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ABSTRACT

The thesis outlines the major problems in the design of high level programming languages.
The complexity of these languages has caused the user problems in intellectual
manageability. Part of this complexity is caused by lack of generality which also causes loss
of power. The maxim of power through simplicity, simplicity through generality is
established. To achieve this simplicity a number of ground rules, the principle of abstraction,
the principle of correspondence and the principle of data type completeness are discussed and
used to form a methodology for programming language design. The methodology is then put
into practice and the language S-algol is designed as the first member of a family of
languages.

The second part of the thesis describes the implementation of the S-algol language. In
particular a simple and effective method of compiler construction based on the technique of
recursive descent is developed. The method uses a hierarchy of abstractions which are
implemented as layers to define the compiler. The simplicity and success of the technique
depends on the structuring of the layers and the choice of abstractions. The compiler is itself
written in S-algol.

An abstract machine to support the S-algol language is then proposed and implemented. This
machine, the S-code machine, has two stacks and a heap with a garbage collector and a
unique method of procedure entry and exit. A detailed description of the S-code machine for
the PDP11 computer is given in the Appendices.

The thesis then describes the measurement tools used to aid the implementor and the user.
The results of improvements in efficiency when these tools are used on the compiler itself are
discussed.

Finally, the research is evaluated and a discussion of how it may be extended is given.
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1 Introduction

An important area of interest to which Computational Science must address itself is that of
programming languages. The situation is analogous to that in mathematics where notations
are constantly being invented and improved. There has never been one mathematical notation
or computer language which suits all tastes and needs, and it is unreasonable to expect that
there ever will be. That does not mean that development of further languages is useless.
Indeed better languages must be developed continuously in order to achieve greater clarity
and levels of abstraction. Hopefully this can be done in a disciplined manner.

Landin [1] has pointed out that most languages have a lot in common and apart from syntax
only a little in difference. He suggests that one way in which orderly development of
programming languages can take place is by having a family of languages. This family of
languages, in his case ISWIM (  i  f   y  ou see    w   hat   I      m   ean), would have a common basic
structure which could be altered to suit the application area. For example, most of the current
programming languages have similar control structures. The difference between the
languages is in the data structures that they allow. Therefore, a very simple minded example
of a family of languages could be a fixed number of control structures with different data
structures depending on the application. Indeed Landin goes on to say that Algol 60 would
have avoided some needless criticism had it been defined as a family of languages rather than
one all encompassing language. It is with defining and implementing a family base language
that this work is concerned.

The notations that are used in the current general purpose programming languages are a
balance between descriptive power and what the machines can effectively support. The
descriptive power is borrowed from mathematics in general. However, mathematical
notations tend to suffer from the fact that they are expensive to implement on Von Neumann
architectures. On the other hand, using a present day programming language involves
ignoring most of the mathematical notions of correctness. Therefore the success of a general
purpose language involves the question of how cheaply in machine terms can this descriptive
power be bought. This is always at the back of the designers mind, and how much emphasis
is placed on each aspect determines the flavour of the language.

The languages that will be considered here can generally be described as the algols. That is to
say, low level languages such as assemblers and machine oriented languages such as PL360
[3] will not be discussed. Furthermore, the applicative languages such as the proposed
ISWIM family, LISP [4] and the more modern sugarings of the lambda calculus like SASL
[5] are also not considered. The discussion is restricted to the algols which can be roughly
classified by the following rules.

a. Scope rules and block structure
Names may be introduced to define local quantities. The names are undefined
outside the local environment. However, different environments may use the same
name unambiguously to represent different objects.

b. Abstraction facility
The algols all have a powerful abstraction mechanism to allow the user to shorten
and clarify programs. This is usually in the form of a procedure with parameters.

c. Compile time type checking
The types of all the expressions in the language can be checked by a static
analysis of the program.

d. Infinite store
The programmer is relieved of the burden of storage allocation and is presented
with a conceptually infinite store.



e. Selective store updating
In conjunction with (d) above, the user is allowed to selectively alter the store.
This is usually implemented as an efficiency consideration on present day
machines and generally takes the form of an assignment statement. It should be
pointed out that it is this rule that gives rise to the concept of the store. Rule (d)
may be implemented as an infinite capacity to create new objects as is the case
with the applicative languages.

With any rough classification, some languages cut across the rules. How well a language fits
the rules determines how much of an algol it is. Languages that could be considered as algols
are Algol 60 [6], Algol W [7], Algol R [9, 38], and perhaps Pascal [10], Algol 68 [11] and
PL/1 [12].

Where have they gone wrong? Have they? Many criticisms of these languages have
appeared, particularly for the more popular ones such as Pascal, Algol 68 and PL/1. They
take the form of criticising particular aspects of the languages [14, 15, 16] or the overall
design. Dijkstra [13] has this to say of PL/1

"Using PL/1 must be like flying a plane with 7, 000 buttons, switches and handles
to manipulate in the cockpit. I absolutely fail to see how we can keep our growing
programs firmly within our intellectual grip when by its sheer baroqueness the
programming language - our basic tool mind you! - already escapes our
intellectual control."

It is not part of this work to perform a character assassination on each of the algol
programming languages but merely to report that something is wrong with them. A clue to
this malaise is again given by Dijkstra [13]

"Another lesson we should have learned from the recent past is that development
of "richer" or "more powerful" programming languages was a mistake in the
sense that these baroque monstrosities, these conglomerations of idiosyncrasies,
are really unmanageable both mechanically and mentally."

