
NORSK REGNESENTRAL 

NORWEGIAN COMPUTING CENTER 

OSLO 3 - NORWAY 

COMMON BASE LANGUAGE 
by 

Ole-Johan Dahl, Bj0rn Myhrhaug 

and 

Kristen Nygaard 





NORWEGIAN COMPUTING CENTER 

Forskningsveien 1 B 

Oslo 3, Norway. 

Publication No. S-22 

(Revised edition of 
publication S-2) 

October 1970 

Authorized by SIMULA Standards 

Group as the Common Base from 

May 19th 1970. 

COMMON BASE LANGUAGE 

by 

Ole-Johan Dahl, Bj¢rn Myhrhaug 

and 

Kristen Nygaard 

TM • d k f N ' • SIMULA is tra emar o orwegian Computing Center 

0 Copyright 1968, 1970, Norwegian Computing Center 





PREFACE TO THE 1968 EDITION 

SIM.ULA 67 is a general purpose programming language 

developed by the authors at the Norwegian Computing 

Center. Compilers for this language are now in.ple­

mented on a nun~er of different computers. 

The Norwegian Cor:i.r,uting Center regards the SH1ULA 67 

language as its own property. The implementations 

have taken place under contracts with the NCC for 

professional assistance. 

A main characteristic of SI:1ULA is that it is easily 

structured towards specialized problem areas, and hence 

can be used as a basis for Special Application Languages. 

This report is a reference document for the SIMULA 67 

Comn,on Base. '11 he Comrnon Base comorises the language 

features required in every SI\1ULA 67 compiler. The 

"Introduction" highlights some features of the language. 

The following sections are intended as a precise language 

definition. Users manuals and textbooks will ap~ear 

later. 

During our development of SI~ULA 67 we have benefited 

from iueas and sugqestions from a number of colleagues. 

First of all we snould like to mention C. l\. R. Hoare 

whose ideas on referen8iny have been used and extended, 

S. Kubosch who has been an inportant source of useful 

comments and criticism and "1rs. I. Siguenza whose help 

in the typing of this report has been indispensable. 



We should also like to express our gratitude to D. Belsnes, 

P. Blunden, J. Buxton, J.V. Garwick, 0. Hjart¢y, 0. Hope, 

P. M. Kjeldaas, D. Knuth, J. Laski, A. Lunde, J. Newey, 

T. Noodt, K. S. Skog, C. Strachey and N. Wirth, as well 

as SIMULA I users who have given advice based upon their 

experience. Finally, the authors feel that they benefited 

very much from the SIMULA 67 Common Base Conference in Oslo, 

June 1967, and would like to thank the participants. 

Oslo, May 1968 

Ole-Johan Dahl Bj0rn Myhrhaug Kristen Nygaard 

PREFACE TO THE 1970 EDITION 

This revised version contains the modifications and clarifi­

cations passed by the SIMULA Standards Group at their meeting 

in May 1970. Several minor errors have also been corrected. 

Compilers are now available on a wide range of computers, 

including CD 3300, CD 3600, CD 6600, UIJIVAC 1108 and 

IBM 360/370. 

The authors would like to thank the members of the SIMULA 

Standards Group for their interest and help, and the typing 

pool and printing shop of the Norwegian Computing Center 

for their efficient work. 

We would also like to extend our list of acknowledgements in 

the original preface by K. Babcicky, G. M. Birtwistle, R. Kerr 

and M. Woodger. 

Oslo; October 1970 

Ole-Johan Dahl Bj¢rn Myhrhaug Kristen Nygaard 



1 . 

1.1 

- 1 -

Introauction 

General purpose programming languages 

Hign level languages, like FORTRAN, ALGOL 60 and 

COBOL were originally regarded as useful for two 

purposes: 

- to provide concepts and statements allowing a 

precise formal description of computing processes 

and also making communication between programmers 

easier. 

- to provide the non-specialist with a tool making 

it possible for him to solve small and medium-sized 

problems without specialist help. 

High level languages have succeeded in these respects. 

However, strong new support for these languages is 

developing from a fresh group: those who are confronted 

with the task of organizing and implementing very com­

plex, highly interactive programs, e.g. large simulation 

programs. 

These tasks put new requirements on a language: 

- in order to decompose the problem into natural, 

easily conceived components, each part should be 

describable as an individual program. The language 

should provide for this and also contain means for 

describing the joint interactive execution of these 

sub-programs. 

- in order to relate and operate a collection of programs, 

the language should have the necessary powerful list 

processing and sequencing capabilities. 



l. 2 

- 2 -

- in order to reduce the already excessive amount 

of debugging trouble associated with present day 

methods, the language should give "reference 

security''. That is, the language and its compiler 

should spot and not execute invalid use of data 

through data referenci::1.g based on wrong assllI".lptions. 

Even if the organizational aspects of compl2x 

programnin9 are becoming more and more irr1portant, 

the computational aspects must, of course, be taken 

care of at least as well as in the current high-level 

languages. 

It js also evident that such a general language should 

be oriented towards a very wide area of use. The 

markc~t cannot for long accommodate the present 

proliferation of languages. 

Special application languages 

Until row, the computer has been a powerful but 

frightening t0ol to most people. This should be changed 

in the yearH to come, and the comp~ter should be 

regarded as an obvious part of the human environment. 

"-1oie and more peo1Jle should get their capabi 1 i t:i es 

increased throllgh the a,railabili ty of the "knu,v-how" 

and data they need. 

l1. condition for this development is that the d9mands 

on the computer user are reduced, w~ich implies that 

communication between !nan and cor,1puter is nadc easier. 

Know-how is today to a large exten.t ;:nade operative 

through "ar=:plication packages" covering various fields 

of knowleJge and methods. But these packages are in 

genc!ral not sufficiently flexible and exparnlable, and 

also often require specialist assistance for their use. 



- 3 -

The future seems to be "application languages" 

which are problem-orientect, perhaps in the extreme. 

Such languages may provide the basic concepts and 

methods associated with the field in question and 

allow the user to formulate his specific problem 

in accordance with his own earlier training. 

At the same time, such languages should be flexible 

in the sense that new knowledge acquired should be 

easily incorporated, even by the individual user. 

The need for application languages is apparently 

in conflict with the desire for the non-proliferation 

of languages and for general purpose programming 

languages. 

A solution is to design a general purpose programming 

language to serve as a "substrate'' for the application 

languages by making it easy to orient towards special­

ized fields, and to augment it by the introduction of 

additional aggregated concepts useful as "building 

blocks" for programming. 

By making the general purpose language highly 

standardized and available on many types of computers, 

the application languages also become easily transferable, 

and at the same time the software development costs 

for the computer manufacturers may be retarded from 

the present rapid increase. 



l. 3 

l. 3 .1 

l. 3. 2. 

- 4 -

The basic characteristics of SIMULA 67 

Algorithmic capability 

SIMULA 67 contains most features of the general 

algorithmic language ALGOL 60 as a subset. The 

reason for choosing ALGOL 60 as starting point was 

that its basic structure lent itself to extension. 

It was felt that it would be impractical for the users 

to base SIMULA 67 on yet another new algorithmic 

language, and ALGOL 60 already had a user basis, 

mainly in Europe. 

Decomposition 

In dealing with problems and systems containing a large 

number of details, decomposition is of prime importance. 

The human mind must concentrate; it is a requirement 

for precise and coherent thinking that the number of 

concepts involved is small. By decomposing a large 

problem, one can obtain component problems of manageable 

size to be dealt with one at a time, and each containing 

a limited number of details. Suitable decomposition is 

an absolute requirement if more than 0ne person takes 

part in the analysis and programming. 

The fundamental mechanism for decomposition in ALGOL 60 

is the block concept. As far as local quantities are 

concerned, a block is completely independent of the rest 

of the program. The locality principle ensures that any 

reference to a local quantity is correctly interpreted 

regardless of the environment of the block. 

The block concept corresponds to the intuitive notion 

of "sub-problem" or "sub-algorithm" which is a useful 

unit of decomposition in orthodox application areas. 



- 5 -

A block is a formal description, or "pattern", of an 

aggregated data structure and associated algorithms 

and actions. When a block is executed, a dynamic 

"instance" of the block is generated. In a computer, 

a block instance may take the form of a memory area 

containing the necessary dynamic block information and 

including space for holding the contents of variables 

local to the block. 

A block instance can be thought of as a textual copy 

of its formal description, in which local variables 

identify pieces of memory allocated to the block instance. 

Any inner block of a block instance is still a "pattern", 

in which occurrences of non-local identifiers, however, 

identify items local to textually enclosing block 

instances. Such "bindings" of identifiers non-local 

to an inner block remain valid for any subsequent dynamic 

instance of that inner block. 

~he notion of block instances leads to the possibility 

of generating several instances of a given block which 

may co-exist and interact, such as, for example, 

instances of a recursive procedure. This further leads 

to the concept of a block as a "class" of "objects", 

each being a dynamic instance of the block, and there­

fore conform~ng to the same pattern. 

An extended block concept is introduced through a "class" 

declaration and associated interaction mechanism such as 

"object references" (pointers), "remote accessing", 

"quasi-parallel" operation, and block "concatenation". 



1. 3. 3 

- 6 -

Whereas ALGOL 60 program execution consists of a 

sequence of dynamically nested block instances, block 

instances in SIMULA 67 may form arbitrary list 

structures. The interaction mechanisms which are 

introduced, serve to increase the power of the block 

concept as a means for decomposition and classification. 

Classes 

A central new concept in SIMULA 67 is the "object". 

An object is a self-contained program (block instance) 

having its own local data and actions defined by a 

"class declaration". The class declaration defines a 

program (data and action) pattern, and objects conforming 

to that pattern are said to "belong to the same class". 

If no actions are specified in the class declaration, 

a class of pure data structures is defined. 

Example 

class order (number); integer number; 

begin integer number of units, arrival date; 

real processing time; 

end; 

A new object belonging to the class "order" is generated 

by an expression such as 

"new order (103)" 

and as many "orders" may be introduced as desired. 



- 7 -

The neea for manipulating objects and relating 

objects to each other makes it necessary to 

introduce list processing facilities (as described 

below) . 

A class may be used as "prefix" to another class 

declaration, thereby building the properties defined 

by the prefix into the objects defined by the new 

class declaration. 

Examples: 

order class batch order; 

begin integer batch size; 

real setup time; 

end; 

order class single order; 

begin real setup time, finishing time,weight; end; 

single order class plate; 

begin real length, width; end; 

New objects belonging to the "sub-classes" - "batch order" 

"single order" and "plate" all have the data defined 

for "order" , plus the addition a 1 data defined in the 

various class declarations. Objects belonging to 

the class "plate" will, for example, comprise the 

following pieces of information: "number", "number of 

units", "arrival date", "processing time", "setup time", 

"finishing time", "weight", "length" and "width". 



1. 3 .4 

- 8 -

If actions are defined in a class declaration, actions 

conforming to this pattern may be executed by all 

objects belonging to that class. The actions belonging 

to one object may all be executed in sequence, as for 

a procedure. But these actions may also be executed as 

a series of separate subsequences, or "active phases". 

Between two active phases of a given object, any number 

of active phases of other objects may occur. 

SIMULA 67 contains basic features necessary for organ­

izing the total program execution as a sequence of active 

phases belonging to objects. These basic features may 

be the foundation for aggregated sequencing principles, 

of which the class SIMULATION is an example. 

Application language capability 

SIMULA 67 may be oriented towards a special application 

area by defining a suitable class containing the 

necessary problem-oriented concepts. This class can 

then be used as prefix to the program by the user 

interested in this problem area. 

The unsophisticated user may restrict himself to using 

the aggregated, problem-oriented and familiar concepts 

as constituent "building blocks" in his programming. 

He may not need to know the full SIMULA 67 language, 

whereas the experienced programmer at the same time 

has the general language available, and he may extend 

the "application language" by new concepts defined by 

himself. 

As an example, in discrete event system simulation, the 

concept of "simulated system time" is commonly used. 

SIMULA 67 is turned into a simulation language by pro­

viding the class "SIMULATION" as a part of the language, 



- 9 -

(in this case provided with the compilers). 

In the class declaration 

class SIMULATION; 

begin .......................... end; 

a "time axis" is defined, as well as two-way 

lists (which may serve as queues), and also the 

class "process" which gives an object the property 

of having its active phases organized through the 

"time axis". 

A user wanting to write a simulation program starts 

his program by 

SIMULATION begin 

in order to make all the simulation capabilities 

available in his program. If he himself wants to 

generate a special-purpose simulation language to 

be used in job-shop analysis, he may write: 

SIMULATION class JOBSHOP; 

begin . . . . . . . . . . . . . . . . . . . . . . . . . . end; 

and between "begin" and "end" define the building 

blocks he needs, such as 

process class crane; 

begin ..................... end; 

process class machine; 

begin procedure datacollection; 

....................... 
end; 

etc. 



1. 3. 5 

- 10 -

The programmer now compiles this class, and whenever 

he or his colleagues want to use SIMULA 67 for jobshop 

simulation, they may write in their program 

JOBSHOP £egin ................. . 

thereby making available the concepts of both 

"SIMULATION" and "JOBSHOP". 

This facility requires that a mechanism for the 

incorporation of separately compiled classes is 

available in the compiler (see section 15). 

List processing capability 

When many objects belonging to various classes do 

co-exist as parts of the same total program, it is 

necessary to be able to assign names to individual 

objects, and also to relate objects to each other, 

e.g. through binary trees and various other types of 

list structures. A system class, "SIMSET", introducing 

circular two-way lists is a part of the language. 

Hence basic new types, "references", are introduced. 

References are "qualified'', which implies that a 

given reference only may refer to objects belonging to 

the class mentioned in the qualification (or belonging 

to subclasses of the qualifying class). 

Example: 

ref(order)next, previous; 



- 11 -

The operation of making a reference denote a specified 

object is written"·-" and read "denotes". 

Example: 

next new order (101); previous next; 

or (also valid since "plate" is a subclass of "order") 

next new plate(50); 

Data belonging to other objects may be referred to 

and used by "remote accessing", utilizing a special 

"dot notation". 

Example: 

if next.number> previous.number then I I I I I 

comparing the "number" of the "order" named "next" with 

the "number"of the "order" named "previous". 

The "dot notation" gives access to individual pieces 

of information. "Group access" is achieved through 

"connection statements". 

Example: 

inspect next when plate do begin ..... end; 

In the statement between begin and end all pieces of 

information contained in the "plate" referenced by 

"next" may be referred to directly. 



1. 3.6 

1. 3. 7 

- 12 -

String handling 

SIMULA 67 contains the new basic type "character". 

The representation of characters is implementation 

defined. 

In order to provide the desired flexibility in string 

handling, a compound type called "text" is introduced. 

The "text" concept is closely associated with input/ 

output facilities. 

Input/output 

ALGOL 60 has been seriously affected by the lack of 

standardized input/output and string handling. Clearly 

a general purpose programming language should have 

great flexibility in these areas. Consequently, input/ 

output are defined and made a standardized part of 

SIMULA 67. 

1.4 Standardization 

For a general purpose programming language it is of 

paramount importance that while the language is 

uniquely defined and at the same time under strict 

control, it may be extended in the future. 

This is achieved by the SIMULA Standard Group, consisting 

of representatives for firms and organizations having 

responsibility for SIMULA 67 compilers. The statutes 

lay down rigid rules to provide for both standardization 

and future extensions. 

The SIMULA definition which is required to be a part 

of any SIMULA 67 system is named the "SIMULA 67 

Common Base Definition". 



1.5 

- 13 -

Language definition 

The language definition given in the following sections 

must be supplemented by the formal definition of ALGOL 

60 Llj. The syntactic definitions given in this report 

are to be understood in the following way. 

1) Syntactic classes referred to, but not defined in 

this report, refer to syntactic definitions given 

in [1.l. 

2) Definitions in this report of syntactic classes 

defined in [l] replace the corresponding 

definitions given in [lJ. 

3) Any construction of the form 

<ALGOL some syntactic class> 

stands for the list of alternative direct 

productions of <some syntactic class> according 

to the definition given in [l]. 

4) The comment conventions given in [l] is extended 

in that the convention for "end-comment" is 

replaced by: 

fend <any sequence not containing ;, end, else, 

when or otherwise>t ➔ fend t 



- 14 -



2. 

2.1 

- 15 -

Class declarations 

Syntax 

<declaration> ::= <ALGOL declaration>! 

<class declaration>! 

<external declaration> 

<class identifier> ::= <identifier> 

<prefix> ::= <empty>I 

<class identifier> 

<virtual part> ::= <empty>j 

virtual: <specification part> 

<class body> ::= <statement>! 

<split body> 

<initial operations> ::= beginl 

<blockhead>; I 
<initial operations><statement>; 

<final operations> ::= endl 

; <compound tail> 

<split body> ::= <initial operations> 

inner <final operations> 

<class declaration> ::= <prefix><main part> 

<main part> ::= £lass <class identifier> 

<formal parameter part>; 

<value part><specification part> 

<virtual part><class body> 

2.2 Semantics 

A class declaration serves to define the class associated 

with a class identifier. The class consists of "objects" 

each of which is a dynamic instance of the class body. 

An object is generated as the result of evaluating an 

object generator, which is the analogy of the "call" 

of a function designator, see section 4.3.2.2. 



