |
out.byte<clause>,<clause>,<clause> |
out.16<clause>,<clause>,<clause> |
out.32<clause>,<clause>

<write_list> = <clause>[:<clause>][,<write_list>]

<write_clause>=> void
where<write_list>::= <clause>:writeable [:<clause>: int][,<write_list>]

output<clause>: file,<write_list>=> void
where<write_list>::= <clause>:writeable [:<clause>: int][,<write_list>]

out.byte<clause> : file,<clause>: int,<clause>: int => void
out.16<clause> : file,<clause>: int,<clause>: int => void
out.32<clause> : file,<clause>: int => void

write allows output to the standard output, s.0, only whereas output takes a file descriptor as
the first data object. For example

write "I am O.K.",32160,3.4e-2,"Done"
will write that list of objects to the standard output and
write 13.2:16,3:10,152:3

will write 13.2, 3 and 152 to the standard output right justified in fields of width 16, 10 and 3
respectively.

Note that the field size may be any integer expression, allowing variable formats. If the field
size is missing when writing out reals or integers then 'r.w' and 'i.w' respectively are used as

33

the field sizes. If the object cannot fit into the field size then the object is written out in its
exact size.

The operations out.byte, out.16 and out.32 are the reverse of read.byte, read.16 and read.32
respectively. For example

out.byte out.file,a,0

will write the zeroth (least significant) byte of 'a' to the file out.file.
out.16 out.file,a,0

will write the zeroth (least significant) 16 bits of 'a' to the file out.file.
out.32 out.file,a

will write the 32 bits of 'a' to the file out.file.

10.3 i.w,s.w and r.w

Types int and real have one other facility. The predefined integer variables

iw integer width initially 12
S.W space width initially 2
r.w real width initially 14

may be used to control output. s.w spaces are written out after any integer or real. i.w and r.w
are used to set the field sizes for integers and real respectively, but may be overridden by the
field size in the write clause. If the number fits neither then the exact size is written.

10.4 End of File

A test for end of file can be made using the reserved word eof. For example

while ~eof do write read

copies the input stream to the output stream until the end of the input stream is reached.

34

11. Standard Procedures and Identifiers
11.1 Standard Procedures

procedure sqrt(creal x ->real)
! the non-negative square root of x where x = 0.

procedure exp(creal x -> real)
!'e to the power x.

procedure In(creal x ->real)
! the logarithm of x to the base e where x >0.

procedure sin(creal x ->real)
! sine of x(radians).

procedure cos(creal x ->real)
! cosine of x(radians).

procedure atan(creal x ->real)
! arctangent (radians) of x where -t/ 2 < atan(x) < /2.

procedure code(cint n -> string)
! string of length 1 where s(111) = character with numeric code abs(n rem 128).

procedure decode(cstring s ->int)
! numeric code for s(111).

procedure truncate(creal x ->int)
!'the integerisuchthatlil<IxI<lil+ 1 wherei * x =0.

procedure rabs(creal x ->real)
! the absolute value of real number x.

procedure abs(cint n -> int)
! the absolute value of integer n.

procedure length(cstring s ->int)
! the number of characters in the string s.

procedure eformat(creal n ; cint w,d -> string)
! the string representing n with w digits before the decimal point and d digits after
! with an exponent.

procedure fformat(creal n ; cint w,d -> string)
! the string representing n with w digits before the decimal point and d digits after.

procedure gformat(creal n -> string)
! the string representing n in eformat or fformat whichever is suitable.

procedure letter(cstring s -> bool)
!'length(s) =1 and
!'s>"A"ands<"Z"ors>"a"and s <"z".

procedure digit(cstring s -> bool)
!'length(s) =1 and
!'s>"0"and s < "9".