The trend continues. The recently published American Department of Defence language
ADA [30] has tried to solve every programming problem known to mankind. It is the PL/1 of
our age.

The development of these languages is in itself a commentary on our attitude to research and
development. One method of research is to extend the existing world of possibilities. In this,
new languages with new or unusual ideas are developed and tested. In order that some new
concept may be tried and fully understood it may be necessary, and is often useful, to be able
to use it experimentally.

Another approach is to re-examine the existing world to obtain a better understanding of it.
This type of research is also necessary since development of new ideas without a firm
understanding of the existing world is like building on sand and will suffer the same fate as
the building if the sand shifts.

This work is concerned with a re-examination of the existing world to obtain that greater
understanding and hopefully a stronger basis on which to develop a new language or family
of languages. It is not the aim of the work to produce a mechanism for extending language
but rather with producing a base language and a methodology for further development. Algol
60 was the first of the algol like languages. The project was a tremendous success and has led
to the proliferation of many derivatives and extensions. However it would be unreasonable to
expect the designers of the very first algol to be correct in every detail. Dijkstra hints at the
problem



"With a device as powerful as BNF, the report on the Algorithmic language
Algol 60 should have been much shorter."

He means that Algol 60 is in some way too big. This, of course, is with the benefit of
hindsight but it is with that knowledge that new languages are developed. Since then, very
few languages have come anywhere near the brevity of definition of Algol 60. Indeed the
language definitions of Algol 68, ADA and PL/1 are so perverse and long winded that they
tax one person's understanding too far. The phenomenon of the "one liner" or the "algol
lawyer" is a direct consequence of this.

Another manifestation of long winded languages is that of "dialects". Each implementor
prunes the language to his own taste and restricts the possibility of machine independence.
From time to time the ridiculous situation arises that a standard for the language is introduced
as has recently happened with Pascal [19]. This leads to the obvious question of what
happened to the original language?

The method of attack that will be taken in this research will be that of simplicity. If a concept
is not already simple then it should be re-evaluated. Algol 60 is in some respects already too
complex for our purposes and will have to be re-examined. This will take some courage as it
may mean disposing of the services of some favourite feature since it does not measure up to
the yardstick of simplicity. On occasion some very useful concept may fit the general rules
but fail the test of simplicity. In order to progress it may be necessary to leave it as a complex
entity (that concept may simply be complex). At least it will have been analysed thoroughly
by the new methodology of language design and presumably a better understanding of the
concept will have been achieved. How should this language be designed? Wirth [2] has
pointed out that a language designer is faced with a bewildering variety of demands. He lists
some of them as

• The language should be easy to learn

• It must be safe from misinterpretation and misuse

• It must be extensible without change to existing facilities

• The notation must be convenient with widely used standards

• The definition must be machine independent

• The language must make efficient use of the computer

• The compiler must be fast and compact

• The definition must be self contained and complete

• The time and cost of development must be minimal

There are others not mentioned here. The list can be extended and usually is by the
implementor to include his particular preferences. The emphasis that is placed on each aspect
of the design usually determines the language that is arrived at. It can be clearly seen that
although the above aims are desirable they do not provide a methodology for programming
language design since they are in Wirth's own words a bewildering variety. In this work there
will be only one design aim for the language. This aim is an economy of concept where the
language will have a small number of general rules with no features or special cases. Occam's
Razor will be applied wherever possible to preserve the language simplicity. From the above
it can be seen that Wirth lays the emphasis in language design on the implementation. In fact
he goes as far as to argue that "language design is compiler construction". While it is true that
the popularity of some fairly appalling languages such as BASIC [17] and APL [18] has been
due to their good support systems, this view seems a little extreme. The problem is that it
confuses the design aims of the language with the design aims of the implementation.

Having said that, it should be pointed out that the implementation is still very important. The
most successful of the modern languages are those that reflect best what our present day



machines can support efficiently. Already concessions have been made to efficiency, by the
inclusion of the assignment statement in the languages under consideration, and it will be the
reason for introducing a restricted form of pointer. However, efficiency is a fickle bedfellow.
The ground rules may change drastically with the invention of a new piece of hardware. A
decision on the form of a language from efficiency considerations should only be undertaken
with extreme care.

Wirth is therefore not totally wrong and it is only his emphasis that is disagreed with.
Language design cannot be completely divorced from the implementation and it is part of this
work to investigate the software engineering aspects of language implementation. In
particular, a simple method of compiler construction must be found and a general method of
implementation developed. Measurement tools and programmer aids must also be
investigated. The commercial success of the language will depend on the implementation
process. However, the language itself may be evaluated separately.

The description of the work falls naturally into four parts. Chapters 2 and 3 discuss the design
of a particular language, S-algol, and the design methodology. Chapter 4 develops a simple
method of compiler construction and chapters 5 and 6 consider the system implementation.
The tools for measuring the system are discussed in chapter 7 and chapter 8 reviews the
research and assesses it.

2 Language Design Using Semantic Principles

Language design is probably the most emotive area in Computational Science. Nearly
everyone uses programming languages and most people have something to say about their
design. This fact is reflected in the literature. Most of the interest is centred on criticising
existing language features, only a little in developing new languages and almost none on a
methodology for language design. Certainly there is plenty of general advice like "the
language must be easy to learn" but this is so obvious that it is hardly worthwhile saying.