- 16 -

A class body always acts like a block. If it takes 

the form of a statement which is not an unlabelled 

block, the class body is identified with a block of 

the form 

begin; Send 

when Sis the textual body. A split body acts as a 

block in ~ . .,hich the symbol "inner" represents a dummy 

statement. 

For a given object the formal parameters, the 

quantities specified in the virtual part, and the 

quantities declared local to the class body are called 

the "attributes" of the object. A declaration or 

specification of an attribute is called an "attribute 

definition". 

Specification (in the specification part) is necessary 

for each formal parameter. The parameters are treated 

as variables local to the class body. They are 

initialized according to the rules of parameter trans­

mission, (see section 8.2). Call by name is not·avail­

able for parameters of class declarations. The follow­

ing specifiers are accepted: 

<type>, array, and <type> array. 

Attributes defined in the virtual part are called 

"virtual quantities". They do not occur in the formal 

parameter list. The virtual quantities have some 

properties which resemble formal parameters called by 

name. However, for a given object the environment of 

the corresponding "actual parameters" is the object 

itself, rather than that of the generating call. See 

section 2.2.3. 



- 17 -

Identifier conflicts between formal parameters and 

other attributes defined in a class declaration are 

illegal. 

The declaration of an array attribute may in a con­

stituent subscript bound expression make reference 

to the formal parameters of the class declaration. 

Example: 

The following class declaration expresses the notion 

of nn-point Gauss integrationn as an aggregated concept. 

class Gauss (n); integer n; 

begin array W,X[l:n]; 

real procedure integral(F,a,b); real procedure F; 

real a,b; 

be~in real sum, range; integ_§_£ i; 

range := (b-a) x □ .5; 

for i := 1 step 1 until n do 

sum:= sum+ F(a+rangex(X[iJ+l))xW[iJ; 

integral := range x sum; 

end integral; 

comment compute the values of the elements of 

Wand X as functions of n; 

end Gauss; 

The optimum weights Wand abcissae X can be computed 

as functions of n. By making the algorithm part of 

the class body, the evaluation and assignment of these 

values can be performed at the time of object generation. 

Several nGaussn objects with different values of n may 

co-exist. Each object has a local procedure nintegraln 

for the evaluation of the corresponding n-point formula. 

See also examples of section 6.1.2.2 and section 7.1.2. 



2.2.1 

- 18 -

Subclasses 

A class declaration with the prefix "C" and the 

class identifier "D" defines a subclass D of the 

class C. An object belonging to the subclass consists 

of a "prefix part", which is itself an object of the 

class c, and a "main part" described by the main part 

of the class declaration. The two parts are "concatenated" 

to form one compound object. The class C may itself have 

a prefix. 

Let c 1 , c 2 , ..... , en be classes such that c1 has no 

prefix and Ck has the prefix Ck-l (k = 2, 3, ..... , n). 

Then c 1 , c2 , ...... , Ck-l is called the "prefix sequence" 

of ck (k = 2, 3, ..... , n). The subscript k of ck 

(k = 1, 2 I ..... , n) is called the "prefix level" of 

the class. C. is said to "include" c. if i < j , and C. 
l J l 

is called a "subclass" of c. if i > j ( i, j = 1, 2 f .... ' 
J 

n) . The prefix level of a class D is said to be "inner" 

to that of a class C if D is a subclass of c, and 

"outer" to that of C if C is a subclass of D. The 

figure 2.1 depicts a class hierarchy consisting of five 

classes, A, B, C, D and E: 

class A ....... , 
A class B ....... , 
B class C ....... , 
B class D ....... , 
A class E ....... , 

A capital letter denotes a class. The corresponding 

lower case letter represents the attributes of the 

main part of an object belonging to that class. In 

an implementation of the language, the object structures 

shown in Fig. 2.2 may indicate the allocation in memory 

of the values of those attributes which are simple 

variables. 



- 19 -

A 

E 

C D 

Fig. 2.1 

D EB a a 

□ -----· -----· 
b b 

~----- --------
C d 

Fig. 2. 2 



2.2.2 

- 20 -

The following restrictions must be observed in the use 

of prefixes: 

1) A class must not occur in its own prefix sequence. 

2) A class can be used as prefix only at the block 

level at which it is declared. A system class is 

considered to be declared in the smallest block 

enclosing its first textual occurrence. An 

implementation may restrict the number of different 

block levels at which such prefixes may be used. 

See sections 11, 14 and 15. 

Concatenation 

Let en be a class with the prefix sequence c1 , c2 , 

...... , C 1 and let X be an object belonging to C . n- , n 
Informally, the concatenation mechanism has the following 

consequences. 

1) X has a set of attributes which is the union of 

those defined in c1 , c2 , ..... , en. An attribute 

defined in Ck (12k2n) is said to be defined at 

prefix level k. 

2) X has an "operation rule" consisting of statements 

from the bodies of these classes in a prescribed 

order. A statement from Ck is said to belong to 

prefix level k of x. 

3) A statement at prefix level k of X has access to 

all attributes of X defined at prefix levels equal 

to or outer to k, but not directly to attributes 

"hidden" by conflicting definitions at levels 2k. 

These "hidden"attributes may be accessed through 

use of procedures or this). 



- 21 -

4) A statement at prefix level k of X has no immediate 

access to attributes of X defined at prefix levels 

inner to k, except through virtual quantities. 

(See section 2.2.3.) 

5) In a split body at prefix level k, the symbol 

"inner" represents those statements in the operation 

rule of X which belong to prefix levels inner to 

k, or a dummy statement if k = n. If none of c
1

, 

...... , Cn-l has a split body the statements in 

operation rule of X are ordered according to 

ascending prefix levels. 

A compound object could be described formally by a 

"concatenated" class declaration. The process of 

concatenation is considered to take place prior to 

program execution. In order to give a precise description 

of that process, we need the following definition. 

An occurrence of an identifier which is part of a qiven 

block is said to be "uncommitted occurrence in that 

block", except if it is the attribute identifier of a 

remote identifier (see section 7.1), or is part of an 

inner block in which it is given a local significance. 

In this context a "block" may be a class declaration 

not including its prefix and class identifier, or a 

procedure declaration not including its procedure 

identifier. (Notice that an uncommitted identifier 

occurrence in a block may well have a local significance 

in that block.) 

The class declarations of a given class hierarchy are 

processed in an order of ascending prefix levels. A 

class declaration with a non-empty prefix is replaced 

by a concatenated class declaration obtained by first 

modifying the given one in two steps. 



- 22 -

1. If the prefix refers to a concatenated class 

declaration, in which identifier substitutions 

have been carried out, then the same substitutions 

are effected for uncommitted identifier occurrences 

within the main part. 

2. If now identifiers of attributes defined within the 

main part have uncommitted occurrences within the 

prefix class, then all uncommitted occurrences 

within the main part of these identifiers are 

systematically changed to avoid name conflicts. 

Identifiers corresponding to virtual quantities 

defined in the prefix class are not changed. 

The concatenated class declaration is defined in terms 

of the given declaration, modified as above, and the 

concatenated declaration of the prefix class. 

1. Its formal parameter list consists of that of 

the prefix class followed by that of the main part. 

2. Its value part, specification part, and virtual 

part are the unions (in an informal but obvious 

sense) of those of the prefix class and those of 

the main part. If the resulting virtual part 

contains more than one occurrence of some identifier, 

the virtual part of the given class declaration is 

illegal. 

3. Its class body is obtained from that of the main 

part in the following way, assuming the body of 

the prefix class is a split body. The begin of 

the block head is replaced by a copy of the block 

head of the prefix body, a copy of the initial 

operations of the prefix body is inserted after 

the block head of the main part and the end of the 



- 23 -

compound tail of the main part is replaced by a copy 

of the compound tail of the prefix body. If the 

prefix class body is not a split body, it is 

interpreted as if the symbols ";inner" were 

inserted in front of the end of its compound tail. 

If in the resulting class body two matching declara­

tions for a virtual quantity are given (see section 

2.2.3), the one copied from the prefix class body 

is deleted. 

The declaration of a label is its occurrence as 

the label of a statement. 

Examples: 

class point (x,y); real x,y; 

begin ref (point) procedure plus (P); ref (point) P; 

plus :- new point (x+P.x, y+P,y); 

end point; 

An object of the class point is a representation of a 

point in a cartesian plane. Its attributes are x,y and 

plus, where plus represents the operation of vector 

addition. 

point class polar; 

begin real r,v; 

ref (polar) procedure plus (P); ref (point) P; 

plus :- new polar (x+P.x, y+P.y); 

r:= sqrt (xt2+yt2); 

v:= arctg (x,y); 

end polar; 

An object of the class polar is a "point" object with 

the additional attributes r,v and a redefined plus 

operation. The values of rand v are computed and 

assigned at the time of object generation. ("arctg" 

is a suitable non-local procedure.) 



2.2.3 

- 24 -

Virtual quantities 

Virtual quantities serve a double purpose: 

1) to give access at one prefix level of an object 

to attributes declared at inner prefix levels, 

and 

2) to permit attribute redeclarations at one prefix 

level valid at outer prefix levels. 

The following specifiers are accepted in a virtual 

part: 

label, switch, procedure and <type> procedure. 

A virtual quantity of an object is either "unmatched'' 

or is identified with a "matching'' attribute, which is 

an attribute whose identifier coincides with that of the 

virtual quantity, declared at the prefix level of the 

virtual quantity or at an inner one. The matching 

attribute must be of the same kind as the virtual 

quantity. At a given prefix level, the type of the 

matching quantity must coincide with or be subordinate 

to (see Section 3.2.5) that of the virtual specification 

and that of any matching quantity declared at any outer 

prefix level. 

It is a consequence of the concatenation mechanism that 

a virtual quantity of a given object can have at most 

one matching attribute. If matching declarations have 

been given at more than one prefix level of the class 

hierarchy, then the one is valid which is given at the 

innermost prefix level outer or equal to that of the 

main part of the object. The match is valid at all 

prefix levels of the object equal or inner to that of 

the virtual specification. 



- 25 -

Example: 

The following class expresses a notion of "hashing", 

in which the "hash" algorithm itself is a "replaceable 

part". "error" is a suitable non-local procedure. 

class hashing (n); integer n; 

virtual: integer procedure hash; 

begin integer procedure hash (T); value T; text T; 

begin integer i; 

L: if T.more then 

~in i : = i +rank ( T. get ch a r) ; 

go to L; 

end; 

hash .- i - (i. n x n); 

end hash; 

text array table [0:n-lJ; integer entries; 

integer procedure lookup (T,old); name old; 

value T; Boolean old; text T; 

begin integer i; 

end 

end hashing; 

i:= hash(T); 

L: if table[i] == notext then 

begin table[U T; entries := 

entries+l; end 

else if table [iJ = T then 

old := true 

else if entries= n then 

error("hash table 

filled completely") 

else begin i .- i+l; 

if l = n then l .- O; 

go to L 

end; 

lookup .- i; 

lookup; 



- 26 -

hashing class ALGOL hash; 

begin integer procedure hash(T); value T; 

text T; 

begin integer i; character c; 

L: if T. more th en 

begin c := T.getchar; 

if c I ' ' then 

i ·= i + rank(c); 

go to L; 

end; 

hash := i-(i 

end hash; 

end ALGOL hash; 

n x n) ; 



3. 

3.1 

- 27 -

Types and variables 

Syntax 

<type declaration> ::= <type><type list> 

<array declaration> ::= array <array list>I 

<type> array <array list> 

<type> ::= <value type>I 

<reference type> 

<value type> ::= integer! 

real I 

Boolean! 

character 

<reference type> .. - <object reference>! 

text 

<object reference> ::= ref (<qualification>) 

<qualification> ::= <class identifier> 

3.2 Semantics 

The syntax for type declaration represents a 

deviation from ALGOL 60, in that own is not a part 

of SIMULA 67. 

A "value" is a piece of information interpreted at 

run time to represent itself. Examples of values 

are: an instance of a real number, an object, or a 

piece of text. A "reference" is a piece of information 

which identifies a value, called the "referenced" value. 

The distinction between a reference and the referenced 

value is determined by context. 

The reference concept corresponds to the intuitive 

notion of a "name" or a "pointer". It also reflects 

the addressing capability of computers: in certain 

simple cases a reference could be implemented as the 

memory address of a stored value. 



3.2.1 

3.2.2 

- 28 -

For computer efficiency the reference concept is not 

introduced in its full generality. In particular, 

there is no reference concept associated with any 

value type. 

A variable local to a block instance is a memory device 

whose "contents" is either a value or a reference, 

according to the type of the variable. A value type 

variable has a value which is the contents of the 

variable. A reference type variable is said to have 

a value which is the one referenced by the contents of 

the variable. The contents of a variable may be changed 

by an appropriate assignment operation, see section 6.1. 

Object references 

Associated with an object there is a unique "object 

reference" which identifies the object. And for any 

class C there is an associated reference type ref (C). 

A quantity of that type is said to be qualified by the 

class c. Its value is either an object, or the special 

value none which represents "no object". The qualifi­

cation restricts the range of values to objects of 

classes included in the qualifying class. The range 

of values includes the value none regardless of the 

qualification. 

Characters 

A character value is an instance of an "internal 

character 11
• For any given implementation there is 

a one-one mapping between a subset of internal 

characters and external ("printable") characters. 

The character sets (internal and external) are 

implementation defined. 



- 29 -

3.2.2.l Collating sequence 

The set of internal characters is ordered according 

to an implementation defined collating sequence. The 

collating sequence defines a one-one mapping between 

internal characters and integers expressed by the 

function procedures: 

integer procedure rank(c); character c; 

whose value is in the range [O,N-lJ, where N is 

the number of internal characters, and 

character £_£ocedure cr.ar (n) ; integer n; 

The parameter value must be in the range [0,::.-J-lJ, 

otherwis~ a run time ecror is caused. 

[xa1;1ple: 

Most character cudes are such that the digits (0-9) ar3 

character values ~vhich ar8 cuns,3cutivE and in ascEnd:'..ng 

order w i th resp s ct to the co 112. ting s E q u enc e . LJ n cJ B 1' 

this assumption, the expressions 

"rank(c) - rank(' □')" and "char(rank('O'J+i)" 

pr:ivide implrnnsntation independ8nt conversion 

bebveen digits ar1d their arithmetic values. 

3.2.2.2 Character subsets 

Two character subsets are defined by the standard 

non-local procedures: 

Boolean procedure digit(c); character c; 

which is true if c is a digit, and 

Boolean procedure letter(c); character c; 

which is true if c is a letter. 



3.2.3 

3.2.4 

3.2.5 

- 30 -

Text 

A text value is an ordered sequence, possibly empty, 

of internal chardcters. The number of characters is 

called the "length" of the text. A non-empty text 

value is either a "text object", or it is part of a 

longer character sequence which is a text object. 

A text reference identifies a text value. Certain 

properties of a text reference are represented by 

procedures accessible through remote accessing (the 

dot notation). The text concept is further described 

in section 10. 

Initialization 

Any declared variable is initialized at the time of 

entry into tne block to which the variable is local. 

The initial contents depends on the type of the 

variable. 

real 

integer 

Boolean 

character 

object reference 

text 

Subordinate types 

o.o 
0 

false 

implementation defined 

none 

notext (see section 10) 

An object reference is said to be "subordinate" 

to a second object reference if the qualification 

of the former is a subclass of the class which 

qualifies the latter. 

A proper procedure is said to be of "type universal". 

Any type is subordinate to the universal type. 

(Cf. sections 2.2.3, 8.2.2 and 8.2.3.) 



4. 

4.1 

4 .1. 2 

- 31 -

Expressions 

Syntax 

<label> ::= <identifier> 

<expression> ::= <value expression>/ 

<text value>/ 

<reference expression>i 

<aesignational expression> 

<value expression> ::= <arithmetic expression>; 

<Boolean expression>l 

<character expression> 

<reference expression> - <object expression>/ 

<text expression> 

Semantics 

The syntax for label represents a restriction compared 

with ALGOL 60. 

A value expression is a rule for obtaining a value. 

A reference expression is a rule for obtaining a 

reference and the associated referenced value. 

A designational expression is a rule for obtaining 

a reference to a program point. 

Any value expression or reference expressio~ has 

an associated type, whj_ch is textually defined. The 

type of an arithmetic expression is that of its value. 

The following deviations from ALGOL 60 are introduced; 

see also section 8.2.3. 

1) An expression of the form 

<factor>t<primary> 

is of type real. 



4.2 

4.2.1 

4.2.2 

4.3 

4.3.1 

- 32 -

2) A conditional arithmetic expression is of type 

integer if both alternatives are of type integer, 

otherwise its type is real. If necessary, a 

conversion of the value of the selected alternative 

is invoked. 

Character expressions 

Syntax 

<simple character expression> ::= '<character designation>'I 

<variable>! 

<function designator>! 

(<character expression>) 

<character expression> 

Semantics 

::= <simple character expression>! 

<if clause><simple character expression> 

else <character expression> 

A character expression is of type character. It 

is a rule for obtaining a character value. 

A character designation is either an external 

character or another implementation defined represen­

tation of an internal character. 

Object expressions 

Syntax 

simple object expression ::= ~I 

<variable>! 

<function designator>! 

<object generator>! 

<local object>I 

<qualified object>I 

(<object expression>) 



4.3.2 

- 33 -

<object expression> ::= <simple object expression>! 