35

procedure iformat(cint n -> string)
! integer n as a string of characters.

procedure shift.I(cint value,count -> int)
! shift the first parameter left 'count’ places bringing in zeros at the low order end and
! dropping digits at the left.

procedure shift.r(cint value,count ->int)
! shift the first parameter right 'count' places bringing in zeros at the high order end and
! dropping digits on the right.

procedure b.and(cint valuel,value2 -> int)
! logical (bitwise) 'and' of valuel and value?2.

procedure b.or(cint valuel,value2 -> int)
! logical (bitwise) 'or' of valuel and value2.

procedure b.not(cint value -> int)
! logical (bitwise) 'not' of value.

procedure b.xor(cint valuel,value2 -> int)
! logical (bitwise) 'exclusive or' of valuel and value2.

procedure fiddle.r(creal n -> *int)
! split a real into a vector of two integers.

procedure find.substr(cstring target,substring ->int)
! return the starting position of string 'substring' in 'target', zero otherwise.

procedure random(cint x ->int)
! takes the non-zero seed 'x' and produces a non-zero random number between -maxint - 1 !
and maxint.

procedure open(cstring name ; int access.mode -> file)
! Open the existing file named. Access mode is '0' for read only, '1' is write only,
!'2"is reading and writing. Return the file descriptor.

procedure create(cstring name -> file)
! create the named file and return the file descriptor.

procedure close(cfile f)
! close the file f.

procedure flush(cfile f)
! Clear out the internal buffer for file f. This should be done before closing the file
! after writing.

procedure seek(cfile f; cint offset.key)

! This moves the current position in file f 'offset' bytes through the file with 'key'
! interpreted as:-

1'0" - move to offset bytes from start of file.

!I'l' - move offset bytes from current position.

!'2" - move back offset bytes from end of file.

procedure trace
! Print a snapshot of the current procedure calls.

36

procedure date(-> string)
! gives the date and time in a format determined by the implementation.

procedure time(->int)
! returns the number of clock ticks (1/60 second) passed since a reference time t = 0.

procedure draw(c#pixel i ; cpic p ; creal x1,x2,y1,y2)
! draw the picture p on the image i.
! the picture is bounded by x1,x2,y1,y2 in its coordinate space.

procedure X.dim(c#pixel i ->int)
! return the x dimension of image i.

procedure Y.dim(c#pixel i -> int)
! return the y dimension of image i.

procedure locator(-> pntr)
! returns a structure containing information about the status of the mouse.
! the structure returned is a mouse(defined below).

procedure cursor.tip(cpntr the.tip -> pntr)
! make the effective tip of the cursor 'the.tip' return old tip
! both pointers are pointers to point.strc(cint point.x,point.y)

procedure cursor.on
! make the cursor track the mouse (the default state).

procedure cursor.off
! make the cursor invisible.

procedure Pixel(c#pixel i ; cint xpos,ypos -> pixel)
! return the pixel at xpos,ypos in i.

procedure constant.image(c#pixel i -> #cpixel)
! return a copy of image i with constant pixels.

procedure variable.image(c#cpixel i -> #pixel)
! return a copy of image i with variable pixels.

procedure fill(c#pixel i ; cpixel col ; cint xpos,ypos)
! seed fill image i from position xpos,ypos with the pixel col.

procedure make.menu(c#pixel title ; c*c#pixel entries ; cbool vertical -> pntr)
! Returns a 'menu’ structure to pass to call.menu. 'vertical' indicates the menu orientation.
! The menu has a 'title' and a vector of icons called 'entries'

procedure call. menu(cpntr a.menu ; cint xpos,ypos ->int)

! Causes a menu to appear with its bottom left hand corner at position xpos,ypos relative to
!''screen'. The integer returned indicates if the user made a selection. If not then the integer
! is one more than the upper bound of the vector of icons.

procedure depth(c#pixel i -> int)
! return the number of planes in image i.

procedure colour.map(cpixel p ; cint i)
! when pixel p is displayed the integer i will be sent to the display hardware.

37

procedure colour.of(cpixel p ->int)
! return the integer sent to the hardware when pixel p is displayed.

procedure string.to.tile(cstring the.string,font ; cint font.size -> #pixel)
! returns an image which contains 'the.string' in the 'font' in the 'font.size'.
! Any font.size may be specified - scaling is automatically performed.