A. van Wijngaarden [20] with his notion of a generalised algol may be used as a starting
point.

"In order that a language be powerful and elegant it should not contain many
concepts."

He argues that languages are too complex and that complexity is due, in part at least, to being
too restrictive. Power through simplicity, simplicity through generality is the message. This
leads the language designer to formulate the fundamental concepts behind the language and
to generalise these ideas wherever possible. Some of the consequences of following this
course are surprising and can lead to complications. In both Euler [8] and Algol 68, the
procedure is regarded as a first class data object. It was realised that some power could be
gained by passing procedures as parameters to other procedures. This, of course, is very like
assignment of procedures so the generalisation is to have proper procedure variables and
allow the procedure values to be passed around freely. Quite soon the idea of function
producing functions [21] appears and before we know it a fundamental decision on the
implementation has been made. It turns out that languages with function producing functions,
proper algol scope rules and assignment cannot be supported by a stack machine architecture
[22]. However, the language is fundamentally "richer" or more powerful in that it can support
higher order functions.

At this stage the designer has to make a decision. The concept generalisation can either be
ignored on some other constraint, for example implementation efficiency, or else he has to
live with the consequences. This is the only manner in which simplicity will be achieved.
Unfortunately both Euler and Algol 68 introduce further rules on the restriction of free
variables to allow the facility and maintain ease of implementation. This is also true of the
generalised pointer concept of Algol 68 and is perhaps a clue to why it is such a big language.



Why then would we wish to restrict a generalisation? One case where it is advisable is in
compile time type checking. The following example is due to Henderson [23] and is written
in an algol like language.

begin
procedure P (Q, a)
begin

a [1] := 0 ;
Q (a)

end ;

procedure R (x)
begin

x := x + 1
end
array  b [1::10]

P (R, b)

end ;

This program attempts to add 1 to a one dimensional array. If the language specified its
parameter types in full, this nonsense could be detected at compile time. It is perhaps
surprising that Algol 60, Algol W and Pascal would allow this program. Complete generality
can lead to the situation where little can be deduced from the program on static analysis. This
is bad since most of our concepts of notations depend on a supportive static representation.

However, the overall design aim of power through simplicity, simplicity through generality
should be the guiding light. On some occasions other aims may restrict the generality. Wirth
[2] argues that such an occasion is the conflict between security and flexibility exemplified
by the above example.

The general rules for the design of programming languages by semantic principles will now
be discussed. All of the principles follow the guiding star proposed above.

2.1 The Principle of Correspondence

This first rule is based on work done by Strachey [25] and is more clearly reviewed by
Tennent [24]. However, the problem was first stated by Landin [1].

"In almost every language a user can coin names, obeying certain rules about the
contexts in which the name is used and their relation to the textual segments that
introduce, define, declare or otherwise constrain its use. These rules vary
considerably from one language to another, and frequently even within a single
language there may be different conventions for different classes of names with
near analogies that come irritatingly close to being exact."

Landin points out that all the rules governing names in a language should be designed
together in order to avoid irregularities in the manner in which the names may be used. For
example, the scope rules should be the same everywhere. In most algols names may only be
introduced in declarations and as procedure parameters. Therefore for each type of
declaration in the language there should be a corresponding parametric declaration. Indeed
parameters should be regarded as locally defined objects. The principle of correspondence
goes a little further by taking account of all possible parameter passing modes.



This rule obeys the simplicity yardstick and Tennent performs a comparison on Pascal
parametric and declarative objects. Unfortunately Pascal is found to be lacking under this
type of analysis since most of the declarative constructs have no parametric equivalent.

2.2 The Principle of Abstraction

This rule has the same sources as the previous one. Abstraction is a process of extracting the
general structure to allow the inessential details to be ignored. This facility is well known to
mathematicians and programmers since it is the only tool they have for handling complexity.
The technique when applied to language design is to define all the semantically meaningful
syntactic categories in the language and allow an abstraction over them. The most familiar
form of abstraction is the function which is an abstraction over expressions. The principle of
abstraction is more difficult to apply than the principle of correspondence since it is more
difficult to identify the semantically meaningful constructs than it is to identify declarations.
Also it is often difficult to visualise the use of an abstraction once it is made.

However, the principle of abstraction is kept as a general rule and a justification must be
made if it is broken.

2.3 The Principle of Data Type Completeness

This principle, while not explicitly stated by Strachey, is one he was well aware of. The rule
states that all data types must have the same "civil rights" in the language and that rules for
using data types should be complete with no gaps. This means that any operation such as
assignment or passing the data object as a parameter has an equivalent form for all data types.
The rule does not require that all operations be defined on all data types but rather that special
cases of general rules are non-existent.

Examples of lack of completeness can be seen in Algol W where arrays are not allowed as
fields of records and in Pascal where only some objects are allowed as elements of sets. This
principle will lead to simplicity since it avoids the complexity of special cases.

2.4 The Conceptual Store

Another aspect which will effect the semantic model of the language is that of the conceptual
store. Since this discussion is about the algols it is already committed to a store. However, it
is useful to look at how this arose as it will give a clearer understanding of why it is there.