<if clause><simple object expression> 

else <object expression> 

<object generator> ::= new <class identifier> 

<actual parameter part> 

<local object> ::= this <class identifier> 

<qualified object> ::= <simple object expression> 

qua <class identifier> 

Semantics 

An object expression is of type ref (<qualification>). 

It is a rule for obtaining a reference to an object. 

The value of the expression is the referenced object 

or none. 

4.3.2.1 Qualification 

The qualification of an object expression is defined 

by the following rules: 

1) The expression none is qualified by a fictitious 

class which is inner to all declared classes. 

2) A variable or function designator is qualified 

as stated in the declaration (or specification, 

see below) of the variable or array or procedure 

in question. 

3) An object generator, local object, or 

qualified object is qualified by the class of 

the identifier following the symbol "new", "this 11
, 

or "qua" respectively. 

4) A conditional object expression is qualified by 

the innermost class which includes the qualifications 

of both alternatives. If there is no such class, 

the expression is illegal. 



- 34 -

5) Any formal parameter of object reference type is 

qualified according to its specification regard­

less of the qualification of the corresponding 

actual parameter. 

6) The qualification of a function designator whose 

procedure identifier is that of a virtual quantity, 

depends on the access level (see section 7). The 

qualification is that of the matching declaration, 

if any, occurring at the innermost prefix level equal 

or outer to the access level, or if no sJch match 

exists, it is that of the virtual specification. 

4.3.2.2 Object generators 

An object generator invokes the generation and 

execution of an obj~;ct belonging to the identified 

class. The object is a new instance of the corre­

sponding (concatenated) class body. The evaluation 

of an object generator consists of the following 

actions: 

1) The object is generated and the actual parameters, 

if any, of the object generator are evaluated. 

The parameter values and/or references are trans­

mitted. (For parameter transmission modes, 

see section 8). 

2) Control enters the object through its initial 

begin, whereby it becomes operating in the "attached" 

state (see section 9). The evaluation of the 

object generator is completed: 

case a: whenever the basic procedure "detach" 

is executed "on behalf of" the generated 

object (see section 9.1), or 

case b: upon exit through the final end of the 

object. 



- 35 -

The value of an object generator is the object 

generated as the result of its evaluation. The 

state of the object after the evaluation is either 

"detached" (case a) or "terminated" (case b). 

4.3.2.3 Local objects 

A local object "this C'' is a meaningful expression 

with:i.n 

1) the class body of C or that of any subclass of C, 

or 

2) a connection block whose block qualification is 

Cora subclass of C (see section 7.2). 

The value of a local object in a given context is 

the object which is, or is connected by, the smallest 

textually enclosing block instance, in ~rl1ich the local 

object is a meaningful expression. If t~ere is no such 

block the local object is i1-legal (in the gi.ven context). 

For an instance of procedure or class body ''textually 

t~nclosing" means containing its decla.ra tion. 

4.3.2.4 Instantaneous qualification 

Let X represent any simple reference expression, 

and let C and D be class identifiers such that D 

is the qualification of X. The qualified object 

"X qua. C" is then a legal object expression, 

provided that C is outer to or equal to Dor is a 

subclass of D. Otherwise, i.e. if C and D belong 

to disjoint prefix sequences, the qualified object 

is illegal. 



4.4 

4.4.1 

4.4.2 

- 36 -

If the value of Xis none or is an object belonging 

to a class outer to C, the evaluation of X qua C 

constitutes a run time error. Otherwise, the value 

of X qua C is that of X. The use of instantaneous 

qualification enables one to restrict or extend the 

range of attributes of a concatenated class object 

accessible through inspection or remote accessing. 

(See also section 7.) 

Text expressions 

Syntax 

<simple text expression> ::= notextj 

<var:i.able>1 

<function designator>! 

<text expression> 

<text expression>::= <simple text expression>: 

<if clause><simple text expression> 

else <text expression> 

<text value> .. - <text expression>! 

<string·> 

Semantics 

The constituents of a string are external characters 

and/or other implementation defined representations of 

internal characters. 

A string is a text value, not a text reference. It 

is not a text expression, but it may occur as the right 

part of a text value assignment (cf. section 10.6), as 

an operand of a text value relation (cf. section 5.2), 

and as an actual parameter called by value (cf. section 

8.2.1). 

In an implementation the left and right string quotes 

may be represented by one and the same external character. 

In this document either symbol is represented by the 

symbol" 



- 37 -

notext designates an empty text reference. 

For further information on the text concept, see 

section 10. 



- 38 -

5. 2. 



5. 

5.1 

5.J..l 

5.1.2 

5.2 

5. 2 .1 

5.2.2 

Relations 

<relation> .. -

- 39 -

<ALGOL relation>! 

<character relation>/ 

<text value relation>/ 

<object relation>! 

<reference relation> 

Character relations 

Syntax 

<character relation> ::= <simple character expression> 

<relational operator><simple character expression> 

Semantics 

Character values may be compared for equality and 

inequality and ranked with respect to the 

(implementation defined) collating sequence. A relation 

x rely, 

where x and y are character values, and rel is any 

relational operator has the same truth value as 

the relation 

rank(x) rel rank(~). 

Text value relations 

<text value relation> ::= <text value> 

<relational operator><text value> 

Semantics 

Two text values are equal if they are both empty, 

or if they are both instances of the sar::te character 

sequence. Otherwise they are unequal. 



5.3 

5.3.1 

5.3.2 

- 40 -

A text value T ranks lower than a text value u if 

and only if they are unequal and one of the following 

conditions is fulfilled: 

1) Tis empty. 

2) U is equal to T followed by one or more characters. 

3) The i'th character of T ranks lower than the i'th 

character of U, and i (i ~ 1) is the smallest 

integer such that the i'th character of Tis 

unequal to the i'th character of u. 

Object relations 

Syntax 

<object relation> ::= <simple object expression> 

is <class identifier>! 

<simple object expression> 

in <class identifier> 

Semantics 

The operators "is" and "in" may be used to test the 

class membership of an object. 

The relation "Xis C" has the value true if X refers 

to an object belonging to the class C, otherwise the 

value is false. 

The relation "X in C" has the value true if X refers 

to an object belonging to a class Cora class inner 

to C, otherwise the value is false. 



5.4 

5.4.1 

5.4.2 

- 41 -

Reference relations 

Syntax 

<reference comparator> ::= ==I=/= 

<reference relation> ::= <object reference relation>! 

<text reference relation> 

<object reference relation> ::= <simple object expression> 

<reference comparator><simple object expression> 

<text reference relation> ::= <simple text expression> 

<reference comparator><simple text expression> 

Semantics 

The reference comparators"==" and"=/=" may be used 

for the comparison of references (as distinct from 

the corresponding referenced values). Two object 

(text) references X and Y are said to be "identical" 

if they refer to the same object (text object) 

or if both are none (notext). In those cases the 

relation "X==Y" has the value true. Otherwise the 

value is false. 

The relation "X=/=Y" is the negation of "X==Y". 

Let T and Ube text references. Observe that the 

relations "T=/=U" and "T=U" may both have the value 

true. Then T and U refer to physically distinct 

character sequences which are equal. 

Reference comparators have the same priority level 

as the relational operators. 



- 42 -



6. 

6.1 

6.1.l 

- 43 -

Statements 

<statement> ··= <ALGOL unconditional statement>! 

<conditional statement>! 

<for statement>! 

<connection statement> 

<unlabelled basic statement> ::= <assignment statement>! 

<go to statement>! 

<dummy statement>! 

<procedure statement>! 

<activation statement>! 

<object generator> 

<conditional statement> ::= <ALGOL conditional statement>! 

<if clause><connection statement> 

For <connection statement> see section 7.2. 

For <activation statement> see section 14.2.3. 

Assignment statements 

Syntax 

<assignment statement> ::= <value assignment>! 

<reference assignment> 

<value left part> ::= <variable>! 

<procedure identifier>! 

<simple text expression> 

<value right part> ::= <value expression>! 

<text value>! 

<value assignment> 

<value assignment>::= 

<value left part> := <value right part> 

<reference left part> ::= <variable>/ 

<procedure identifier> 

<reference right part> 
• I ::= <reference expression>/ 

<reference assignment> 

<reference assignment> ::= 

<reference left part> . <reference right part> 



6.1.2 

- 44 -

Semantics 

The operator ":=" (read: "becomes") indicates the 

assignment of a value to the value type variable 

or value type procedure identifier which is the left 

part of the value assignment or the assignment of a 

text value to the text object referenced by the left 

part. 

The operator":-" (read: "denotes") indicates the 

assignment of a reference to the reference type 

variable or reference type procedure identifier which 

is the left part of the reference assignment. 

A procedure identifier in this context designates 

a memory device local to the procedure instance. 

This memory device is initialized upon procedure 

entry according to section 3.2.4. 

The value or reference assigned is a suitably trans­

formed representation of the one obtained by evalu­

ating the right part of the assignment. If the right 

part is itself an assignment, the value or reference 

obtained is a copy of that of its constituent left 

part after that assignment operation has been completed. 

Any expression which is, or is part of, the left 

part of an assignment is evaluated prior to the 

evaluation of the right part. 

For a detailed description of the text value assign­

ment, see section 10.6. There is no value assign­

ment operation for objects. 



- 45 -

The type of the value or reference obtained by evaluating 

the right part, must coincide with the type of the 

left part, with the exceptions mentioned in the following 

sections. 

If the left part of an assignment is a formal parameter, 

and the type of the corresponding actual parameter does 

not coincide with that of the formal specification, 

then the assignment operation is carried out in two 

steps. 

1) An assignment is made to a fictitious variable of 

the type specified for the formal parameter. 

2) An assignment statement is executed whose left part 

is the actual parameter and whose right part is the 

fictitious variable. 

The value or reference obtained by evaluating the 

assignment is, in this case, that of the fictitious 

variable. 

For text reference assignment see section 10.5. 

6.1,2.1 Arithmetic value assignment 

In accordance with ALGOL 60, any arithmetic value may 

be assigned to a left part of type real or integer. 

If necessary, an appropriate transfer function is invoked. 

Example: 

Consider the statement (not a legal one 1n ALGOL 60): 

X := 1 := Y := F := 3.14 

where X and Y are real variables, 1 is an integer 

variable, and Fis a formal parameter called by 



- 46 -

name and specified real. If the actual parameter for 

F is a real variable, then X, i, Y and Fare given the 

values 3,3,3.14 and 3.14 respectively. If the actual 

parameter is an integer variable, the respective values 

will be 3,3,3.14 and 3. 

6.1.2.2 Object reference assignment 

Let the left part of an object reference assignment 

be qualified by the class Cl, and let the right part 

be qualified by Cr. If the right part is itself a 

reference assignment, Cr is defined as the qualification 

of its constituent left part. Let V be the value 

obtained by evaluating the right part. The legality 

and effect of the reference assignment depend on 

relationships between Cr, Cl and V. 

Case 1. Cl is of the class Cr or outer to Cr: 

The reference assignment is legal and the 

assignment operation is carried out. 

Case 2. Cl is inner to Cr: 

The reference assignment is legal. The 

assignment operation is carried out if V 

is none or is an object belonging to the 

caass Cl or innracters 

class Cl or a class inner to Cl. If not, 

the execution of the reference assignment 

constitutes a run time error. 

Case 3. Cl and Cr satisfy neither of the above 

relations: 

The reference assignment is illegal. 

Similar rules apply to reference assignments implicit 

in for clauses and the transmission of parameters. 



6.2 

6.2.1 

- 47 -

Example 1: 

Let "Gauss" be the class declared in the example of 

the section 2.2. 

ref (Gaussj G5, GlO; 

G~ :- new Gauss(5); GlO new Gauss(lO); 

Ths values of G5 and GlO are now Gauss objects. 

See also example 1 of section 7.1.2. 

Example 2: 

Let "point" and "polar" be the classes declared in 

the example of section 2.2.2. 

ref (point) Pl, P2; ref (polar) P3; 

Pl :- new polar l3,4); P2 :- new point (5,6); 

Now the statement "P3 :- Pl" assigns to P3 a reference 

to the "polar" object which is the value of Pl. The 

statement "P3 :- P2" would cause a run time error. 

For statements 

Syntax 

<controlled variable> ::= <simple variable> 

<controlled statement> ::= <statement> 

<for statement> ::= <for clause><controlled statement>! 

<label> : <for statement> 

<for clause> ::= for <controlled variable> 

<for right part> do 

<for right part> ::= :=<value for list>! 

:-<object for list> 

<value for list> ::= <value for list element>! 

<value for list>, 

<value for list element> 



6. 2. 2 

6. 2. 3 

- 48 -

<object for list> ::= <object for list element>! 

<object for list>, 

<object for list element> 

<value for list element> ::= <value expression>! 

<arithmetic expression> step <arithmetic 

expression> until <arithmetic expression>! 

<value expression> while <Boolean expression> 

<object for list element> ::= <object expression>! 

<object expression> while <Boolean expression> 

Semantics 

A for clause causes the controlled statement to be 

executed repeatedly zero or more times. Each execution 

of Lhe controlled statement is preceded by an assign­

ment to the controlled variable and a test to determine 

whether this particular for list element is exhausted. 

Assignments may change the value of the controlled 

variable during execution of the controlled statement. 

For list elements 

The for list elements are considered in the order in 

which they are written. When one for list element 

is exhausted, control proceeds to the next, until 

the last for list element in the list has been 

exhausted. Execution then continues after the con­

trolled statement. 

The effe~t of each type of for list element is 

defined below using the following notation: 

C: controlled variable 

V: value expression 

O: object expression 

A: arithmetic expression 

B: Boolean expression 

S: controlled statement 



- 49 -

The effect of the occurrence of expressions as for 

list elements may be established by textual replace­

ment in the definitions. 

a,B,cr are different identifiers which are not 

used elsewhere in the program. cr identifies a 

non-local simple variable of the same type as 

A2° 

1. V 
---·-------

C:= V; 

S; 

next for list element 

2. A1 step A2 until A3 
======-=-----=-==--=-=-

C := A1; 

a : = A2; 

a: if cr X(C-A3) > 0 then SQ to S; 

S; 

a : = A2; 

C := C + cr; 

.9.2 to a; 

B: next for list element 

J. V while B 
=========-=--

a: C := V; 

if -r B then .9.2 

B: 

4. 0 
===== 

S; 

~ to a; 

next for 

C :- 0; 

S; 

list 

to B; 

element 

next for list element 



6.2.4 

6.2.5 

- 50 -

5. 0 while B 

a: C . - O; 

if 7B then 90 to 8; 
S; 

9-2 to a; 

8: next for list element 

The controlled variable 

The semantics of this section (6.2) is valid when 

the controlled variable is a simple variable which 

is not a formal parameter called by ~ame, or a 

procedure identifier. 

The cases of formal parameter called by~~, pro­

cedure identifier, subscripted variable and remote 

identifier are presently under study by a Technical 

Committee appointed by the SIMULA Standards Group. 

To be valid, all for list elements in a for­

statement (defined by textual substitution, 

section 6.2.3) must be semantically and syntact­

ically valid. 

In particular each implied reference assignment 

in eases 4 and 5 of section 6.2.3 is subject to 

the rules of section 6.1.2.2. 

The value of the.-~~~trolled variable upon exit 

Upon exit from the for statement, the controlled 

variable will have the value given to it by the last 

(explicit or implicit) assignment operation. 



6.2.6 

6.3 

6.3.l 

6.3.2 

- 51 -

Labels local to the controlled statement 

The controlled statement always acts as if it were 

a block. Hence, labels on or defined within the 

controlled statement may not be accessed from with­

out the controlled statement. 

Prefixed blocks 

Syntax 

<block> ::= <ALGOL block>/ 

<prefixed block> 

<block prefix> ::= 

<class identifier><actual parameter part> 

<main block> ::= <unlabelled block>/ 

<unlabelled compound> 

<unlabelled prefixed block> ::= 

<block prefix><main block> 

<prefixed block> ::= <unlabelled prefixed block>/ 

<label>:<prefixed block> 

Semantics 

An instance of a prefixed block is a compound object 

whose prefix part is an object of the class identified 

by the block prefix, and whose main part is an instance 

of the main block. The formal parameters of the former 

are initialized as indicated by the actual parameters 

of the block prefix. The concatenation is defined 

by rules similar to those of section 2.2.2. 

The following restrictions must be observed: 

1) A class in which reference is made to the class 

itself through use of "this", is an illegal 

block prefix. 



- 52 -

2) The class identifier of a block prefix must refer 

to a class local to the smallest block enclosing 

the prefixed block. If that class identifier is that 

of a system class, it refers to a fictitious decla­

ration of that system class occurring in the block 

head of the smallest enclosing block. 

An instance of a prefixed block is a detached object 

(cf. section 9). A program is enclosed in a prefixed 

block (cf. section 11) and is therefore detached. 

Example: 

Let "hashing" be the class declared in the example of 

section 2.2.3. Then within the prefixed block, 

hashing (64) begin integer procedure hash(T); value T; 

text T; • ■ ■ ■ I I I I I I I I , 

end 

a "lookup" procedure is available which makes use of 

the "hash" procedure declared within the main block. 



7. 

- 53 -

Remote accessing 

An attribute of an object is identified completely 

by the following items of information: 

1) the object, 

2) a class which is outer to or equal to that of 

the object, and 

3) an attribute identifier defined in that class 

or in any class belonging to its prefix sequence. 

Item 2 is textually defined for any attribute identifi­

cation. The prefix level of the class is called the 

"access level" of the attribute identification. 