! Any installed Mac font can be named.

procedure line.end(c#pixel i ; pixel p ; cint x,y,direct -> int)

! searches for the first pixel of colour p from position x,y in image i
! direct specifies the search direction

! odd numbers do not look at boundary pixels

10,1 - left; 2,3 - right ; 4,5 - down ; 6,7 - up

! return the position of the pixel or 1 past the position last searched

procedure line(c#pixel i ; cint x1,y1,x2,y2,style)
! draws a line from x1,y1 to x2,y2 on image i

! style may be O - draw: set pixels to on ; 1 - erase: set pixels to off ; 2 - xor: invert pixels.

procedure clear.output
! Delete all text from the output window and clear graphics from the output window.

procedure plane.of(c#pixel i ; cint p -> *int)
! returns the p'th plane of image i.

procedure pixel.depth(cpixel p ->int)
! returns the number of planes in pixel p.

procedure input.pending(-> bool)
! returns true if a read or peek would complete immediately.

procedure interrupt(-> bool)
! returns true if an interrupt (control-\ on the Mac) has been received since the last call of

! this procedure or the start of the program.

procedure interrupt.on
! Enable interrupts (control-\ on the Mac) to be trapped.

procedure interrupt.off
! Disable interrupts (control-\ on the Mac) being trapped.

11.2 Standard Identifiers

A number of standard identifiers exist in the language. They are

r.w variable initially 14

S.W variable initially 2

iw variable initially 12

S.i variable set to the standard input

S.0 variable set to the standard output

maxint constant, the maximum integer

epsilon constant, the largest real e such that 1.0 +e =1.0
pi constant, 7

maxreal constant, the largest real

screen constant, #pixel representing the screen

cursor constant, #pixel representing the cursor

38

Note that the minimum integer value is -maxint - 1 and the minimum real value is -maxreal.
11.3 S-algol Prelude

structure mouse(cint X.pos,Y.pos ; cbool selected ; ¢*cbool the.buttons)
! This is the structure returned by the locator standard procedure.

structure point.strc(cint point.x,point.y)
! This is the structure returned by the cursor.tip standard procedure.

structure trnsfrm.strc(cint trnsfrm ; cpntr mrtre ; creal trnsfrm.x,trnsfrm.y)
! The following 5 are used internally by the draw procedure.

structure culr.strc(cpntr nxtre ; cpixel shade)

structure oprtn.strc(cpntr Ift,rght ; cint opoo)

structure scrbl.strc(cstring msge ; creal xxLyyl,xxr,yyr)

structure poin.strc(creal pnx,pny)

structure menu(c#pixel menu.image ; c*cint menu.dimensions.vector ; cbool vertical)
! This is the structure returned by the make.menu standard procedure and used by

! call.menu.

let Outline.error = "'n***** S-algol Run-Time Error *****'n'n"

let charry = @1 of *c*cint[frst,scnd]
let nilpic = text "" from 0,0 to 0,1

12.

639.

10.

11.

12.

39

References

Adamson, I.A.T.
"The denotational semantics of S-algol". M.Sc. Thesis University of St Andrews.

Brown, A.L. & Dearle, A.
"Implementation Issues in Persistent Graphics". University Computing 8,2

Davie, A.J.T. & Morrison, R.
"Recursive Descent Compiling". Ellis-Horwood Press. (1981)

Gunn, H.I.LE. & Morrison, R.
"On the implementation of constants". Information Processing Letters 9,1 (July

Landin, P.J.
"The next 700 programming languages". Comm.ACM 9, 3 (1966), 157-164.

Ledgard, H.F. & Marcotty, M.
"A genealogy of control structures". Comm.ACM 18,11 (November 1975),629-

Morrison, R.
"On the Development of Algol". PhD Thesis, University of St Andrews, (1979).

Morrison, R., Brown, A.L., Dearle, A. & Atkinson, M.P.
"An integrated graphics programming environment". 4th UK Eurographics

Strachey, C.
"Fundamental Concepts in Programming Languages". Oxford University, 1967.