In general, mathematics has no concept of a store. There are only expressions which are
characterised by having a value. The most useful property of only having a world of
expressions is that of   referential transparency    described by Quine [26]. This states that in
order to evaluate an expression with sub-expressions all we require to know about the sub-
expressions is their values. Anything else, such as the order of evaluation is irrelevant. This
property is an old friend in mathematics and is often used unconsciously as Strachey points
out

sin (6), sin (1 + 5) and sin (30 / 5)

are all expected to have the same value. It means that the sub-expressions may be evaluated
in any order. The applicative languages make use of general mathematical notation and have
no underlying concept of a store. Donahue [27] emphasises that the semantic model for these
types of languages are much simpler and Hoare [28] has proposed a model for data structures
in such an environment.

How then does the concept of the store arise? Of course, it comes from the design of
computer hardware with high speed stores. To allow the power of these machines to be fully
utilised it is necessary to make as best use of the high speed store as possible. It is therefore
an efficiency consideration.



The assignment statement is introduced to allow the store to be reused. There are two places
where this will improve the efficiency of a program. Firstly in loop control to alter the
controlling value and secondly in pointers to allow selective updating of data structures. Just
as the goto statement is considered harmful in our programming languages and is replaced by
higher order constructs, it may be possible to do the same for assignment. Hehner [29]
proposes a model for an algol like language without the concept of a store. Whether it can be
implemented efficiently is an area of further research. Since the store may be altered during
the dynamic evaluation of the program it also introduces the concept of sequencing. Hehner's
model also suffers from this and it could be that removal of the store in his case does not
really gain the required results.

Finally the store introduces commands or statements in the algol sense. Quite often in our
programming languages the statement is the natural unit of expression. However, statements
should be regarded as mere syntactic sugarings to help us write down more complex
expressions. Indeed it is helpful to view the statement as an expression with a void value. It
would be useful if the language encouraged this in some manner. Having discussed a number
of rules for language design we may proceed thus :

Data Types
Decide which data types, both simple and compound, are required by the
language. Define the operations on the data types and check that the principle of
data type completeness holds.

The Store
Introduce the store and the manner in which it may be used. This includes
defining the statements in the language and such issues as protection.

Abstraction
Define the semantically meaningful syntactic categories and invent abstractions
for each.

Declaration and Parameters
Invent the declarations and the parametric objects together. The issues here are
store protection and parameter passing modes having a one to one correspondence
with declarative modes.

Input and Output
Introduce the I/O model to the system.

Iterate
Finally, re-evaluate the language and correct or justify any idiosyncrasies in the
design. How often the rules can be broken is for the designer's own conscience.
The rules were introduced to help design simpler and more intellectually
manageable languages and should only be ignored with great care.

Once this has been achieved and the language has reached a fixed point, a concrete syntax
may be invented. It is perhaps desirable that different groups of workers have a different
concrete syntax depending on their taste. In any case the syntax should enhance the clarity of
programs not hinder it.

3 S-algol Design

The S-algol language is designed on the principles outlined in the previous chapter. A
discussion of the main concepts of the language is now given. As with most other languages
there is a tension between the design aims and a practical implementation. Whenever one of
the principles has been violated a complete discussion of the issues involved is given.
however, in the main, adherence to the three tenets has led to a very simple language based



on the fact that there are fewer rules and exceptions. An assessment of the language is given
in chapter 8.

The description of the main issues in the language follows the method of development.
However, since the language exists, it has a concrete syntax for at least one implementation.
Where it is felt necessary this concrete syntax has been used for clarity in the description. The
full syntax is given in Appendix I with the language reference manual. The discussion begins
with the design of the data types.

3.1 The Universe of Discourse

The data types in S-algol are defined by the following rules.

a. The scalar data types are int, real, bool, file and string.
Type int represents the values in the set of all integers. In practice the integers
may be restricted to the arithmetic limit of the particular hardware. The same is
true of type real which represents the values in the set of all reals. The operations
on int and reals are addition, subtraction, multiplication, division and remainder
for ints. The integers and the reals have the relational operators less than, less than
or equal, greater than, greater than or equal, equal to and not equal to defined on
them but the result is of type bool. Finally type int may be coerced to real if
necessary.

Type bool represents the values in the set {true, false}. The operations on bools
are equal to, not equal to, and, inclusive or and not. The 'and' and 'or' are non-
strict.

Type file represents the set of file descriptors that are available in a particular
implementation. The only operations on files are equal to and not equal to.

Finally, type string represents the set of all possible collections of characters in
the character set. At first this seems to be a compound data object and is regarded
as such by some. However, it is unnecessarily complex to introduce a type char
and a compound type string for all types. The concept is too close to a vector for
comfort and is further confused by the difference between vectors of characters
and strings of characters. By including strings and not characters as a scalar data
type this confusion is avoided and a simple method of allowing the basic
operations on strings is available. These operations are concatenation, substring
selection, length and all the relational operations. This approach is much more
pleasant than having, as in Pascal, arrays of characters.

b. For any data type T, *T is the data type of a vector with components of type T
The operations on vectors are indexing, upper and lower bound, equal to and not
equal to. Note that the bounds of the vector are not part of its type and are
determined dynamically. Also multi-dimensional arrays can be implemented as
vectors of vectors.

c. The data type pntr comprises of a structure with any number of fields and any data type in
each field.