Consider an attribute identification whose item 2 is 

the class c. Its attribute identifier, item 3, is 

subjected to the same identifier substitutions as those 

which would be applied to an uncommitted occurrence of 

that identifier within the main part of C, at the time 

of concatenation. In that way, name conflicts between 
" attributes declared at different prefix levels of 

an object are resolved by selecting the one defined 

at the innermost prefix level not inner to the access 

level of the attribute identification. 

An uncommitted occurrence within a given object of the 

identifier of an attribute of the object is itself a 

complete attribute identification. In this case items 

land 2 are implicitly defined, as respectively the 

given object and the class associated with the prefix 

level of the identifier occurrence. 

If such an identifier occurrence is located in the body 

of a procedure declaration (which is part of the object), 

then, for any dynamic instance of the procedure, the 



7.1 

7.1.1 

- 54 -

occurrence serves to identify an attribute of the given 

object, regardless of the context in which the procedure 

was invoked. 

Remote accessing of attributes, i.e. access from 

outside the object, is either through the mechanism 

of "remote identifiers" ("dot notation") or through 

"connection". The former is an adaptation of a 

technique proposed in [3], the latter corresponds to 

the connection mechanism of SIMULA I [2]. 

A text reference is (itself) a compound structure in 

the sense that it has attributes accessible through 

the dot notation. 

Remote identifiers 

Syntax 

<attribute identifier> .. - <identifier> 

<remote identifier> ::= 

<simple object expression>.<attribute identifier>! 

<simple text expression>.<attribute identifier> 

<identifier l> ::= <identifier>! 

<remote identifier> 

<variable identifier l> ::= <identifier l> 

<simple variable l> ::= <variable identifier l> 

<array identifier l> ::= <identifier l> 

<variable> ::= <simple variable l> I 
<array identifier l>[<subscript list>] 

<procedure identifier l> ::= <identifier l> 

<function designator>::= 

<procedure identifier l><actual parameter part> 

<procedure statement> ::= 

<procedure identifier l><actual parameter part> 

<actual parameter> ::= <expression>! 

<array identifier l>I 

<switch identifier>[ 

<procedure identifier l> 



7.1.2 

- 55 -

Semantics 

Let X be a simple object expression qualified by the 

class C, and let A be an appropriate attribute 

identifier. Then the remote identifier ''X.A", if valid, 

is an attribute identification whose item 1 is the 

value X and whose item 2 is c. 

The remote identifier X.A is valid if the following 

conditions are satisfied: 

1) The value Xis different from none. 

2) The object referenced by X has no class attribute 

declared at any prefix level equal or outer to 

that of C. 

Condition 1 corresponds to a run time check which causes 

a run-time error if the value of Xis none. 

Condition 2 is an ad hoc rule intended to simplify 

the language and its implementations. 

A remote identifier of the form 

<simple text expression>.<attribute identifier> 

identifies an attribute of the text reference obtained 

by evaluating the simple text expression, provided 

that the attribute identifier is one of the procedure 

identifiers listed in section 10.1. 

Example 1: 

Let G5 and Gl □ be variables declared and initialized 

as in example 1 of section 6.1.2.2. Then an expression 

of the form 

G5.integral( ..... ) or Gl □ .integral( ..... ) 



7.2 

7.2.1 

- 56 -

is an approximation to a definite integral obtained 

by applying respectively a 5 point or a 10 point 

Gauss formula. 

Example 2: 

Let Pl and P2 be variables declared and initialized 

as in example 2 of section 6.1.2.2. 

of the expression 

Pl.plus (P2) 

Then the value 

is a new "point" object which represents the vector 

sum of Pl and P2. The value of the expression 

Pl~ polar.plus (P2) 

1s a new "polar" object representing the same vector 

sum. 

Connection 

Syntax 

<connection block l> ::= <statement> 

<connection block 2> ::= <statement> 

<when clause> ::= 

when <class identifier>do<connection block l> 

<otherwise clause> ::= <empty>j 

otherwise<statement> 

<connection part> ::= <when clause>j 

<connection part><when clause> 

<connection statement> ::= 

inspect <object expression> 

<connection part><otherwise clause>j 

inspect <object expression> do 

<connection block 2><otherwise clause>j 

<label>:<connection statement> 



7.2.2 

- 57 -

A connection block may itself be a connection statement, 

which, in that case,is the largest possible connection 

statement. 

Semantics 

The purpose of the connection mechanism is to provide 

implicit definitions of the above items 1 and 2 for 

certain attribute identifications within connection 

blocks. 

The execution of a connection statement may be described 

as follows: 

1) The object expression of the connection statement 

is evaluated. Let its value be X. 

2) If when-clauses are present they are considered one 

after another. If Xis an object belonging to a 

class equal or inner to the one identified by a when­

clause, the connection block 1 of this when-clause 

is executed, and subsequent when-clauses are skipped. 

Otherwise the when-clause is skipped. 

3) If a connection block 2 is present it is executed, 

except if Xis~ in which case the connection 

block is skipped. 

4) The statement of an otherwise clause is executed 

if Xis~, or if Xis an object not belonging 

to a class included in the one identified by any 

when-clause. Otherwise it is skipped. 

A statement which is a connection block 1 or a 

connection block 2 acts as a block, whether it takes 

the form of a block or not. It further acts as if 

enclosed in a second fictitious block, called a 



- 58 -

"connection block". During the execution of a connection 

block the object Xis said to be "connected". A 

connection block has an associated "block qualification", 

which is the preceding class identifier for a connection 

block 1 and the qualification of the preceding object 

expression for a connection block 2. 

Let the block qualification of a given connection block 

be C and let A be an attribute identifier defined at 

any prefix level of c. Then any uncommitted occurrence 

of A within the connection block is given the local 

significance of being an attribute identification. Its 

item 1 is the connected object, its item 2 is the block 

qualification c. 

It follows that a connection block acts as if its local 

quantities are those attributes of the connected object 

which are defined at prefix levels outer to and including 

that of c. (Name conflicts between attributes defined 

at different prefix levels of Care resolved by 

selecting the one defined at the innermost prefix level.) 

Example: 

Let "Gauss" be the class declared in the example of 

section 2.2. Then within the connection block 2 of 

the connection statement 

inspect new Gauss(5) do begin ....... end 

a procedure "integral" is available for numeric 

integration by means of a 5 point Gauss formula, 



8. 

8.1 

- 59 -

Procedures and parameter transmission 

Syntax 

<procedure heading> ::= <procedure identifier> 

<formal parameter part>; 

<mode part><specification part> 

<mode part> ::= <value part><name part>J 

<name part> 

<specifier> 

.. -

.. -.. -

<name part><value part> 

name <identifier list>;/ 

<empty> 

<type > I 
arrayJ 

<type> array/ 

labelj 

switch! 

procedureJ 

<type> procedure 

<parameter delimiter> ::=, 

For actual parameter see section 7.1.1. 

8.2 Semantics 

With respect to procedures, SIMULA 67 deviates 

from ALGOL 60 on the following points: 

1) Specification is required for each formal parameter. 

2) The ALGOL specifier "string" is replaced by "text". 

3) A "name part" is introduced as an optional part 

of a procedure heading to identify parameters 

called by name. Call by name is not the default 

parameter transmission mode. 

4) call by name is redefined in the case that the type 

of actual parameter does not coincide with that of 

the formal specification. 



8.2.1 

- 60 -

5) Exact type correspondence is required for array 

parameters not called by value. 

There are three modes of parameter transmission: 

"call by value", "call by reference", and "call by 

name". 

The default transmission mode is call by value for 

value type parameters and call by reference for all 

other kinds of parameters. 

The available transmission modes are shown in fig. 

8.1 for the different kinds of parameters to pro­

cedures. The upper left subtable defines transmission 

modes available for parameters of class declarations. 

Transmission modes 
Parameter by value by reference by name 

value type D I 0 

object reference I D 0 

text 0 D 0 --
value type array 0 D 0 

reference type array I D 0 

erocedure I D 0 

type erocedure I D 0 

label I D 0 

switch I D 0 

D: default mode 0: optional mode I: illegal 

fig. 8.1 Transmission modes 

Call by value 

A formal parameter called by value designates initially 

a local copy of the value (or array) obtained by 

evaluating the corresponding actual parameter. The 

evaluation takes place at the time of procedure entry 

or object generation. 



8.2.2 

- 61 -

The call by value of value type and value type 

array parameters is as in ALGOL 60. 

A text parameter called by value is a local variable 

initialized in two steps, informally described by the 

statements: 

FP . blanks (AP.length) FP := AP; 

where FP is the formal parameter and AP is the value 

of the actual parameter. Any text value is a legal 

actual parameter in this case. 

Value specification is redundant for a parameter of 

value type. 

There is no call by value option for object reference 

parameters and reference type array parameters. 

Call by reference 

A formal parameter called by reference designates 

initially a local copy of the reference obtained by 

evaluating the corresponding actual parameter. The 

evaluation takes place at the time of procedure entry 

or object generation. 

A reference type formal parameter is a local variable 

initialized by a reference assignment 

FP :- AP 

where FP is the formal parameter and AP is the reference 

obtained by evaluating the actual parameter. The 

reference assignment is subject to the rules of section 

6.1.2.2. Since in this case the formal parameter is a 

reference type variable, its contents may be changed 

by reference assignments within the procedure body, 

or within or without (by remote accessing) a class 

body. A string is not a legal actual parameter for 

a text parameter callee by reference. 



8.2.3 

- 62 -

Although array-, procedure-, label-, and switch 

identifiers do not designate references to values, 

there is a strong analogy between references in the 

strict sense and references to entities such as arrays, 

procedures (i.e. proceclure declarations), program points 

and switches. Therefore a call by reference mechanism 

is defined in these cases. 

An array-, procedure-, label-, or switch parameter 

called by reference cannot be chang8d from within the 

procedure or clas~ body; it will thus reference the same 

entity throughout its scope. However, the contents of 

an array called by reference may well be changed 

through appropriate assig:.-1ments to its elements. 

For an array parameter called by reference, tDe type 

associated with the actual parameter must coincide with 

that of the formal specification. For a procedure 

param<::•ter called by reference, the type associa t.ed with 

the actual parameter must coincide with or be subordinate 

to that of the formal specification. 

Call by name 

Call by name is an optional transmission mode available 

for parameters to procedures. It represents a textual 

replacement as in ALGOL 60. 

However, for an expression within a procedure body which 

is 

1) a formal parameter called by name, 

2) a subscripted variable whose array identifier is 

a formal parameter called by name, or 

3) a function designator whose procedure identifier 

is a formal parameter called by name, 



- 63 -

the following rules apply: 

1} Its type is that prescribed by the corresponding 

formal specification. 

2} If the type of the actual parameter does not 

coincide with that of the formal specification, 

then an evaluation of the expression is followed 

by an assignment of the value or reference obtained 

to a fictitious variable of the latter type. 

This assignment is subject to the rules of section 

6.1.2. The value or reference obtained by the 

evaluation is the contents of the fictitious 

variable. 

Section 6.1.2 defines the meaning of an assignment to 

a variable which is a formal parameter called by name, 

or is a subscripted variable whose array identifier is 

a formal parameter called by name, if the type of the 

actual parameter does not coincide with that of the 

formal specification. 

Assignment to a procedure identifier which is a formal 

parameter is illegal, regardless of its transmission mode. 

Notice that each dynamic occurrence of a formal parameter 

called by name, regardless of its kind, may invoke 

the execution of a non-trivial expression, e.g. if its 

actual parameter is a remote identifier. 



- 64 -



- 65 -

9. Sequencing 

9.1 Blocks and dynamic scopes 

The constituent parts of a program execution are 

dynamic instances of blocks. The different kinds 

of blocks fall into three categories according to 

the possible interrelationships and states of 

execution of the block instances. 

1) Prefixed blocks. 

2) Sub-blocks, procedure bodies and connection blocks. 

3) Class bodies. 

A block instance is, at any given time, in one of three 

states of execution: "attached", "detached" or 

"terminated''. The possible and initial states are 

de=ined in fig. 9.1.: 

Block category Possible states Initial state 

1 D D 

2 A A 

3 A,D,T A 

A: attached D: detached T: terminated 

Fig. 9.1 Execution states 

A program conforming to ALGOL 60 only contains blocks 

of category 2, except the outermost one which is of 

category 1 (see section 11). An execution of any such 

program is a simple dynamically nested structure. 

A block instance of category 2 is in the attached state 

and is said to be "attached to" the smallest dynamically 

enclosing block instance. E.g. an instance of a procedure 

body is attached to the block instance containing the 

corresponding procedure call. 



- 66 -

The "program sequence control", PSC, refers at any 

time to that program point within a block instance 

which is currently being executed. For brevity we 

shall say that the PSC is "positioned" at the program 

point and is "contained" in the block instance. If A 

is the block instance containing the PSC, then A,and 

any block instance dynamically enclosing A,is said to 

be "operating". 

The entry into any block invokes the generation of an 

instance of that block, whereupon the PSC enters the 

block instance. If and when the PSC leaves a block 

instance of category 1 or 2 through its end or by a 

go to statement, that block instance is deleted. 

An object (i.e., a block instance of category 3) is 

initially attached to the block instance containing the 

corresponding object generator. It may enter the 

detached state by executing the statement "detach" 

{see section 9.2.1). If and when the PSC leaves the 

object through its end or by a go to statement, the 

object becomes terminated. 

A block instance is said to be "local to" the one which 

contains its describing text. E.g. an object belonging 

to a given class is local to the block instance 

containing the class declaration. 

A block instance A is said to "enclose" a second one B 

if: 

1) Bis attached and is dynamically enclosed by A, 

or 

2) Bis detached or terminated and is local to A or 

to a block instance dynamically enclosed by A, 

or 



- 67 -

3) there is a detached object C local to A or to 

a block instance dynamically enclosed by A, 

such that C encloses B. 

Whenever a block instance is deleted, any block instance 

enclosed by it is also deleted. It is a consequence 

of the language structure that an object, at the time of 

its deletion, cannot be referenced by any computable 

object reference expression. The dynamic scope of an 

object is thus limited by that of its class declaration. 

However, an implementation may further reduce the 

effective life spans of objects by techniques such as 

''garbage collection". 

Notice that arrays and text objects cannot, in general, 

be deleted together with the block instance in which 

they are declared. 

9.2 Quasi-parallel sequencing 

A program execution can be described as a tree structure 

whose branching nodes are instances of prefixed blocks. 

A subtree whose "root" is a prefixed block instance is 

called a "quasi-parallel system". The prefixed block 

instance, including block instances dynamically enclosed 

by it, is called the "main program" of the quasi-parallel 

system. 

A quasi-parallel system has an associated "system level", 

which is the number of prefixed block instances enclosing 

its main program. The program as a whole is a quasi­

parallel system at system level zero. 

A quasi-parallel system consists of system "components" 

which are the main program and any detached object, 

including block instances dynamically enclosed by the 

object, whose smallest enclosing instance of a prefixed 



- 68 -

block is the main program. The components of a 

quasi-parallel system are said to be "detached" at 

the system level of the quasi-parallel system. 

Any system component has an associated "local sequence 

control", LSC. Associated with any quasi-parallel 

system is an "outer sequence control", OSC. The OSC 

at system level zero coincides with the PSC. The OSC 

of a system at level k (k ~ 1) coincides with the LSC 

of that component at system level k-1 which encloses 

the given system. 

For any given quasi-parallel system, one and only one of 

its components is said to be "active". The LSC of that 

component coincides with the OSC of the quasi-parallel 

system. 

An instance of a prefixed block is initially active, 

i.e. it contains the OSC of its own quasi-parallel 

system. The OSC of a system may move from one component 

to another as the result of statements described below. 

The LSC of a component not containing the OSC remains 

positioned at the program point at which the OSC left 

the object the last time. 

At any given time, there exists a sequence of system 

components X ,x1 , ...... , X such that: o n 

1) Xk is active at system level k (k = 0,1, .... ,n). 

2) Xk is enclosed by Xk-1 (k = 1,2, .... ,n). 

3) There is no quasi-parallel system enclosed by X . n 

This sequence is called the "operating chain". System 

components on the operating chain all contain the PSC and 

are therefore said to be operating. The LSC of a system 

component remains fixed as long as it is not a member 

of the operating chain. 



9.2.1 

- 69 -

The detach statement 

Let the smallest operating block instance be x. 

If Xis an attached objec~ a detach statement has the 

following effects: 

1) The object becomes detached at the system level of 

the smallest enclosing prefixed block instance, its 

LSC positioned at the end of the statement. 

2) The PSC returns to the block instance to which X 

was attached and resumes operations after the 

object generator which caused the generation of 

X. A reference to Xis the result of that expression. 

If Xis a detached object which is component of a quasi­

parallel system S, a detach statement operates as follows: 

1) The OSC of S leaves X. As a consequence Xis 

removed from the operating chain. Its LSC 

remains positioned at the en<l of the statement. 

2) The OSC of Senters the main program of Sat the 

current position of its LSC. As a consequence 

the main program of Sand possibly system components 

at system levels higher than that of S become 

operating. 

If Xis an instance of a prefixed block, a detach 

statement has no effect. 

If Xis any block instance other than an object or 

a prefixed block insrance, execution of a detach 

statement constitutes an error. 