Tennent, R.D.
"Language design methods based on semantic principles". Acta Informatica 8

Turner D.A. & Morrison R.
"Towards portable compilers". University of St. Andrews TR/76/5 (1975).

Wirth, N.
"The programming language Pascal". Acta Informatica 1 (1971),35-63.

(1982).

(Summer 1986)

1979),1-4.

Conference, Gl:

(1977),97-112.

Appendix I

Context Free Syntax

Sessiomn:
<program>

<sequence>

Declarations:
<declaration>
<let_decl>

<init_op>

<structure_ decl >

<field_list>

<proc_decl>

<parameter_list>

<parameter>

<proc_type>

<ptype_list>

<s_decl>
<forward>
<typel>
<type_id>

<star><typel> |

<identifier_list>

40

<sequence>?

<declaration>[;<sequence>] |
<clause>[;<sequence>]

<let_decl> | <structure_decl> | <proc_decl> | <forward>

let <identifier><init_op><clause>
=|:=

structure<identifier>[([<field_list>])]
<typel><identifier_list>[;<field_list>]

procedure<identifier>[([<parameter_list>]
[<arrow><type_id>])] ; <clause>

<parameter>[;<parameter_list>]
<typel><identifier_list> |
<structure_decl> |
<proc_type><identifier_list>
([<ptype_list>][<arrow><type_id>])
<typel>[,<ptype_list> |
<proc_type>[,<ptype_list>] |
<s_decl>[,<ptype_list>]
structure(<typel>[,<typel>]*)
forward<identifier><proc_type>
[cl<type_id>

::= intlreal | bool | string | pixel | pic | pntr | file |

#pixel | #cpixel

<identifier>[,<identifier_list>]

41

Clauses:

<clause> .= if<clause>do<clause> |
if<clause>then<clause>else<clause> |
repeat<clause>while<clause>[do<clause>] |

while<clause>do<clause> |

for<identifier>=<clause>to<clause>[by<clause>]do<clause>l
case<clause>of<case_list>default :<clause> |
<name>:=<clause> |

<write_clause> |

<raster> |

abort |

<expression>
<case_list> .= <clause_list>:<clause>;[<case_list>]
<write_clause> ::= write<write_list> |

output <clause>,<write_list> |
out.byte<clause>,<clause>,<clause> |
out.16<clause>,<clause>,<clause> |
out.32<clause>,<clause>

<write_list> = <clause>[:<clause>][,<write_list>]
<raster> ::= <raster_op><clause>onto<clause>
<raster_op> ::= ror | rand | xor | copy | nand | nor | not | xnor

<clause_list> = <clause>[,<clause_list>]

Expressions:
<expression>
<expl>
<exp2>
<exp3>
<exp4>
<exp5>

<exp6>

<dereference>

<application>

<structure_creation> ::

<name>

<bounds_op>

42

<expl>[or<expl>]*
<exp2>[and<exp2>]*
[~]<exp3>[<rel_op><exp3>]
<exp4>[<add_op><exp4>]*
<exp5>[<mult_op><exp5>]*
[<add_op>]<exp6>
<standard_exp> |

<literal> |
<value_constructor> |
(<clause>) |
begin|[<sequence>]end |
{[<sequence>]} |
<expression>(<clause><bar><clause>) |
<expression>(<dereference>) |
<application> |
<structure_creation> |
<name> |
<bounds_op>(<clause>)

= <clause_list>
<identifier>[([<clause_list>])]
<identifier>[([<clause_list>])]
<identifier> |
<expression>(<clause_list>)[(<clause_list>)]*

upb | lwb

43

Value constructors:
<value_constructor> ::= <vector_constr> | <image_constr> |
<subimage_constr> | <picture_constr>
<vector_constr> ::= vector<range>of<clause> |
@ <clause>of<typel ><Isb><clause>[,<clause>]*<rsb>
<range> :i= <clause>::<clause>[,<range>|
<image_constr> ::= image<clause>by<clause>of<clause>

<subimage_constr> =
limit<clause>[to<clause>by<clause>][at<clause>,<clause>]