Each user defined structure class has a fixed number of fields of fixed type. The
class of a structure, like the bounds of a vector is not part of the pntr type but is
again determined dynamically. The operations on structures are field selection,
equal to, not equal to and a test that a pntr is a given class.

To ensure the principle of data type completeness is followed the world of data objects is
given as the closure of rule (a). under the recursive application of rules (b) and (c). This, of
course, gives an infinite number of data types. Anywhere in the language where a data type is
referred to, care must be taken to ensure that all data types are acceptable. This is not



applicable to operations on specific data types. In this manner all data types will have the
same civil rights. Notice that unlike Algol 68, equality is defined on all of the data types. A
full explanation of this is given in the next section.

3.2 The S-algol Conceptual Store

The store concept, in the algols, arises from the practicality of efficient implementations of
programs on Von Neumann machines. One of the areas in which efficiency will be improved
is in the implementation of large data structures. In S-algol, the vectors and structures have
full civil rights and may be assigned. From an efficiency point of view it is unwise to copy
these objects on assignment and a slightly different view of vectors and structures must be
taken for an efficient implementation. Objects of type *T and pntr are regarded as pointers to
vectors and structures respectively. The value of a vector or a structure is defined as the
pointer. Therefore on assignment or similar operations only the pointer i.e the value is copied.

The definition of equality on all data types can now be regarded as a comparison of their
values. However, it must always be remembered that the value of a compound data object is
the pointer. This gives further proof that the store complicates the semantic model.

Furthermore, the problem of the general pointer of L-value as Strachey would call it has been
raised. Let us quickly kill it by using as evidence against, the objections raised by Hoare [28]
and the disastrous effects it has had on Algol 68 such as the dangling reference. It is bad
enough having a restricted pointer for efficiency's sake.

The semantic model of the store is one with L-values and R-values for each data type. That
is, the values in all data types may be assigned to a location. In general L-values cannot be
passed around only assigned to. However, vectors and structures contain L-values which
themselves contain the R-values of the elements.

One further concept to be discussed in relation to the store is protection and in particular
constancy.

3.3 Constancy

The concept of a variable is one which is well established in the current algols. It takes the
form of a name which may alter its value during the execution of the program. The variable is
implemented by a location which contains its value. When a variable is updated its R-value is
altered. Constants, by comparison, are not often found as a separate concept, although the
majority of variables would be better implemented as constants since they never alter their
value. A constant is an object whose value is invariant. It may be initialised but never altered
in its lifetime. Like a variable, a constant has an L-value and an R-value, but any attempt to
update it will produce an error. According to Strachey [31]

"Constancy is an attribute of the L-value, and is moreover an invariant property.
Thus when we create a new L-value, .......... , we must decide whether it is
variable or constant."

The manifest constants of BCPL [32] and Pascal do not meet this definition of constancy.
They are compile time objects and are not implemented as protected locations. Furthermore,
the issue of constancy extends beyond the world of scalar data objects. As the definition
points out, anywhere an L-value is introduced it must have the option of being constant or
variable. Therefore, in addition to the scalar values being constant so also may structures,
their fields, vectors and their elements be constant. A fuller discussion on the concept of
constancy is given by Gunn and Morrison [33].



3.4 Control Structures

The introduction of the store forces consideration of the language control structures. Legard
and Marcotty [36] have classified control structures and S-algol falls into their D' category.
Their conclusion is that the correct balance between power and security is given by this
category. S-algol is an expression oriented language and it regards a statement as an
expression of type void. The selection clauses are if  ..... then ..... else which degenerates to if
..... do for the single pronged version, and a case clause. The case clause is a new type of
case statement where the case selector is of any type and is matched with expressions of the
same type to find the selected clause. The matching test is the equality test and the tests are
performed in order so that the programmer can place the most likely one first. This is rather
like the guarded commands of Dijkstra [57] with the non-determinism removed.

The rest of the control structures are fairly conventional. They are while ... do , repeat ...
while and repeat ... while ... do which give loops with tests at the start, end and middle of
loops. The for  loop is similar to that proposed by Hoare [34]. The control identifier is
constant and is redefined every time round the loop. The initial value, step and limit are
restricted to integers and evaluated only once. Of course, there is no goto statement.

3.5 Abstractions

Tennent [24] has suggested that the method of applying the principle of abstraction is to
identify the semantically meaningful syntactic categories in the language and allow an
abstraction over them. This he does for Pascal and proposes some extensions to complete the
abstractions. However, he points out that it is not an easy matter to identify these categories
in the first place. A table is given for S-algol

Syntactic category Abstraction

typed clause typed procedure

untyped clause untyped procedure

declaration module

sequencer sequel

Procedures are familiar, the abstractions over declarations and sequencers are not. Tennent
use the name module after Schuman [35] for a declaration abstraction. The problem with this
is that it destroys the block structured scope rules of algol. His abstraction over sequencers is
a sequel which is just another convoluted goto. Legard and Marcotty [36] and now Morrison
are extremely critical of this type of branch. On the other hand Knuth [37] defends it.

The problem now is to identify the useful abstractions. The procedure is an old and trusted
friend. The sequel looks dangerous and confusing. The module at first glance looks useful but
it destroys the scope rules. In the final analysis S-algol rejected the module and the sequel. It
is interesting to note that the language has only four semantically meaningful syntactic
categories which perhaps highlights its simplicity.