9. 2. 2 

9.2.3 

- 70 -

The resume statement 

"resume" is formally a procedure with one object 

reference parameter qualified by a fictitious class 

including all classes. 

Let the actual parameter of a resume statement 

reference a detached object Y, which is a component 

of a quasi-parallel system S. It is a consequence 

of the language conventions that Y can only be 

referenced from within a block instance which is 

or is enclosed by a component X of S. Xis 

currently operating. The resume statement has the 

following effects: 

1) The OSC of S leaves X. As a consequence X and 

any operating components at higher system levels 

are removed from the operating chain. The LSC 

of each component remains at the end of the 

resume statement. 

2) The OSC of Senters Y at the current position 

of its LSC. As a consequence Y, and possibly 

a sequence of components at higher system levels, 

become operating. 

If the actual parameter of a resume statement does 

not refer to a detached object, its execution 

constitutes an error. 

Object "end" 

The effect of the PSC passing through the final end 

of an object is the same as that of a detach statement, 

except that the object becomes terminated, not 

detached, and thus loses its LSC. 



9.2.4 

- 71 -

go to statemen~s 

A designational expression defines a block instance 

and a program point local to this block instance. 

A go to statement leading to a block instance is 

valid if and only if this block instance is operating. 

This restriction implies that a go to statement 

leading out of a detached object must also lead out 

of the smallest enclosing prefixed block. The 

restriction further implies that a go to statement 

leading to a connected label is valid if and only if 

the connected object is also operating. The go to 

statement will lead to the label in the operating 

block instance. 

Block instances left through a go to statement 

become terminated. 



- 72 -



- 73 -

10. The type "text" 

Cf. sections 3.2.3, 4.4.2, 5.2 and 5.4. 

10.1 Text attributes 

10.2 

The following procedures are attributes of any text 

reference. They may be acce~sed by remote identifiers 

of the form 

<simple text expression>.<procedure identifier> 

integer procedure length 

text procedure main 

iHteger procedure pos 

procedure setpos 

Boolean procedure more 

character procedure getchar 

procedure putchar 

text procedure sub 

text procedure strip 

integer procedure getint 

real procedure getreal 

integer procedure getfrac 

procedure putint 

procedure putfix 

procedure putreal 

procedure putfrac 

(cf. 10.2) 

(cf. 10.2) 

(cf. 10.3) 

(cf. 10.3) 

(cf. 10.3) 

(cf. 10.3) 

(cf. 10.3) 

(cf. 10.7) 

(cf. 10.7) 

(cf. 10.9) 

(cf. 10.9) 

(cf. 10.9) 

(cf. 10.10) 

(cf. 10.10) 

(cf. 10.10) 

(cf. 10.10) 

In the following section "X" denotes a text reference 

unless otherwise is specified. 

"length" and "main" 

integer procedure length; 

The value of "X.length" is the number of characters 

of the text value referenced by X (cf. section 3.2.3). 

"notext.length" is equal to zero. 



10.3 

- 74 -

text procedure main; 

"X.main" is a refe:r.ence to the text object which 

is, or contains, the text value referenced by X (cf. 

section 3.2.3). 

"notext.main" is identical to "notext". 

The following relations are true for any text 

reference X. 

X.main.length ~ X.length 

x.main.main == X.main 

Character access 

The characters of a text are accessible one at a 

time. Any text reference contains a "position 

indicator", which identifies the currently accessible 

character, if any, of the referenced text object. The 

position indicator of a given text reference Xis an 

integer in the range [l,X.length+l]. 

The position indicator of notext is equal to 1. A 

text reference obtained by calling any system defined 

text procedures(i.e. main, sub and strip) has its 

position indicator equal to 1. 

The position indicator of a given text reference may 

be altered by the procedures "setpos", "getchar", and 

"putchar" of the text reference. Also any of procedures 

defined in sections 10.9 and 10.10 may alter the 

position indicator of the text reference which contains 

the procedure. 

Position indicators are ignored and left ·unaltered by 

text reference relations, text value relations and text 

value assignments. 



- 75 -

The following procedures are facilities available 

for character accessing. They are oriented towards 

sequential access. 

integer procedure pos; 

The value of "X.pos" is the current value of the 

position indicator of the text reference X. 

procedure setpos(i}; integer i; 

The effect of "X.setpos(i)" is to assign the integer 

i to the position indicator of X, if i is in the range 

[l,X.length+l]. Otherwise the value X.length+l is 

assigned. 

Boolean procedure more; 

The value of "X.more" is true if the position indicator 

is in the range [l,X.length]. Otherwise the value is 

false. 

character procedure getchar; 

The value of "X.getchar" is a copy of the currently 

accessible character of X, provided that the current 

value of X.more is true. Otherwise the evaluation 

constitutes a run time error. In the former case the 

position indicator of Xis increased by one after the 

copying operation. 

procedure putchar(c); character c; 

The effect of "X.putchar(c)" is to replace the currently 

accessible character of X by a copy of the character c 

provided that the current value of X.more is true. 



10.4 

- 76 -

Otherwise the execution constitutes a run time 

error. In the former case the position indicator 

of Xis increased by 1 after the replacement 

operation. 

Example: 

procedure compress(T); text T; 

begin text U; characttn· c; 

T.setpos(l); U :- T; 

for c := c while U.more do 

begin c := U.getchar; 

if c -:/, ' ' then T .putchar(c) 

end; 

for C .- C while T.more do T. putchar(' 

end compress; 

The procedure will rearrange the characters 

' ) 

of 

the text value referenced by its parameter. The 

non-blank characters are collected in the leftmost 

part of the text and the remainder, if any, is 

filled with the blank characters. Since the 

parameter is called by reference, it~ position 

indicator is not altered. The character constant 
I I represents a blank character value. 

Text generation 

The following basic procedures are available for 

text object generation. The procedures are non­

local. 

text procedure blanks{n); integer n; 

The reference value is a new text object of length 

n, filled with blank characters. If n=0, the reference 

value is notext. For n<0, a run-time error will occur. 



10.5 

10.6 

- 77 -

text procedure copy (T); value T; text T; 

The referenced value is a new text object, which is 

a copy of the text value which is (or is referenced 

by) the actual parameter. 

Example: 

The statement "T :- copy ("ABC")". where Tis a text 

variable, is eq•Jivalent to the compound statement 

begin T blanks(3); T ,_ "ABC" end 

Text reference assignment 

Syntax, see section 6.1. 

A text reference assignment causes a text reference 

to be assigned as the new contents of the left part. 

The text reference is a copy of the one which is obtained 

by evaluating the right part (see section 6.2), and 

includes a copy of its position indicator. 

If Xis a text variable and Y is a text reference, then 

after the execution of the reference assignment "X ·-

the relations "X 

the value true. 

Y" 

Text value assignment 

and "X.pos = Y.pos" both have 

Syntax, see section 6.1. 

Let the left part of a text value assignment be a text 

of length Ll, and let the right part be of length Lr. 

If the right part is itself a text value assignment, 

Y" 
' 

Lr is defined as the length of its constituent left part. 



10.7 

- 78 -

The effect of the text value assignment depends 

on the relationship between Ll and Lr. 

Ll = Lr 

Ll > Lr 

Ll < Lr 

The character contents of the right 

part text are copied to the left part 

text. 

The character contents of the right 

part text are copied to the first Lr 

characters of the left part text. The 

remaining Ll-Lr characters of the left 

part text are filled with blanks. 

The statement consLiLutes a run time 

error. 

The effect of a text value assignment is implementation 

defined if the left part and right part refer to 

overlapping texts. 

The position indicators of the left and the right 

parts are ignored and remain unchanged. 

If X and Y are non-overlapping texts of the same length 

then after the execution of the value assignment 

"X := Y", the relation ;'X = Y" is true. 

Subtexts 

Two procedures are available for referencing subtexts. 

text procedure sub(i,n); integer i,n; 

Let i and n be integers such that i ~ 1, n ~ O, and 

i + n .::_ X.length+l. Then the expression "X.sub(i,n) 11 

refers to that part of the text value X whose first 



10.8 

10.8.1 

- 79 -

character is character number i of X, and which 

contains n consecutive characters. The position 

indicator of the text reference is equal to 1, and 

defines a local character numbering within the subtext. 

The position indicator of Xis ignored and not altered. 

In the exceptional case n = O, the reference obtained 

is notext. If i and n do not satisfy the above 

conditions, a run time error is caused. 

If legal, the Boolean expressions 

X.sub(i,n).sub(j,m) -- x.sub(i+j-1,m), 

and n i o~x.main -- x.sub(i,n) .main 

both have the value true. 

text procedure strip; 

The expression "X.strip" is equivalent to "X.sub(l,n)", 

where n is the smallest integer such that the remaining 

characters of X, if any, are blanks. 

Let X and Y be text references. Then after the value 

assignment "X := Y", if legal, the relation 

x.strip = Y.strip 

has the value true. 

Numeric text values 

Syntax 

<EMPTY> 

<DIGIT> 

<DIGITS> 

<BLANKS> 

.. -

.. -.. -
.. -.. -
.. -.. -

0111213141516171819 

<DIGIT>l<DIGITS><DIGIT> 

<EMPTY>l<BLANKS><BLANK> 



10.8.2 

10.9 

- 80 -

<SIGN> ::= <EMPTY>l+l-

<SIGN PAR'!'> : := <BLANKS><SIGN><BLANKS> 

<INTEGER ITEM>::= <SIGN PART><DIGITS> 

<FRACTION>::= .<DIGITS> 

<DECIMAL ITEM> ::= <INTEGER ITEM>I 

<EXPONENT> 

<REAL ITEM 

<GROUPS> 

.. -

<SIGN PART><FRACTION>j 

<INTEGER ITEM><FRACTION> 

1o<INTEGER ITEM> 

<DECIMAL ITEM>j 

<SIGN PART><EXPONENT>I 

<DECIMAL ITEM><EXPONEW.L'> 

- <DIGITS>j 

<GROUPS><BLANKS><DIGITS> 

<GROUPED ITEM> ::= <SIGN PART><GROUPS>I 

<SIGN PART>.<GRODPS>I 

<SIGN PART><GROUPS>.<GROUPS> 

<NUMERIC ITEM> ::= <REAL ITEM>I 

<GROUPED ITEM> 

Semantics 

The syntax applies to sequ~nces of characters, i.e. 

to text values. <BLANK> stands for a blank character. 

A numeric item is a cha::::-acter sequence which is a 

production of <NUMERIC ITEM>. "Edi ting" and 

"de-editing" procedures are available for the 

conversion between arithmetic values and text 

values which are numeric items, and vice versa . 

.:_De-editing" procedures 

A de-editing procedure of a given text reference X 

operates in the following way: 



- 81 -

1) The longest numeric term, if any, of a given form 

is located, which is contained in X and contains 

the first character of X. (Notice that leading 

blanks are accepted as part of any numeric item.) 

2) If no such numeric item is found, a run time error 

is caused. 

3) Otherwise the numeric item is interpreted as a 

number. 

4) If that number is outside a relevant imple­

mentation defined range, a runtime error is caused. 

5) Otherwise an arithmetic value is computed, which 

is equal to or approximates that number. 

6) The position indicator of Xis made one greater 

than the position of the last character of the 

numeric item. 

The following de-editing procedures are available. 

integer procedure getint; 

The procedure locates an INTEGER ITEM. The function 

value is equal to the corresponding integer. 

real procedure getreal; 

The procedure locates a REAL ITEM. The function 

value is equal to or approximates the corresponding 

number. If the number is an integer within an imple­

mentation defined range, the conversion is exact. 

integer Erocedure getfrac; 

The procedure locates a GROUPED ITEM. In its 

interpretation of the GROUPED ITEM the procedure 



10.10 

- 82 -

will ignore any BLANKS and a possible decimal point. 

The function value is equal to the resulting integer. 

Editing procedures 

Editing procedures of a given text reference X 

serve to convert arithmetic values to numeric items. 

After an editing operation, the numeric item obtained, 

if any, is right adjusted in the text X and preceded 

by as many blanks as necessary to fill the text. The 

final value of the position indicator of Xis equal 

X.length+l. 

A positive number is edited without a sign, a negative 

number is edited with a minus sign immediately pre­

ceding the most significant character. Leading non­

significant zeros are suppressed, except possibly 

in an EXPONENT. 

If Xis identical to notext, a runtime error is 

caused. Otherwise if the text value is too short 

to contain the resulting numeric item, an "edit 

overflow" is caused. Then an implementation defined 

character sequence is edited into the text. In 

addition, an appropriate warning will be given after 

the completion of a program execution if an edit 

overflow has occurred. 

procedure putint(i); integer i; 

The value of the parameter is converted to an INTEGER 

ITEM which designates an integer equal to that value. 

procedure putfix(r,n); real r; integer n; 

The resulting numeric item is an INTEGER ITEM if n = O 

or a DECIMAL ITEM with a FRACTION of n digits if 

n > Q. It designates a number equal to the value of r 



- 83 -

or an approximation to the value of r, correctly rounded 

ton decimal places. If n < 0, a run time error is caused. 

procedure putreal(r,n); real r; integer n; 

The resulting numeric item is a REAL ITEM containing 

an EXPONENT with a fixed implementation defined number 

of characters. The EXPONENT is preceded by a SIGN 

PART if n = O, or by an INTEGER ITEM with one digit 

if n = 1, or if n > 1, by a DECIMAL ITEM with an 

INTEGER ITEM of 1 digit only, and a fraction of 

n-1 digits. If n < 0 a run time error is caused. 

In putfix and putreal, the numeric item designates 

that number of the specified form which differs by 

the smallest possible amount from the value of r or 

from the approximation to the value of r. 

procedure putfrac(i,n); integer i,n; 

The resulting numeric item is a GROUPED ITEM with no 

decimal point if n <= O, and with a decimal point 

followed by total of n digits if n > 0. Each digit 

group consists of 3 digits, except possibly the first 

one, and possibly the last one following a decimal 

point. The numeric item is an exact representation 

of the number i.10-n. 

The editing and de-editing procedures are oriented 

towards "fixed field" text manipulation. 



- 84 -

Example: 

text Tr, type, amount, price, payment; 

integer pay, total; 

Tr:- blanks (80); type:- Tr.sub (1,10); 

amount :- Tr.sub(20,5); price·- Tr.sub (30,6); 

payment :- Tr.sub (60,10); 

if type.strip= "order" then 

begin pay := amount.get-int x price.getfrac; 

total :=total+ pay; 

payment.putfrac (pay,2) 

end 



- 85 -

11. Input-Output 

The semantics of certain I/0 facilities will 

rely on the intuitive notion of "::iles" ("data 

sets"), which are collections of data external 

to the program and organized in a sequential or 

addressable manner. We shall speak of a "sequential 

file" or a "direct file" according to the method of 

organization. 

Examples of sequential files are: 

a batch of cards 

a series of printed lines 

input from a keyboard 

data on a tape 

An example of a direct file is a collection of data 

items on a drum, or a disc, with each item identified 

by a unique index. 

Tne individual logical unit in a file will be called 

an "image". Each "ima,~re" is an ordered :;equence of 

characters. 

I/0 facilities are introduced through block prefixing. 

For the purpose of this presentation, this collection 

of facilities will be described by a class called 

"BASICIO". The class is not explicitly available in 

any users program. 

The program acts as if it were enclosed in the 

following block: 



- 86 -

BASICIO (n) begin 

end 

inspect SYSIN do 

inspect SYSOUT do 

<program> 

where n is an integer constant representing the length 

of a printed line as defined for the particular 

implementation. 

Within the definition of the I/O semantics, identifiers 

in CAPITAL LETTERS represent quantities which are not 

accessible in a user program. A series of dots is used 

to indicate that actual coding is either found elsewhere, 

described informally, or implementation defined. 

The overall organization of "BASICIO" is as follows: 

class BASICIO (LINELENGTH); integer LINELENGTH; 

begin ref (infile) SYSIN; 

ref (infile) procedure sysin; 

sysin :- SYSIN; 

ref (printfile) SYSOUT; 

ref (printfile) procedure sysout; 

sysout :- SYSOUT; 

class FILE . . . . . . . . . . . . . . . . . . , 
FILE class infile . . . . . . . . . . . , 
FILE class outfile . . . . . . . . . . , 
FILE class directfile . . . . . . . . , 
outfile class printfile ..... ; 

SYSIN :- ~ infile ("SYSIN"); 

SYSOUT :- ~ printfile ("SYSOUT"); 

SYSIN.open (blanks(80)); 

SYSOUT.open(blanks(LINELENGTH)); 

inner; 

SYSIN.close; 

SYSOUT.close; 

end BASICIO; 



11.1 

11. l. l 

- 87 -

The integer "LINELENGTH" represents the 

implementation defined number of characters 

in a printed line. 

"SYSIN" and "SYSOUT" represent a card-oriented 

standard input unit and a printer-oriented 

standard output unit. A program may refer to 

the corresponding file objects through "sysin" 

and "sysout" respectively. Most attributes of 

these file objects are directly available as a 

result of the implied connection blocks enclosing 

the program. 

The files "SYSIN" and "SYSOUT" will be opened and 

closed within "BASICIO", i.e. outside the program 

itself. 