<picture_constr> ::= shift<clause>by<clause>,<clause> |
scale<clause>by<clause>,<clause> |
rotate<clause>by<clause> |

colour<clause>in<clause> |

text<clause>from<clause>,<clause>to<clause>,<clause> |

<Isb><clause>,<clause><rsb>

Literals:

<literal>

<integer_literal>
<int_literal>
<real_literal>
<boolean_literal>
<string_literal>
<char>
<special_character>
<special_follow>
<pixel_literal>
<pntr_literal>

<file_literal>

44

<integer_literal> | <real_literal>| <boolean_literal> |
<string_literal> | <pixel_literal> | <pntr_literal> |
<file_literal>

[<add_op>]<int_literal>

<digit>[<digit>]*

<integer _literal>.[<int _literal>][e<integer_literal>]
true | false
<double_quote>[<char>]*<double_quote>

any ascii character except " and ' | <special_character>
<single_quote><special_follow>
nlploltlbl<single quote>| <double_quote>

= on[&<pixel_literal>] | off[&<pixel_literal>]
nil

nullfile

45

Miscellaneous and microsyntax:

<lab>
<rab>
<Isb>
<rsb>
<star>
<bar>
<add_op>

<mult_op>
<pixel_op>

<int_mult_op>
<real_mult_op>
<pic_op>
<pixel_op>
<rel_op>
<eq_op>
<compar_op>
<type_op>
<arrow>
<double_quote>
<single_quote>
<identifier>
<id>

<id_follow>
.[<id_follow>]

<letter>

<digit>

<

>

+1-

<int_mult_op> | <real_mult_op> | ++ | <pic_op> |

<star> | div | rem

<star> 1|/

AM&

&

<eq_op> | <compar_op> | <type_op>
=l

I<l=<l>I=]|

is | isnt

->

n

<id> | <standard_id>
<letter>[<id_follow>]

<letter>[<id_follow>] | <digit>[<id_follow>] |

alblcldlelflglhliljlkllIml
nlolplglrisitiulviwlxlylzl
AIBICIDIEIFIGIHITIJIKILIMI
NIOIPIQIRISITIUIVIWIXIYIZ

0111213141516171819

<standard_exp>
<standard_name>

read.byte

<standard_id>

46

<standard_name>[(<clause>)]

upb | lwb | eof | read.a.line
read | readi | readr | readb | peek | reads | read.name |

read.16 | read.32

= r.wliwls.wls.ols.ilmaxint | maxreal |
epsilon | pi | cursor | screen

47

Appendix 11

Type Rules

type arith is intlreal

type orderedis arith | string

type writeable is ordered | bool

type literal is writeable | pixel | pntr | file
type image is #pixel | #cpixel

type nonvoid is literal | pic limage | vector
type vector is *ponvoid | *cnonvoid

type type is nonvoid | void
Program :

<sequence>: void ? => void
t : type, <declaration>: void ; <sequence>:t =>t

t : type, <clause>: void ; <sequence>:t => t

Declarations :

<declaration> => void
where <let_decl> ::= let<init_op><clause>: nonvoid

48

Clauses :

if <clause>: bool do <clause>: void => void

t : type, if <clause>: bool then <clause>: t else <clause>:t =>t

repeat <clause> : void while <clause>: bool [do <clause>: void] => void
while <clause>: bool do <clause>: void => void

for <identifier>=<clause> : int to <clause>: int
[by<clause> : int Jdo<clause>: void => void

t:type ; tl : nonvoid, case <clause>: tl of <case_list>

default : <clause>:t =>t
where <case_list> = <clause_list>:<clause>: t ; [<case_list>]
where <clause_list> ::= <clause>: t1 [,<clause_list>]

t : nonvoid, name : t :=<clause>: t => void
<write_clause> => void
where <write_list> ::= <clause>: writeable [:<clause>: int][,<write_list>]

output<clause>: file,<write_list>=> void
where <write_list> ::= <clause>: writeable [:<clause>: int][,<write_list>]

out.byte<clause> : file,<clause>: int,<clause>: int => void
out.l6<clause>: file,<clause>: int,<clause>: int => void
out.32<clause>: file,<clause>: int => void
<raster_op><clause>: image onto <clause>: #pixel => void
abort => void

t : nonvoid,<expression>: t => t

49

Expressions :