3.6 Declarations and Parameters

Before discussing this, some support from Dijkstra [13] for the approach taken is given. First
of all the Algol 60 parameter mechanism.



 ".... I am getting very doubtful about Algol 60's parameter passing mechanism; it
allows the programmer so much combinatorial freedom that its confident use
requires a strong discipline from the programmer. Besides being expensive to
implement it seems dangerous to use."

and later on in the same paper.

 "A number of rules have been discovered, violation of which will either seriously
impair or totally destroy the intellectual manageability of the program .........
Examples are the inclusion of the goto statement and of procedures with more
than one output parameter."

In the modern algols a plethora of parameter passing modes has evolved. It is usually one of
the most difficult areas to understand in a language and is certainly complex to teach. By
considering the declarative and parametric mechanisms together and applying, the principle
of correspondence, it is hoped that a simpler and more elegant solution will be found.

The output parameter is the first to receive attention. Algol W calls this a result parameter. It
seems strange indeed to have an object of this type at all. It is for most of the time a name
without a value. As a declaration it is usually given as a name to be bound to a type. The
value is made by an assignment later. Disallowing this forces all declarations to initialise the
object, which is a good idea since it completely eliminates one type of programming error
and also improves efficiency since the implementation does not have to check for
uninitialised values.

Value-Result parameters suffer from a similar nonsense. They are merely a variation on call
by reference. Since, in general, L-values have been banned from being passed around, the
parameter mode has no declarative analogy. Also languages without this mode will not suffer
from the Fortran disease of overwriting literals.

Declaring a name and giving a value or calling a procedure sets up a correspondence between
the formal parameter (name) and the actual parameter (value). It was argued above that
names should be given values on declaration. This corresponds to call by value for
parameters. Assignment to a formal parameter inside a procedure has no effect outside and
the value will disappear on exit. With both declarations and parameters an L-value has been
introduced and the syntax must allow for it being constant or variable. This does not effect
the parameter passing mode it merely determines whether assignments to the location are
allowed. Thus S- algol has only call by value with the procedure being able to return a value
which may be scalar or compound.

It may be argued that call by reference is also present for vector and structure elements. This
is because a decision has already been taken to have reference objects and causes no
inconsistency between declarative and parametric modes. The value of a vector or a structure
is its pointer and the reference idea is already present in assignment. Indeed it would be
inconsistent to implement the parameter in any other manner. Finally on declarations, names
may be introduced to represent a structure class and a procedure. To complete the principle of
correspondence there must be a parametric equivalent. In order to preserve the strong typing
in the language, a procedure passed as a parameter must specify its parameter types and the
same is true for a structure class. This looks very like having structure classes and procedures
as first class citizens. However, these objects were specifically excluded from the description
of the data types in order to avoid the complication of implementing function producing
functions [22] and modals [23] in Algol 68 parlance. They are merely here to complete the
principle of correspondence. It may also be noted that passing a function as a parameter is the
correct method of implementing call by name. The table below gives the S-algol modes.



Parametric Construct

Denotation Declarative construct Formal Actual

constant declaration let I = E, for  I = E cT I E

variable declaration let I := E T I E

structure structure I (t1I1, ....tnIn) same I

procedure procedure I (t1I1, ....tnIn) (t1...tn)I I

3.7 The Input Output Model

The I/O models for most high level languages tend to reflect the environment in which they
were designed. Some attempts have been made to design and implement comprehensive I/O
systems. Unfortunately where it has not been tied to particular hardware, as in the Algol 68
case, it has never been very successful. Nowhere else in the design of a programming
language does the hardware intervene as much as it does in the I/O system. When a new I/O
device becomes available the language must be able to make use of it. Of course, this
situation is hopeless and perhaps the wisest approach to I/O is to allow the implementor to
deal with it for a particular environment, as the Algol 60 designers proposed.

The S-algol solution is to propose an I/O model but to invite the implementor to alter the
model in the spirit of the language whenever it is considered necessary. By designing an
extremely simple I/O system it is hoped that together with the abstraction facilities in the
language, it will be powerful enough to handle any environment. This is perhaps a forlorn
hope.

The S-algol I/O system is based on files. A file is a sequence of characters or binary digits.
Files may be created, deleted, and generally manipulated within a program. A file descriptor
is a data type with full civil rights. The file system has functions which act on files to perform
the I/O. Read and Write are two of these functions and they exist for data types int, real, bool
and string in both character and binary form. The test for equality on two files, tests if they
are the same file.

This very simple system is extremely powerful especially when combined with the S-algol
abstraction facilities. However it is doubtful if it is sufficient to handle all the situations that
may arise. Furthermore, the file system functions do not act on all data types which breaks
the principle of data type completeness. This is a strong indication that more work is required
on this problem.

3.8 The Concrete Syntax

The final stage of language design is to propose a concrete syntax. Ideally different groups of
workers could have a different syntax. However, there are many users who do not wish to
design their own syntax and so the language must provide at least one possibility. It seems
very obvious to say that the syntax should be simple and easy to learn. That may be so but
there is no doubt that some of the success of the language depends on the cosmetics. Also, a
carefully chosen syntax can ease the problem of compilation. Wirth [2] has this to say.

 "Adhere to a syntactic structure that can be analysed by a simple technique such
as recursive descent with one symbol look-ahead. This not only aids the compiler,
but also the programmer, and is vital for the successful diagnosis of errors."