The class "FILE" 

Definition 

class FILE(NAME, ..... ); value NAME; text NAME; ..... 

virtual: procedure open, close; 

begin text image; 

Boolean OPEN; 

procedure setpos(i); integer i; 

image.setpos(i); 

integer procedure pos; 

pos := image.pos; 

Boolean procedure more; 

more:= image.more; 

integer procedure length; 

length:= image.length; 

end FILE; 



11.1. 2 

- 88 -

Semantics 

Within a program, an object of a subclass of "FILE" 

is used to represent a file. The following four types 

are predefined: 

"infjle" representing a sequential file where input 

operations (transfer of data from file to 

program) are available. 

"outfile" representing a sequential file where output 

operations (transfer of data from pro9ram to 

file) are available. 

"directfile" representing a direct file with facilities 

for both input and output. 

"printfile" (a subclass of outfile) representing a 

sequential file with certain facilities 

oriented towards line printers. 

An implementation may restrict, in any way, the use of 

these classes for prefixing or block prefixing. System 

defined subclasses may, however, be provided in an 

implementation. 

Each FILE object has a text attribute "NAME". It is 

assumed that this text value identifies an external file 

which, through an implementation defined mechanism, 

remains associated with the FILE object. The effect 

of several file objects representing the same (external) 

file is implementation defin~d. 

The variable "image" is used to reference a text value 

which acts as a "buffer", in the sense that it contains 

the external file image currently being processed. An 

implementation may require that "image", at the time of 

an input or output of an image, refers to a whole text 

object. 



·- 39 -

The procedures "setpos", "pos", "more" and 

"length" are introduced for reasons of convenience. 

A file is either "open" or "closed", as indicated 

by the variable "OPEN". Input or output of 

images may only take place on an open file. A 

file is initially closed (except SYSIN and SYSOUT 

as seen from the program). 

The procedures "open" a:'ld "close" perfoLu the 

opening and closing operations on a file. Since 

the procedures are virtual quantities, they may 

be redefiried completely (i.e. at <lll access levels) 

for objects belonging to special purpose subclasses 

of infile, O\ltfile, etc. 

These procedures will be implementation defined, 

but they must conform to the following pattern. 

procedure open (T, .... ) ; _!:ext T; 

_!?egi.n if OPEN then ERROR; 

OPEN:= true; 

image :- T; 

end open; 

procedure close ( .... ); 

begin 

OPEN:= false; 

. . . . . . . . . ' ... 
image . notext 

end close; 

The procedures may have additional parameters 

and additional effects. 



1.1 . 2 

11.2.1 

- 90 -

The class "infile" 

Def L1i tion 

FILE class infile; virtual: Boolean procedure endfile; 

procedure inimage; 

begin procedure open ... , 

begin .... ; 

ENDFILE := false; 

ima•Je : = no text; 

setpos(length+l) 

~nd or,t:~n; 

procedure close ..... , 

beg Ln .... , 

ENDFILE := true 

end; 

3oolean ENDFILE; 

Boolean procedure endfile; endfile := ENDF'ILE; 

orocedure inimagei 

begin 

if ENDFILE then ERROR; 

..... , 
setpas(l) 

end; 

character procedure inchar; 

begin if 7 more !hen 

begin inimage; if ENDFILE ~hen ERROR 

end; 

inchar := image.getchar 

end inchar; 

Boolean procedure lastitem; 

begin 

L: if ENDFILE then la.sti tem : = true else 

begin 

M: if 7 more then 

begin inimage; 

go to L; 

end; 

if inchar = ' ' then go to M else 

setpos(pos-1); 

end; 

end lastitem; 



- 91 -

integer procedure inint; 

begin text •r; 

if lastitem then ERROR; 

T :- image.sub(pos,length-pos+l); 

inint := T.getint; 

setpos(pos+T.pos-1) 

end inint; 

real procedure inreal; ....... , 
integer procedure infrac; ....... , 
text procedure intext(w)i inteaer w; 

begin text T; integer m; 

T :- blanks (w); 

form:= 1 step 1 until w do 

T.putchar(inchar); 

intext ·- T; 

end intext; 

..... , ENDFILE := true; 

end infile; 

11.2.2. Semantics 

An object of the class "infile" is used to 

represent a sequentially organized input file. 

The pcocedure 11 inir:1a.ge" performs the transfer 

of an exte~nal file image into the text "image". 

A run time error occurs if the text is notext 

or is too short to contain thE external image. 

If it is longer than the external image, the 

latter is left adjusted and the remainder of 

the text is blank filled. The position indicator 

is set to one. 

If an "end of file" is encountered, an implemen­

tation defined text value is assigned to the text 

"imag·e" and the variable "ENDFILE" is given the 

value true. A call on "inimage" when ENDFILE has 

the value true is a run time error. 



- 92 -

The procedure "open" will give ENDFILE the 

value false and set "image" to blanks. Otherwise 

it conforms to the pattern of section 11.1.2. 

The procedure "endfile" gives access to the value 

of the variable ENDFILE. 

The remaining procedures provide mechanisms for 

"item oriented" input, which treat the file as a 

"continuous" stream of characters with a "position 

indicator" (pos) which is relative to the first 

character cf the current image. 

The procedure ''inchar" gives access to and scans past 

the next character. 

If the remainder of the file contains one or more 

non-blank characters, "lastitern" has the value false, 

and the position indicator of the file is set to the 

first non-blank character. 

The procedures "inreal" and "infrac" are defined in 

terms of the corresponding de-editing procedures of 

"image''. Otherwise the definition of either procedure 

is analogous to that of "inint". These three procedures 

will scan past and convert a numeric item containing the 

first non-blank character and contained in one image, 

excepting an arbitrary number of leading blanks. 

The expression "intext(n)" where. n is a non-negative 

integer is a reference to a new text of length n con­

taining the next n characte::-s of the file. "pos" is 

moved to the following character. 

The procedures "inchar" and "intext" may both give 

access to the contents of the image which corresponds 

to an "end of file". 



11.3 

11. 3.1 

- 93 -

Example: 

The following piece of program will input a matrix by 

columns. It is assumed that consecutive elements are 

separated by blanks or contained in different images. 

The last element of each column should be followed 

immediately by an asterisk. 

begin array a[l:n,l:m] integer i,j; 

erocedure error; ...... , 

for j := 1 ~ 1 until m do 

begin for i := 1 ~ 1 until n-1 do 

begin a[i,j] := inreal; 

if (if sysin.more then inchar f ' ' else false) 

then error 

end; 

a[n,j] := inreal; 

if inchar f '*' then error; 

next: end; ..... ; 

end 

The class "outfile" 

Definition 

FILE class outfile; virtual: procedure outimage; 

begin Erocedure open ....... ; 

begin ...... , setpos(l); end; 

Erocedure close ..... , 

Erocedure 

begin ... , 

if pos ":/ 1 then outimage; 

end close; 

outimage; 

begin if\ OPEN then ERROR; 

. . . . . , 
image := notext; 

setpos(l) 

end cmtimage; 

Erocedure outchar(c); character c; 

begin if-1 more the:r:!_ outimage; 

image.putchar(c) 

end outchar; 



11. 3. 2 

- 94 -

text procedure FIELD(w); integer w; 

begin if w ~o V w > length then ERROR; 

if pos + w - 1 >length then outimage; 

FIELD:- image.sub(pos,w); 

setpos(pos+w) 

end FIELD; 

procedure outint(i,w); integer i,w; 

FIELD(w) .putint{i); 

procedure outfix(r,n,w); real r; integer n,w; 

FIELD(w).putfix(r,n); 

procedure outreal(r,n,w); real r; integer n,w; 

FIELD(w).putreal(r,n): 

procedure out[rac(i,n,w); integer i,n,w; 

FIELD(w) .putfrac(i,n); 

proceuure outtext(T); value T; text T; 

FIELD(T.length) := T; 

end outfile; 

Semantics 

An object of the class "outfile" is used to represent 

a sequentially organized output file. 

The transfer of an image from the text "image" to the 

file is performed by the procedure "outimagen. The 

procedure will react in an implementation defined way 

if the image length js not appropriate for the external 

file. The text is cleared to blanks and the position 

indicator is set to 1, after the transfer. 

The procedure "close" will call "outimage" once if the 

position indicator is different from 1. Otherwise it 

conforms to the pattern of section 11.1.2. 

The procedure uoutchar" treats the file as a "continuous" 

stream of characters. 



- 95 -

The remaining procedures provide facilities for "itern­

oriented" output. Each item is edited into a subtext 

of "ima9e", whose first character is t.he one identified 

by the position indicd.tor ,:>f "image", and of a specified 

width. The position indicator is advanced by a corre­

sponding amount. If an item would extend beyond the last 

character of "image", the procedure "outimage" is called 

implicitly prior to the editing operation. 

The procedures "outint", "outfix", "outreal" and "outfrac" 

are defined in terms of the corresponding editing 

procedures of "image". They have an additional 

integer par<1rneter which specifies the width of 

the sut,t.ext into which the item will be edited. 

For the procedure "outtext", the item width is 

equal to the length of the text parameter. Notice 

that this parameter i.s called by value, which means 

that· a text value is an acceptable actual parameter 

of "outtexl:". 



11.4 

11.4 .1 

- 96 -

The class "directfile" 

Note: The definition of "directfile" is presently 

under study by a Technical Committee appointed 

by the SIMULA Standards Group. 

Definition 

FILE class directfile; virtual: Boolean procedure endfile; 

procedure locate,inimage,outimage; 

begin integer LOC; 

integer procedure location; location:= LOC; 

procedure locate(i}; integer i; 

begin if ·7 OPEN then ERROR; 

. . . . . , 
LOC := i 

end locate; 

procedure open 

begin 

. . . . . . , 

....... , 
setpos (1); 

locate(l); 

end open; 

procedure close ..... , 

Boolean procedure endfile; ..... , 

procedure inimage; 

begin ..... , 

locate (LOC+l); 

setpos(l) 

~ inimage; 

procedure outirnage; 

begin ..... , 

locate (LOC+l); 

image := notext; 

setpos(l) 

end outirnage; 



11.4.2 

- 97 -

character procedure inchar ..... , 

Boolean procedure lastitem ..... , 

integer procedure inint ........ ; 

real procedure inreal .......... ; 

integer procedure infrac ....... ; 

~ procedure intext .......... ; 

procedure outchar .............. ; 

text procedure FIELD ........... ; 

procedure outint . . . . . . . . . . . . . . . , 
;erocedure outfix . . . . . . . . . . . . . . . , 
procedure outreal . . . . . . . . . . . . . . , 
:erocedure outfrac . . . . . . . . . . . . . . , 
12rocedure outtext . . . . . . . . . . . . . . , 
. . . . . . . . . 

end directfile; 

Semantics 

An object of the class "directfile" is used to 

represent an external file in which the individual 

images are addressable by ordinal numbers. 

The variable "LOC" normally contains the ordinal 

number of an external image. The procedure 

"location" gives access to the current value of 

LOC. The procedure "locate" may be used to assign 

a given value to the variable. The assignment may 

be accompanied by implementation defined checks 

and possibly by instructions to an external memory 

device associated with the given file. 

The procedure "open" will locate the first image 

of the file. Otherwise it conforms to the rules 

of section 11.1.2. 

The procedure "endfile" may have the value .true only 

if the current value of LOC does not identify an 

image of the external file. The procedure is 

implementation defined. 



11.5 

11. 5 .1 

- 98 -

The procedure "inimage" will transfer into the 

text "image" a copy of the external image currently 

identified by the variable LOC, if there is one. 

Then the value of LOC is increased by one through 

a "locate" statement. If the file does not contain 

an image with an ordinal number equal to the value 

of LOC, the effect of the procedure "inimage" is 

implementation defined. The procedure is otherwise 

analogous to that of section 11.2. 

The procedure "outimage" will transfer a copy of 

the text value "image" to the external file, thereby 

adding to the file an external image whose ordinal 

number is equal to the current value of LOC. A run 

time error occurs if the file cannot be made to contain 

the image. If the file contains another image with the 

same ordinal number, that image is deleted. The value 

of LOC is then increased by one through a "locate" 

statement. The procedure "outimage" is otherwise 

analogous to that of section 11.3. 

The remaining procedures are analogous to the 

corresponding procedures of section 11.2 and 11.3. 

The class "printfile" 

Definition 

outfile class printfile; 

begin integer LINES PER PAGE, SPACING, LINE; 

integer procedure line; line:= LINE; 

procedure lines per page (n); integer n; 

LINES PER PAGE:= n; 

procedure spacing(n); integer n; 

SPACING:= n; 



11. 5. 2 

- 99 -

procedure eject(n); inte1er n; 

begi~ J-f 7 OPEN then ERROR; 

if n > LINES PER PAGE then n .- l; 

... , 
LINE := n; 

end eject; 

procedu:t;~. open 

pegi~ ..... ; setpos(l); eject(l)~n~ 

pro_sedure close 

_!:leg in . . . , 

~nd; 

!! pos f 1 then outimage; 

SPACING := l; 

eject (LINES PER PAGE); 

LINES PER PAGE := ... 

LINE := 0 

procedure outimage; 

!?_~gin if 7 OPEN V image == notext then ERROR; 

if LINE> LINES PER PAGE then eject (1); 

co~nent output the image on the line 

~nd; 

denoted by LINE; 

LINE :=LINE+ SPACING; 

image : = notext; 

setpos (1); 

LINES PER PAGE := 

SPACING:= l; 

end printfile; 

Semantics 

An object of the class "printfile" is used to 

represent a printer-oriented output file. The 

class is a subclass of "outfile". A file image 

represents a line on the printed page. 

The variable "LINES PER PAGE" indicates the 

maximum number of physical lines that will be 



- 100 -

printed on each page, including intervening 

blank lines. An implementation defined value 

is assigned to the variable at the time of 

object generation, and when the printfile is 

closed. The procedure "lines per page" may be 

used to change the value. If the parameter to 

"lines per page" is zero, "LINES PER PAGE" is 

reset to the same implementation defined 

value as at the time of object generation. 

The effect is implementation defined if the 

parameter is less than zero. 

The variable "SPACING" represents the value by 

which the variable "LINE" will be incremented 

after the next printing operation. The variable 

is set equal to 1 at the time of object generation 

anct when the printfile is closed. 

changed by the procedure "spacing". 

Its value may be 

A call on the 

procedure "spacing" with a parameter less than 

zero or greater than "LINES PER PAGE" constitutes 

an error. The effect of a parameter to "spacing" 

which is equal to zero may be defined by an imple­

mentation either to mean successive printing op0r­

ations on the same physical line, or to be an error. 

The variable "LINE" indicates the ordinal number 

of the next line to be printed, provided that no 

implicit or explicit "eject" statement occurs. 

Its value is accessible througl1 the procedure 

"line". Note that the value of 

greater than "LINES PER PAGE II. 

"LINE" may be 

The value of 

"LINE" is zero when the file is not open. 

The procedure "eject is useli to position to a 

certain line identified by the parameter, n. 



- 101 -

The following cases can be distinguished: 

n <0: ERROR 

n >LINES PER PAGE: Equivalent to eject (1) 

n <LINE: 

n >LINE: 

Position to line number non the next page 

Position to line number non the current 

page. 

The tests above are performed in the given sequence. 

The procedure "outimage" operates according to the 

rules of section 11.3. In addition, it will update 

the variable "LINE". 

The procedure "open" and "close" conform to the rules 

of section 11.1. In addition, "open" will position to 

the top of a page, and "close" will output the 

current value of "image" if "pos" is different from 

one and reset "LINE", "SPACING" and "LINES PER PAGE". 



- 102 -



12. 

12.1 

- 103 -

Random drawing 

Pseudo-random number streams 

All random drawing procedures of SIMULA 67 are 

based on the technique of obtaining "basic drawings" 

from the uniform distribution in the interval 

<0,1>. 

A basic drawing will replace the value of a 

specified il}te.9:_§.£_ variable, say U, by a new value 

according to an implementation defined algorithm. 

As an example, the following algorithm may be 

suitable for binary computers: 

where U. is the i'th value of U, n is an integer 
l 

related to the size of a computer word and pis 

a positive integer. It can be proved that, if U 

is a positive odd integer, the same is true for 
0 

all ui and the sequence u
0

, u 1 , u
2

, ..... is cyclic 

with period 2n- 2 (The last two bits of U remain 

constant, while the other n-2 take on all possible 

combinations) . 

'l'he real numbers u. = U. x 2-n are fractions in 
l l 

the range <0,l>. The sequence u
1

, u
2

, ..... is 

called a "stream" of pseudo-random numbers, and 

u. (i = 1,2, .... ) is the result of the i'th 
l 

basic drawing in the stream U. A stream is com-

pletely determined by the initial value U of 
0 

the corresponding integer variable. Nevertheless, 

it is a "good approximation" to a sequence of truly 

random drawings. 



12.2 

- 104 -

Random drawing procedures 

The following procedures all perform a random drawing 

of some kind. Unless it is explicitly stated otherwise, 

the drawing is effected by means of one single basic 

drawing, i.e. the procedure has the side effect of 

advancing the specified stream by one step. The 

necessary type conversions are effected for the actual 

parameters, with the exception of the last one. The 

latter must always be an ln~~ger variable specifying 

a pseudo-random number stream. 

1. Boo!_~an procedure draw (a,U); name U; real a; 

i-nte_ger_ U; 

2 . 

The value is true with the probability a, false with 

the probability l - a. It is always true if a> land 

always !_als~ if a< 0. 

integer erocedure randint (a,b,U) 

integer a,b,U; 

name U; 

The value is one of the integers a, a+l, ..... , b-1, 

b with equal probability. If b < a, the call 

constitutes an error. 