<expression>: bool or <expression>: bool => bool

<expression>: bool and <expression>: bool => bool
[~]<expression>: bool => bool

t : nonvoid, <expression>: t <eq.op> <expression>:t => bool

t : ordered, <expression>: t <compar_op> <expression>:t => bool
<expression>: pntr <type_op><identifier>=> bool

t : arith, <expression>: t <add_op><expression>: t => t

t : arith, <add_op> <expression>: t =>t

<expression>: int <int_mult_op> <expression>: int => int
<expression> : real <real_mult_op> <expression>: real => real
<expression>: string ++ <expression>: string => string
<expression>: pixel & <expression>: pixel => pixel
<expression>: pic <pic_op> <expression>: pic => pic

t : literal, <literal> : t =>t

t : nonvoid, <value_constructor> : t => t

t : type, (<clause>:t) =>t

begin end => void

{} => void

t : type, begin <sequence>: tend => t

t : type, { <sequence>:t } =>t

<expression>: string (<clause>: int <bar> <clause>: int) => string
<expression>: pixel (<clause>: int <bar> <clause>: int) => pixel
t : image,<expression>: t (<clause>: int <bar> <clause>: int) =>t

t : nonvoid,<expression>: *[c]t (<clause>: int) =>t

50

Value constructors:
t : nonvoid, vector<range>of<clause>: t => *t
t : nonvoid, @<clause>: int of<typel><lsb><clause>: t
[,<clause>: t]* <rsb>=> *t
where <range>::= <clause> : int :: <clause> : int[,<range>]

image <clause> : int by<clause> : int of <clause> : pixel => #pixel

t : image limit<clause>: t [to<clause>: intby<clause>: int]
[at<clause>: int ,<clause>: int] =>t

shift<clause>: pic by<clause>: real ,<clause>: real => pic
scale<clause>: pic by<clause>: real ,<clause>: real => pic
rotate<clause>: pic by<clause>: real => pic
colour<clause>: pic in<clause>: pixel => pic

text<clause>: pic from<clause>: real ,<clause>: real
to<clause>: real ,<clause>: real => pic

<lIsb><clause> : real,<clause>: real<rsb>=> pic

51

literals :

<digit>[<integer_literal>] => int
<integer_literal>.[<integer_literal>][e<scale_factor>] => real
true | false => bool

<double_quote><char><double_quote> => string
on[&<pixel_literal>] | off[&<pixel_literal>] => pixel

nil => pntr

nullimage => image

nullfile => file

t : nonvoid, <standard_expression> : t => t

t : nonvoid, <standard_identifier> : t =>t

52

Appendix ITT

Program Layout

Semi-Colons

As a lexical rule in S-algol, a semi-colon may be omitted whenever it is used as a
separator and it coincides with a newline. This allows many of the annoying semi-
colons in a program to be left out. However, to help the compiler deduce where the
semi-colons should be, it is a rule that a line may not begin with a binary operator.

For example

q ¥

b
is valid but

a
*b

is not.

This rule also applies to the invisible operator between a vector and its index list.
For example

letb=a(1,2)
is valid but

letb=a
(1,2)

will be misinterpreted since vectors can be assigned. The same is true for strings,
structures and images.

Comments

Comments may be placed in a program by using the symbol '!". Anything between
the ! and the end of the line is regarded by the compiler as a comment. For example

a+b laddaandb

	Contents
	1. Preface
	2. Syntax Specification
	3. Types and Type Rules
	4. Literals
	5. Primitive Expressions and Operators
	6. Declarations
	7. Clauses
	8. Procedures
	9. Aggregates
	10. Input and Output
	11. Standard Procedures and Identifiers
	12. References
	Appendix I Context Free Syntax
	Appendix IIType Rules
	Appendix III Program Layout