The design of the syntax is also a balance between brevity and clarity. An example of this
design tension is illustrated by the different rules for introducing names in S-algol.

When an object is declared, its name, its value, its type and whether it is a constant or
variable is required by the compiler. The problem is how concise can this be made without
being obscure. For declarations S-algol has

let I := E

where I is the identifier and E is any valid expression. E.g.

let a := 2

tells the compiler that a variable, a, of type int and initial value 2 has been introduced. The
compiler does not need to be told the type, it can deduce it from the declaration enabling it to
be brief. For constants = is used instead of :=. E.g.

let a = 13.2 * 2.15

introduces a real constant.

It is possible for the compiler to deduce the types of all the data objects without the program
ever having to explicitly mention them. But is it wise?

Take for example a procedure heading. The compiler can deduce from the calls of the
procedure, the parameter types and whether they are consistent. However, it cannot deduce
whether the formal parameter is constant or variable. Furthermore, the procedure should be
understandable without reference to the calls. Therefore it is sensible to force the user to
specify the object type and whether or not it is constant. Finally, if the procedure returns a
value it is aesthetically pleasing to have the object type specified in the procedure heading. It
should be emphasised that this should not be confused with the principle of correspondence
as it is merely fitting a convenient syntax around the semantic model.

The declarations in the algols is an area which always causes difficulty. In S-algol there is no
goto clause and therefore the programmer cannot jump round a declaration. By insisting that
everything is declared before it is used except in the case of mutually recursive procedures,
the rules on the position of a declaration can be relaxed. In S-algol, declarations may be
freely mixed with statements. The scope of a name is from immediately after the declaration
to the end of the sequence. This allows names to be introduced as locally as possible. Again it
should be noted that this is merely a syntactic extension.

The full language description is given in Appendix I and a solution to Wirth's string problem
is now given as a sample of the flavour of the syntax. The problem is to write an interactive
program to read a string length and to find all the strings of that length of three characters
with no adjacent repeated substrings.



let s := "" ; let n := 0 ; let not.done := true

procedure add.a.letter ; {s := s ++ "a" ; n := n + 1}

procedure alter
case s (n|1) of
"a" : s := s (1|n-1) ++ "b"
"b" : s := s (1|n-1) ++ "c"
default : {n := n - 1 ; if  n = 0 then not.done := false else alter}

procedure acceptable (-> bool)
begin

let ok := true ; let p := 1
while ok and p <= n div 2 do
begin

ok := s (n - p + 1|p) ~= s (n - 2 * p + 1|p)
p := p + 1

end
ok

end

! Main Program

write  "Input string length "
let lnth = readi ; let count := 0
while not.done and n <= lnth do
begin

if  n = lnth then alter else add.a.letter
while not.done and ~acceptable do alter
if  n = lnth do {write  "An acceptable string is ", s, "'n" count := count + 1}

end
write  "Total number of strings of length ", lnth : 3, "is ", count : 4, "'n"
?

Notice that by having lexical rules that allow a semi-colon to be omitted if it coincides with a
newline, most of the semi-colons in the algols can be avoided.

4 Compiler Construction

Wirth [2] has hinted that judicious selection of the concrete syntax of a programming
language will ease the difficulty of compilation. The syntax of S-algol has been carefully
chosen in order that it may be compiled by the technique of recursive descent. It is not part of
this work to develop the theory of LL parsing, an excellent account of which is given by
Griffiths [40], but rather to investigate how easily it can be implemented. However, as
background a short discussion of recursive descent is now given.

4.1 Recursive Descent

Traditionally compilers have been constructed along the lines of the first portable compiler
BCPL [41]. Algol W [42] and Whetstone Algol 60 [43] are also examples. The compiler is
constructed in three stages.

• lexical analysis

• syntax analysis

• code generation



The stages may run as coroutines but more commonly act as three separate passes on the
source code. This is shown diagrammatically in figure 4.1.
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Figure 4.1

The lexical analysis converts the source code into basic symbols from which the syntax
analyser will generate a syntax tree. Finally, the code generator converts the syntax tree to
machine code.

The advantage of a recursive descent compiler is that it eliminates the need for an explicit
syntax tree. The "tree" is contained in the recursive evaluation of the compiler program itself.
For every syntactic construct there is a procedure in the compiler which will analyse it. When
a procedure to analyse a particular language construct is called, the data area (stack frame) it
uses will implicitly define the branch of the tree that is of interest. This eliminates the code to
set up and interrogate the syntax tree and therefore makes the compiler smaller. It is a short
step to do the same for the lexical analysis and make the compiler one pass.

This, of course, makes the compiler faster but the real significance is that it makes the total
code for the compiler smaller and easier to write. This results in better written, more correct,
more portable and easier to understand compilers.

The structuring technique for such a compiler was first outlined by Ammann [44] although he
was not the first to write a recursive descent compiler. The compiler is refined in layers rather
than as separate passes. Each layer is added to the code rather like a coat of paint, until the
compiler is complete. Whereas the general method of construction is borrowed from
Ammann, the particular method differs somewhat and is an extension of that developed by
Turner and Morrison [45, 38]. In particular, the chosen layers are different and the coding
technique is entirely new. Instead of locally defining the compiler functions, they are defined
globally to allow any other function to access them. This was done for clarity and
understanding. Also the abstractions used to code the compiler, which is its big advance as
far as software engineering is concerned, owes nothing to Ammann's work.