3. real pro~edure uniform (a,b,U); name U; real a,b; 

integer U; 

The value is uniformly distributed in the 

interval [a,b>. 

an error. 

If b < a, the call constitutes 

4. real procedure normal (a,b,U) 

real a,b; j.nt~ger U; 

name U; 

The value is normally distributed with mean a 

and standard deviation b. An approximation 

formula may be used for the normal distribution 

function. 



- 105 -

(See M. Abramowitz & I. A. Stegun (ed): 

Handbook of Mathematical Functions, National 

Bureau of Standard Applied Mathematics Series 

No. 55, p. 952 and C. Hastings formula (26.2.23) 

on p. 933.) 

5. real procedure negexp (a,U); name U; real a; 

integer U; 

The value is a drawing from the negative 

exponential distribution with mean 1/a, defined 

by -ln(u)/a, where u is a basic drawing. This 

is the same as a random "waiting time" in a 

Poisson distributed arrival pattern with 

expected number of arrivals per time unit 

equal to a. 

6. integer procedure Poisson (a,U); name U; real a; 

integer U; 

The value is a drawing from the Poisson 

distribution with parameter a. It is obtained 

by n+l basic drawings, u., where n is the 
l 

function value. n is defined as the smallest 

non-negative integer for which 

n 
II u

1 
< 

i=O 

-a 
e 

The validity of the formula follows from the 

equivalent condition 

n 

E -ln(u. )/a > 1 
. 0 l 1= 



- 106 -

where the left hand side is seen to be a sum of 

"waiting times" drawn from the corresponding 

negative exponential distribution. 

When the parameter a is greater than some imple­

mentation defined value, for instance 20.0, the 

value may be approximated by entier (normal (a,sqrt 

(a) ,U)+0.5) or, when this is negative, by zero. 

7. real Erocedure Erlang (a,b,U); name U; integer U; 

real a,b; 

The value is a drawing from the Erlang distribution 

with mean 1/a and standard deviation 1/(avb). It 

is defined by b basic drawings 

integer value, 

b 
_ L ln(ui) 

i=l ab 

u.' 
1. 

if bis an 

and by c+l basic drawings u. otherwise, where c is 
1. 

equal to entier (b), 

C ln (u.) (b-c) ln (u 
1

) 
- ( L ____ le:_) - (---- c+ __ ) 

ab ab 
i=l 

both a and b must be greater than zero. 

The last formula represents an approximation. 

8. integ~~ procedure discrete (A,U); name U; 

_real ~~ray A; _integer U; 

The one-dimensional array A, augmented by the 

element l to the right, is interpreted as a 

step function of the subscript, defining a 

discrete (cumulative) distribution function. 

The array is assumed to be of type real. 



- 107 -

The function value is an integer in the range 

[lsb, usb+l], where lsb and usb are the lower 

and upper subscript bounds of the array. It 

is defined as the smallest i such that A[i]> u, 

where u is a basic drawing and A [usb+l] = 1. 

9. real erocedure linear (A,B,U); ~ U; 

real array A,B; integer U; 

The value is a drawing from a (cumulative) 

distribution function F, which is obtained by 

linear interpolation in a non-equidistant table 

defined by A and B, such that A[i] = F(B[i]). 

It is assumed that A and Bare one-dimensional 

real arrays of the same length, that the first 

and last elements of A are equal to 0 and 1 

respectively and that A[iJ > A[jJ and B [i]> 

B [ j J for i > j. If any of these conditions 

are not satisfied, the effect is implementation 

defined. 

The steps in the function evaluation are: 

1. draw a uniform <0,1> random number, u. 

2. determine the lowest value of i, for which 

A[i-1] < u < A[iJ 

3. compute D= A[iJ - A[i-lJ 

4. if D= 0: linear 

if D~ 0: linear 

= B[i-lj 

= B[i-lJ + 

(B[ij - B[i-lj) 

D 
(u-A[i-1]) 



- 108 -

10. integer procedure histd (A,U); name U; real array A; 

integer U; 

The value is an integer in the range [lsb,usb], 

where lsb and usb are the lower and upper subscript 

bounds of the one-dimensional array A. The latter 

is interpreted as a histogram defining the relative 

frequencies of the values. 



- 109 -

The following procedure is defined: 

zrocedure histo (A,B,c,d); real arJ~ A,B; real c,d; 

It will update a histogram defined by the one­

dimensional arrays A and B according to the 

observation c wiU• the weight d. ALlba+iJ is increased 

by d, where i is the smallest integer such that 

c < B[lbb+iiand lba and lbb are the lower bounds of 

A and B respectively. If the lensth of A is not 

one greater than that of B the effect is implementation 

defined. The last element of A corresponds to those 

observations which are <Jrea.ter than all elements of B. 



- 110 -



- 111 -

14. System classes 

Two additional system-defined classes are available: 

class SIMSET; ..... , 

and 

SIMSET class SIMULATION; ..... , 

The class SIMSET introduces list processing 

facilities corresponding to the "set" concept 

of SIMULA I [2]. The class SIMULATION further 

defines facilities analogous to the "process" 

concept and sequencing facilities of SIMULA I. 

The two classes are available for prefixing or 

block prefixing at any block level of a program. 

Such a prefix or block prefix will act as if an 

appropriate declaration of the system class were 

part of the block head of the smallest block 

enclosing the first textual occurrence of the 

class. An implementation may restrict the number 

of block levels at which such prefixes or block 

prefixes may occur in any one program. 

In the following definitions, identifiers in 

capital letters, except "SIMSET" and "SIMULATION", 

represent quantities not accessible to the user. 

A series of dots is used to indicate that the 

actual coding is found in another section. 



14.l 

14. l. l 

- 112 -

The class "SIMSET" 

The class "SIMSET" contains facilities for the 

manipulation of circular two-way lists, called 

"sets". 

General structure 

14.1.l.l Definition 

class SIMSET; 

begin class linkage; ....... , 
linkage class head; 

linkage class link; 

end SIMSET; 

14.1.1.2 Semantics 

...... , 
...... , 

The reference variables and procedures necessary for 

set handling are introduced in standard classes declared 

within the class "SIMSET". Using these classes as 

prefixes, their relevant data and other properties are 

made parts of the objects themselves. 

Both sets and objects which may acquire set membership 

have references to a successor and a predecessor. 

Consequently they are made subclasses of the "linkage" 

class. 

The sets are represented by objects belonging to a 

subclass "head" of "linkage". Objects which may be set 

members belong to subclasses of "link" which is itself 

another subclass of "linkage". 



- 113 -

14.1.2 The class "linkage" 

14.1.2.1 Definition 

class linkage; 

begin ref (linkage) sue, PRED; 

ref (link) procedure sue; 

sue :- if sue in link then sue 

else~; 

ref (link) procedure pred; 

pred :- if PRED in link then PRED 

else none; 

end linkage; 

14.1.2.2 Semantics 

The class "linkage" is the common denominator for 

"set heads" and "set members". 

"SUe" is a reference to the successor of this 

linkage object in the set, "PRED" is a reference 

to the predecessor. 

The value of "SUe" and "PRED" may be obtained 

through the procedures "sue" and "pred". These 

procedures will give the value "none" if the 

designated object is not a "set" member, i.e. of 

class "link" or a subclass of "link". 

The attributes "SUe" and "PRED" may only be modi­

fied through the use of procedures defined within 

"link" and "head". This protects the user against 

certain kinds of programming errors. 



- 114 -

14.1.3 The class "link" 

14.1.3.1 Definition 

linkage class link; 

begin procedure out; 

if sue=/= none then 

begin SUe.PRED. PRED; 

PRED.SUe :- sue; 

sue·- PRED ·- none 

end out; 

procedure follow(X); ref (linkage)X; 

begin out; 

if X =/= none then 

begin if x.sue =/= none then 

begin PRED :- X; 

end 

end follow; 

end 

sue :- x.sue; 

SUe.PRED :- X.SUe ·­

this linkage 

procedure precede(X); ref (linkage)X; 

begin out; 

if X =/= none then 

begin if x.sue =/= none then 

begin sue :- x; 

end 

end precede; 

PRED :- X.PRED; 

PRED.SUe :- X.PRED . 

this linkage 

end 



- 115 -

procedure into(S}; ref (head)S; 

precede (S); 

end link; 

14.1.3.2 Semantics 

Objects belonging to subclasses of the class "link" 

may acquire set membership. An object may only 

be a member of one set at a given instant. 

In addition to the procedures "sue" and "pred", 

there are four procedures associated with each 

"link" object: 

"into". 

"out", "follow", "precede" and 

The procedure "out" will remove the object from 

the set ~f any) of which it is a member. The 

procedure call will have no effect if the object 

has no set membership. 

The procedures "follow" and "precede" will remove 

the object from the set (if any) of which it is a 

member and insert it in a set at a given position. 

The set and the position are indicated by a para­

meter which is inner to "linkage". The procedure 

call will have the same effect as "out" (except 

for possible side effects from evaluation of the 

parameter) if the parameter is "none" or if it has 

no set membership and is not a set head. Otherwise 

the object will be inserted immediately after ("follow") 

or before ("precede") the "linkage" object designated 

by the parameter. 



14 .1. 4 

- 116 -

The procedure "into" will remove the object from the 

set (if any) of which it is a member and insert it as 

the last member of the set designated by the parameter. 

The procedure call will have the same effect as "out" 

if the parameter has the value "none" (except for possible 

side effects from evaluation of the actual parameter). 

The class "head" 

14.1.4.1 Definition 

linkage class head; 

begin ref (link) procedure first; first . sue; 

ref (link) procedure last; last . pred; 

Boolean procedure empty; 

empty :=sue== this linkage; 

integer procedure cardinal; 

begin integer I; ref (linkage)X; 

X :- this linkage; 

for X . X.suc while X =/= none do 

I := I+l; 

cardinal .- I 

end cardinal; 

procedure clear; 

begin ref (link)X; 

for X . 

end clear; 

first while X =/= none do X.o~ 

sue ·- PRED. 

end head; 

this linkage 

.. 



- 117 -

14.1.4.2 Semantics 

14.2 

An object of the class "head", or a subclass of 

"head" is used to represent a set. "head" objects 

may not acquire set membership. Thus, a unique 

"head" is defined for each set. 

The procedure "first" may be used to obtain a 

reference to the first member of the set, while 

the procedure "last" may be used to obtain a 

reference to the last member. 

The Boolean procedure "empty" will give the value 

true only if the set has no members. 

The integer procedure "cardinal" may be used to 

count the number of members in a set. 

The procedure "clear" may be used to remove all 

members from the set. 

The references "SUC" and "PRED" will initially 

point to the "head" itself, which thereby 

represents an empty set. 

The class "SIMULATION" 

The system class "SIMULATION" may be considered 

an "application package" oriented towards simulation 

problems. It has the class "SIMSET" as prefix, and 

set-handling facilities are thus immediately 

available. 

The definition of "SIMULATION" which follows is 

only one of many possible schemes of organization 

of the class. An implementation may choose any 

other scheme which is equivalent from the point of 

view of any user's program. 



14.2.1 

- 118 -

In the following sections the concepts defined in 

SIMULATION are explained with respect to a prefixed 

block, whose prefix part is an instance of the body of 

SIMULATION or of a subclass. The prefixed block will 

act as the main program of a quasi-parallel system which 

may represent a "discrete-event" simulation model. 

General structure 

14.2.1.1 Definition 

SIMSET class SIMULATION; 

begin link class EVENT NOTICE(EVTIME,PROC); 

real EVTIME; ref(process)PROC; 

begin ref(EVENT NOTICE) procedure sue; 

sue :- if sue is EVENT NOTICE then sue 
else none; 

ref(EVENT NOTICE) procedure pred; 

pred :- PRED; 

procedure RANK(BEFORE); Boolean BEFORE; 

begin ref (EVENT NOTICE)P; 

P :- SQS.last; 

for P :- P while P.EVTIME > EVTIME do 

P :- P.pred; 

if BEFORE then begin 

for P :- P while P.EVTIME = EVTIME do 

P :- P.pred end; 

follow(P) 

end RANK; 

end EVENT NOTICE; 

link class process; 

begin ref (EVENT NOTICE)EVENT; 

ref (head) SQS; 

end process; 



- 119 -

ref (EVENT NOTICE) procedure FIRSTEV; 

FIRSTEV :- SQS.first; 

ref (process) procedure current; 

current:- FIRSTEV.PROC; 

real procedure time; time .- FIRSTEV.EVTIME; 

procedure hold ..... , 

procedure passivate ..... ; 

procedure wait ....... ; 

procedure cancel ....... ; 

procedure ACTIVATE ..... ; 

procedure accum ..... ; 

process class MAIN PROGRAM 

ref (MAIN PROGRAM) main; 

SQS :- new head; 

main:- new MAIN PROGRAM; 

..... , 

main.EVENT:- new EVENT NOTICE (0,main); 

main.EVENT.into(SQS) 

end SIMULATION; 

14.2.1.2 Semantics 

When used as a prefix to a block or a class, 

"SIMULATION" introduces simulation-oriented 

features through the class "process" and 

associated procedures. 

The variable "SQS" refers to a "set" which is 

called the "sequencing set", and serves to represent 

the system time axis. The members of the 

sequencing set are event notices ranked according 



14.2.2 

- 120 -

to increasing values of the attribute "EVTIME". An 

event notice refers through its attribute "PROC" to a 

"process" object, and represents an event which is 

the next active phase of that object, scheduled to 

take place at system time EVTIME. There may be at most 

one event notice referencing any given process object. 

The event notice at the "lower" end of the sequencing set 

refers to the currently active process object. The 

object can be referenced through the procedure "current". 

The value of EVTIME for this event notice is identified 

as the current value of system time. It may be accessed 

through the procedure "time". 

The class "process" 

14.2.2.1 Definition 

link class process; 

begin ref (EVENT NOTICE)EVENT; 

Boolean TERMINATED; 

Boolean procedure idle; idle := EVENT 

Boolean procedure terminated; 

terminated := TERMINATED; 

real procedure evtime; 

if idle then ERROR 

else evtime .- EVENT.EVTIME; 

ref (process) procedure nextev, 

nextev :- if idle then none else -- ---
if EVEN~.suc == no~e then none 

else EVENT.suc.PROC; 



detach; 

inner; 

- 121 -

TERMINATED:= true; 

passivate; 

ERROR 

end process; 

14.2.2.2 Semantics 

An object of a class prefixed by "process" will 

be called a process object. A process object 

has the properties of "link" and, in addition, the 

capability to be represented in the sequencing 

set and to be manipulated by certain sequencing 

statements which may modify its "process state". 

The possible process states are: active, suspended, 

passive and terminated. 

When a process object is generated it immediately 

becomes detached, its LSC positioned in front of 

the first statement of its user-defined operation 

rule. The process object remains detached through­

out its dynamic scope. 

The procedure "idle" has the value true if the 

process object is not currently represented in the 

sequencing set. It is said to be in the passive 

or terminated state depending on the value of the 

procedure "terminated". An idle process object is 

passive if its LSC is at a user defined prefix level. 

When the LSC passes through the final end of the 

user-defined part of the body, it proceeds to the 

final operations at the prefix level of the class 

"process", and the value of the procedure "terminated" 

becomes true. (Although the process state 

"terminated" is not strictly equivalent to the corre­

sponding basic concept defined in section 9, an imple­

mentation may treat a terminated process object as 



14.2.3 

- 122 -

terminated in the strict sense). A process object 

currently represented in the sequencing set is said to 

be "suspended", except if it is represented by the event 

notice at the lower end of the sequencing set. In the 

latter case it is active. A suspended process is 

scheduled to become active at the system time indicated 

by the attribute EVTIME of its event notice. This time 

value may be accessed through the procedure "evtime". 

The procedure "nextev" will reference the process object, 

if any, represented by the next event notice in the 

sequencing set. 

Activation statements 

14.2.3.1 Syntax 

<activator> ::= activate! 

reactivate 

<activation clause> ::= <activator><object expression> 

<simple timing clause> ::= 

at <arithmetic expression>! 

delay <arithmetic expression> 

<timing clause> ::= <simple timing clause>! 

<simple timing clause> prior 

<scheduling clause> ::= <empty>! 

<timing clause>! 

before <object expression>! 

after <object expression> 

<activation statement> ··= <activation clause> 

<scheduling clause> 

14.2.3.2 Semantics 

An activation statement is only valid within an object 

of a class included in SIMULATION, or within a prefixed 

block whose prefix part is such an object. 



·- 123 -

The effect of an activation statement is defined 

as be~ng that of a call on the sequencing procedure 

"ACTIVATE" local to SIMULATION. 

procedure ACTIVA'I'E (REAC ,X, CODE, T, Y, PRIOR); 

value COD.E; ref(process)X,Y; Boolean REAC,PRIOR; 

text CODE; real 

The actual parameter list is determined from the 

forrr of the activation statement, by the following 

rules. 

1. ·rhe actual parameter corresponding to "REAC" 

is true if the activator is reactivate, false 

otherwise. 

2. The actual parameter corresponding to "X" is 

the object expression of the activation 

clause. 

3. The actual parameter corresponding to "T" is 

the arithmetic t~xpression of the sj_mple timing 

clause if present, otherwise it is zero. 

4. The actual parameter corresponding to "PRIOR" 

is true if prior is in the timing clause false 

if it is not used or there is no timing clause. 

~. The actual parameter corresponding to "Y" is 

the object expression of the scheduling 

clause if present, otherwise it is none. 

b. The actual parameter corresponding to "CODE" 

is defined from the scheduling clause as 

follows: 



- 124 -

schedul in9: __ clause actual _12aramet.er 

empty "direct'' 

at arithmetic expn~ssion "at" 

delay arithmetic expression "delay" 

before object expression "before" 

after object expression "after" 

14.2.4 Sequencing procedures 

14.2.4.1 Definitions 

procedure hold(T); real T; 

inspect FIRSTEV do 

begin if T > 0 then EVTIME := EVTIME + T; 

if sue =/-=-: ~ then 

begin if sue. EVTIME < EVTIME then 

begin out; RANK (fal:3e) r 

resume(current) 

end 

end hold; 

end 

procedure passivate; 

begin inspect cur~ent do 

begin EVEN~l~.out; EVENT . none enc:i.; 

if SQS.empty then ERROR 

el 13e resurne ( current) 

end passivate; 

procedure wait(S); ref (head)S; 

begin current.into(S); passivate end wait:;: 

procedure cancel(X); ref (process)X; 

if X == current then passiva.te else 

inspect X do if EVENT=/= none then 

begin EVENT.out; EVENT .. none end cancel; 



- 125 -

procedure ACTIVATE(REAC,X,CODE,T,Y,PRIOR); value CODE; 

ref (process)X,Y; Boolean REAC,PRIOR; text CODE; 

real T; 

inspect X do if 7 TERMINATED then 

begin ref (process)Z; ref (EVENT NOTICE)EV; 

if REAC then EV:- EVENT 

else if EVENT=/= none then go to exit; 

Z :- current; 

if CODE= "direct" then 

direct: begin EVENT:- new EVENT NOTICE (time,X); 

EVENT.precede(FIRSTEV) 

end direct 

else if CODE = "delay" then ---
begin T := T + time; go to at end delay 

else if CODE = "at" then ---
at: begin if T < time then T := time; 

if T = time ,, PRIOR then go to direct; 

EVENT·- new EVENT NOTICE(T,X); 

EVENT.RANK(PRIOR) 

end at 

else if (if Y none then true else Y.EVENT ~) 

then EVENT·- none else 

begin if X == Y then go to exit; 

comment reactivate X befon~/after X; 

EVENT : -- new EVENT NOTICE ( Y. EVENT. EVT IM.E, X) ; 

if CODE= "before" then EVENT.precede(Y.EVENT) 

else EVENT.follow(Y.EVENT) 

end before or after; 

if EV=/=~ then 

begin EV.out; if SQS.empty then ERROR end; 

if Z =/= current then resume (current); 

exit: end ACTIVATE; 



- 126 -

14.2.4.2 Semantics 

The sequencing procedures serve to organize the quasi­

parallel operation of process objects in a simulation 

model. Explicit use of the basic sequencing facilities 

(detach,resume) should be avoided within SIMULATION blocks. 

The statement "hold(T)", where Tis a real number greater 

than or equal to zero, will halt the active phase of 

the currently active process object, and schedule its next 

active phase at the system time "time + T". The statement 

thus represents an inactive period of duration T. During 

the inactive period the LSC stays within the "hold" 

statement. The process object becomes suspended. 

The statement "passivate" will stop the active phase 

of the currently active process object and delete its 

event notice. The process object becomes passive. Its 

next active phase must be scheduled from outside the 

process object. The statement thus represents an inactive 

period of indefinite duration. The LSC of the process 

object remains within the "passivate" statement. 

The procedure "wait" will include the currently active 

process object in a referenced set, and then call the 

procedure "passivate". 

The statement "cancel(X)", where Xis a reference to a 

process object, will delete the corresponding event notice, 

if any. If the process object is currently active or 

suspended, it becomes passive. Otherwise the statement 

has no effect. 'l'he statement "cancel(current)" is 

equivalent to "passivate". 

The procedure "ACTIVATE" represents an activation state­

ment, as described in section 14.2.3. The effects of a 

call on the procedure are described in terms of the 



- 127 -

corresponding activatior: statement. The purpose of an 

activation statement is to schedule an active phase of 

a process object. 

Let X be the value of the object expression of the 

activation clause. If the activator is activate 

the statement will have no effect (beyond that of 

evaluating its constituent expressions) unless the 

Xis a passive process object. If the activator is 

reactivate and Xis a suspended or active process object, 

the corresponding event notice is deleted (after the 

subsequent scheduling operation) and, in the latter 

case, the current active phase is terminated. The 

statement otherwise operates as an activate statement. 

The scheduling takes place by generating an event notice 

for X and inserting it in the sequencing set. The type 

of scheduling is determined by the scheduling clause. 

An empty scheduling clause indicates direct activation, 

whereby an active phase of Xis initiated immediately. 

The event notice is inserted in front of the one currently 

at the lower end of the sequencing set and X becomes 

active. The system time remains unchanged. The formerly 

active process object becomes suspended. 

A timing clause may be used to specify the system time 

of the scheduled active phase. The clause "dela_y ·T", 

where Tis an arithmetic expression, is equivalent to 

"at time+ T". The event notice is inserted into the 

sequencing set using the specified system time as ranking 

criterion. It is normally inserted after any event notice 

with the same system time; the symbol "prior" may, 

however, be used to specify insertion in front of any 

event notice with the same system time. 



14.2.5 

- 128 -

Let Y be a reference to an active or suspended process 

object. Then the clause "before Y" or "after Y" may 

be used to insert the event notice in a position defined 

relation to (before or after) the event notice of Y. The 

generated event notice is given the same system time as 

that of Y. If Y is not an active or suspended process 

object, no scheduling will take place. 

Example: 

The statements 

activate X 

activate X before current 

activate X delay 0 prior 

activate X at time prior 

are equivalent. They all specify direct 

The statement 

reactivate current delay T 

is equivalent to "hold(T)". 

The main program 

activation. 

14.2.5.1 Definition 

process class MAIN PROGRAM; 

begin L: detach; go to Lend MAIN PROGRAM; 

14.2.5.2 Semantics 

It is desirable that the main program of a simulation 

model, i.e. the SIMULATION block instance, should respond 

to the sequencing procedures of section 14.2.4 as if it 

were itself a process object. This is accomplished by 

having a process object of the class "MAIN PROGRAM" as 

a permanent component of the quasi-parallel system. 



14.2.6 

- 129 -

The process object will represent the main program 

with respect to the sequencing procedures. Whenever 

it becomes operative, the PSC (and OSC) will 

immediately enter the main program as a result of 

the "detach" statement (cf. section 9.2.1). The 

procedure "current" will reference this process object 

whenever the main program is active. 

A simulation model is initialized by generating the 

MAIN PROGRAM object and scheduling an active phase 

for it at system time zero. Then the PSC proceeds 

to the first user-defined statement of the SIMULATION 

block. 

Utility procedures 

14.2.6.1 Definition 

procedure accum (a,b,c,d); name a,b,c; 

real a,b,c,d; 

begin a : = a + c x ( time - b) ; 

b := time; c := c + d 

end accum; 

14.2.6.2 Semantics 

A statement of the form "accum (A,B,C,D)" may be 

used to accumulate the "system time integral" of 

the variable C, interpreted as a step function of 

system time. The integral is accumulated in the 

variable A. The variable B contains the system 

time at which the variables were last updated. 

The value of Dis the current increment of the 

step function. 



- 130 -



15. 

15.l 

15.2 

- 131 -

Separate compilation 

If an implementation permits user-defined procedure 

and class declarations to be separately compiled, 

then a program should have means of making reference 

to such declarations as external to the program. 

The following additional declarations are 

recommended as an optional part of the Common Base. 

Syntax 

<external item> ::= <external identifier>! 

<identifier>= <external identifier> 

<external list> ::= <external item>! 

<external list>,<external item> 

<external declaration> ::= 

Semantics 

external procedure <external list>! 

external <type> procedure <external list>! 

external class <external list> 

An external identifier is an identification with 

respect to an "operating system" of a separately 

compiled declaration. 

An external item introduces a local identifier 

for such a declaration. The local identifier may 

or may not be identical to the corresponding 

external identifier. 

An external declaration represents a copy of each 

of the separately compiled procedures or class 

declarations identified by its external list. 

Each copy is modified by replacing occurrences of the 

original procedure or class identifier by occurrences 

of the given local identifier. 



- 132 -



- 133 -

16. ,:ommon Base restrictions 

The following langua·~Je restrictions are part of 

the SIMULA 67 Cor.1r.10n Base. 

1) System defined procedures may not be trans­

mitted as parameters. 

2) Only <type> parameters may be called by name. 

3) An arithmetic assignmen-.: state:11ent must conform 

to the rules of A~GOL 60. 

4) A class should be ~efined textually before all 

its subclasses. 

5) In the hardware representation of the language, 

~here should be at least one space between a 

colon and a minus sign in an array declaration. 

Restriction 1 may be relevant in order to obtain 

maximum efficiency in implementations of system 

defined procedures. Restrictions 2 and 3 may 

simplify the extension of existing ALGOL 60 

ir,,plementa tions Restriction 4 is relevant in 

order to make one-p2ss co~pilation possible. 



- 134 -



- 135 -

17. Recommended extensions 

17.1 

17.1.1 

17.1.2 

17.2 

The extensions given in this section are recommended 

for inclusion in SIMULA Common Base implementations 

by the SIMULA Standards Group. 

While statement 

Syntax 

<statement> ::= <Common Base statement>l<while statement> 

<conditional statement> 

::= <Common Base conditional statement>! 

<if clause><while statement> 

<while statement> 

Semantics 

::= while <Boolean expression> do <statement>/ 

<label>:<while statement> 

A while statement causes a statement to be executed zero 

or more times. 

The Boolean expression is evaluated. When true, the 

statement following do is executed and control returns 

to the beginning of the while statement for a new test 

of the Boolean expression. 

When the expression is false, control passes to after 

the while statement. 

"prev" 

The following procedure is recommended to be local to 

the class "linkage": 

ref(linkage) procedure prev; 

prev :- PRED; 



- 136 -

The procedure enables a user to access a set head from 

its first member. 



- 137 -

18. Features being investigated 

The SIMULA Standards Group appoint a Technical 

Committee to study features needing clarification 

or which may possibly be new recommended extensions. 

The following features are currently being 

investigated: 

- For statements in which the controlled variable is 

a variable called by~' procedure identifier, 

subscripted variable or remote identifier. 

- class directfile 

- reference parameters 

- the procedure "call" 

- syntax of blocks and statements 

- syntax of conditional expressions 

- hardware representation standards 

A closer description of these features is given in 

[ 4] and [ 5] . 



- 138 -



- 139 -

19. References 

1 

2 

3 

P. Naur (Ed.): Revised Report on the 

Algorithmic Language ALGOL 60. CACM., vol. 6, No. 1, 

1963, pp 1-17. 

O-J. Dahl, K. Nygaard: "SIMULA - A Language 

for Programming and Description of Discrete 

Event Systems. Introduction and User's Manual." 

Norwegian Computing Center, Oslo. 

C.A.R. Hoare: "Record Handling." Lectures 

delivered at the NATO Summer School, Villard-de­

Lans, September 1966 (Academic Press.) 

4. Proposals circulated to Standards Group Members 

before the Annual Meeting in May 1970. 

5. "Minutes from Annual Meeting of SIMULA Standards 

Group May 1970" 

Publication No. S-18, July 1970, Norwegian 

Computing Center, Oslo. 



- 140 -



- 141 -

20. Alphabetic index of syntactical units 

For each syntactical unit, the section of 

definition is given. AR indicates that the 

definition is found in the "revised" ALGOL 

report [l]. The numbers of the sections in 

this document where the syntactical unit is 

referenced, are indicated in parentheses. A 

reference in the same section as the definition 

is not indicated. The metalanguage brackets 

< and > have been removed from the syntactic 

units. 

activate (14.2.3.1) 

activation clause 14.2.3.1 

activation statement 14.2.3.1 (6) 

activator 14.2.3.1 

actual parameter 7.1.1 

actual parameter part AR(4.3.l, 6.3.1, 7.1.1) 

after (14.2.3.1) 

ALGOL block AR(6.3.l) 

ALGOL declaration AR ( 2 .1) 

ALGOL for clause AR ( 6. 2 .1) 

ALGOL relation AR(S) 

ALGOL statement AR(6) 

ALGOL type AR ( 3 .1) 

ALGOL unconditional statement AR(6) 

arithmetic expression 

array (3.1, 8.1) 

AR(4.l, 14.2.3.1) 

array identifier 1 7.1.1 

array list AR(3.1) 

assignment statement 6.1.l 

at (14.2.3.1) 

attribute identifier 7.1.1 

before (14.2.3.1) 

block 6.3.1 

block head AR(2.1) 

block prefix 6.3.l 



- 142 -

Boolean expression AR(4.l, 4.2.1, 4.3.1, 4.4.1, 6.2.1) 

character (3.1) 

charaacter constant 4.2.1 

character designation (4.2.1) 

character expression 4.2.1 (4.1) 

character relation 5.1.1 (5) 

class (2.1, 15.1) 

class body 2.1 

class declaration 2.1 

class identifier 2.1 (3.1, 4.3.1, 5.3.1, 6.3.1, 7.2.1) 

compound tail AR(2.l) 

connection block 1 7.2.1 

connection block 2 7.2.1 

connection part 7.2.1 

connection statement 7.2.1 (6) 

declaration 2.1 

delay (14.2.3.1) 

designational expression 

do ( 7. 2 .1) 

else (4.2.1, 4.3.1, 4.4.1) 

AR ( 4. 1) 

empty (2.1, 7.2.1, 8.1, 14.2.3.1) 

expression 4.1 (7.1.1) 

external (15.1) 

external declaration 15.1 

external identifier (15.1) 

external i tern 

external list 

for (6.2.1) 

15.1 

15.1 

for clause 6.2.1 

formal parameter part AR(2.l, 8.1) 

function designator 7.1.1 (4.2.1, 4.3.1, 4.4.1) 

identifier AR(2.l, 7.1.1, 15.1) 

identifier list AR(8.l) 

identifier 1 7.1.1 

if (4.2.1, 4.3.1, 4.4.1) 

in ( 5. 3 .1) 

initial operations 2.1 



inner ( 2 .1) 

inspect (7.2.1) 

is (5.3.1) 

label (8.1) 

- 143 -

label 4.1.1 (6.3.1) 

local object 4.3.1 

main block 6.3.1 

main part 2.1 

mode part 8.1 

name ( 8 .1 )_ 

name part 8.1 

~ (4.3.1) 

none (4.3.1) 

notext (4.4.1) 

object expression 4.3.1 (4.1, 6.2.1, 7.2.1, 14.2.3.1) 

object for list 6.2.1 

object for list element 6.2.1 

object generator 4.3.1 

object reference 3.1 

object reference relation 5.4.1 

object relation 5.3.1 (5) 

otherwise (7.2.1) 

otherwise clause 7.2.1 

prefix 2.1 

prefixed block 6.3.1 

prior (14.2.3.1) 

procedure (8.1) 

procedure heading 8.1 

procedure identifier AR(6.l.l, 8.1) 

procedure identifier 1 7.1.1 

procedure statement 7.1.1 

qua 4.3.1 

qualification 3.1 

qualified object 4.3.1 

reactivate (14.2.3.1) 



- 144 -

ref ( 3. 1) 

reference assignment 6.1.1 

reference comparator 5.4.1 

reference expression 4.1 (6.1.1) 

reference left part 6.1.1 

reference relation 5.4.1 ( 5) 

reference right part 6.1.1 

reference type 3.1 

relation 5 

relational operator AR(5.l.l, 5.2.1) 

remote identifier 7.1.1 

scheduling clause 14.2.3.1 

simple character expression 4.2.1 (5.1.1) 

simple object expression 4.3.1 (4.3.1 (5.3.1, 5.4.1, 7.1.1) 

simple text expression 4.4.1 (5.4.1, 6.1.1, 7.1.1) 

simple timing clause 14.2.3.1 

simple variable 1 7.1.1 

specification part AR(2.l, 8.1) 

specifier 8.1 

split body 2.1 

statement 6 (2.1, 7.2.1) 

string AR(4.4.l) 

subscript list AR(7.l.l) 

SW itch ( 8 . 1) 

switch identifier AR(7.l.l) 

text (3.1) 

text expression 4.4.1 (4.1) 

text reference relation 5.4.1 

text value 4.4.1 (6.1.1) 

text value relation 5.2.1 (5) 

then (4.2.1, 4.3.1, 4.4.1) 

this ( 4. 3. 1) 

timing clause 14.2.3.1 

type 3.1 (8.1, 15.1) 

type declaration 3.1 

type list AR(3.l) 



- 145 -

unlabelled block AR(6.3.l) 

unlabelled compound AR(6.3.l) 

unlabelled prefi~ed block 6.3.1 

value assignment 6.1.l 

value expression 4.1 (6.1.1) 

value left part 6.1.1 

value part AR(2.l, 8.1) 

value right part 6.1.1 

value type 3.1 

variable 7.1.1 (4.2.1, 4.3.l, 4.4.1, 6.1.1, 6.2.1) 

variable identifier 1 7.1.l 

virtual (2.1) 

virtual part 2.1 

when 7.2.1 

when clause 7.2.1 

while ( 6. 2 .1) 