The layers to define the compiler are.

• Write a pure syntax analyser

• Write a lexical analyser

• Add the context free error diagnosis and recovery

• Add the type checking and type handler

• Add the environment handler and scope checker

• Add the context sensitive error reporting

• Add the data address calculation

• Write the code generation

The technique is now described by using the if  clause as an illustration.

The BNF of the if  clause is



if  < clause > then < clause > else < clause >

with type rule

if  {BOOL} then {T} else {T} => {T ]

The compiler is written in S-algol itself and that will be used in the description of the
layering.

4.2 Syntax Analysis

Recursive descent compiling constricts the syntax to being LL. Where it is not LL (1), the
parser may cheat and look ahead. However, it is generally a good idea to keep as close to LL
(1) as possible. Some systems [58] have been developed to help mould a grammar into LL
(1). The technique of compilation works by defining a procedure for each non terminal in the
syntax. This procedure will process the non terminal by calling procedures recursively to
handle the other non terminals in its definition and by parsing terminal symbols. The syntax
analysis is therefore performed as the recursion is created with the implicit tree in the stack of
the called procedures.

Although the lexical analyser is not yet written, a number of functions are defined in order
that the terminal symbols in the syntax may be parsed. These are

procedure have (string S -> bool)
! if S is the symbol in the input stream then advance it and return true.
! Otherwise do not advance the input stream and return false.

procedure mustbe (string S)
! if S is the symbol in the input stream then advance it. Otherwise report an error.

procedure syntax (string S)
! write a syntax error report. S is the required symbol.

procedure next.sy
! place the next basic symbol in the global string variable symb.

These functions have been carefully chosen as they are the level of abstraction at which the
syntax analyser will view the lexical analyser. If these are not chosen carefully, the structure
of the compiler may be preserved but the coding clarity will not.

To parse the if  clause, a procedure of a similar name is called. The syntax analysis will have
recognised the if  symbol and the procedure must progress from there. It is



procedure if.clause
begin

next.sy
clause
mustbe ("then")
clause
mustbe ("else")
clause

end

which follows the BNF

if  < clause > then < clause > else < clause >

closely.

There are only a few departures from the BNF, the most notable being the parsing of
expressions. In order that the recursion does not get too deep, the expressions are parsed by a
mixture of recursive descent for expressions of different precedence and operator precedence
(looping) for expressions of the same precedence. Also the assignment clause is parsed by

< expression > ::= < clause >

and the excessive generosity corrected later by the type matcher. This technique for
expressions is borrowed from the BCPL compiler [41].

The structure of the compiler is based on the syntax analysis. By refining the syntax
procedures using the abstractions of each stage, the various functions are added to the
compiler. Of course, at any stage the compiler can be run as a program and the implementor
may feel that this is useful for such a large program. Before the discussion turns to
refinement, the lexical analysis which has already been used is described.

4.3 Lexical Analysis

The lexical analyser is one of the machine dependent sections of the compiler. It need not be
written at this stage but since it has already been used in the abstract perhaps it is better out of
the way. The lexical analyser forms characters in the input stream into basic symbols in the
language. That is, it must recognise names, reserved words, literals of type int, real, bool and
string with all their lexical conventions, symbols such as ~= and all single character symbols.
Also it must elide tabs, spaces, comments and compiler directives as well as organising the
printing of the program.

Since it is the aim of a one pass compiler to remove the intermediate forms from the
compiler, a basic symbol is represented by the string itself. The variable symb is used to hold
the current symbol. If the basic symbol is an identifier or a literal, symb has the value
"identifier" or "literal" respectively, with the actual value in the variable the.name or
the.literal depending on the type. One concession to efficiency is that for every reserved word
and some other symbols there is only one copy of the string and a string constant with that
value. Thus the compiler has defined for the else symbol



let else.sy = "else"

and else.sy is used instead of "else" to save space.

The lexical analysis is viewed from the rest of the compiler through the procedures have and
next.sy. Next.sy processes the input stream and forms a basic symbol which it places in
symb. Have, places the next symbol in symb if the present one is equal to the parameter and
returns the value true. Otherwise it merely returns the value false.

4.4 Syntax Error Diagnosis and Recovery

This technique is based on one invented by Turner [47]. He points out that the diagnosis of,
and the recovery from, context free errors can be achieved at very low cost. The strategy is
that when no alternative symbol in the input stream will do for correct syntax analysis, the
compiler can detect any errors. The procedure mustbe is used to detect that the required
symbol is the same as the one in the input stream. If the symbols are the same, the next
symbol is placed in symb for parsing.

When an error is detected a suitable message is printed by the procedure syntax. Recovery
from an error is performed by allowing the compiler to continue thinking that the symbol was
correct. When mustbe is called again and a match is made, recovery is complete. No further
error messages for context free errors are printed in between. If a match is not made on the
second call of mustbe the input stream is scanned until it is found.

The method is very low cost and will catch and recover from all first order errors. E.g. a
missing bracket. Turner points out that the advantage of the scheme is that it can be tuned
wherever necessary and can be made more sophisticated depending on the syntax in use.

The problem with error recovery is that an incorrect program is being altered to what the
compiler thinks is the nearest correct one in order to detect further errors. Before embarking
on a complex error recovery scheme, such as Pascal employs or as outlined by Backhouse
[46], the designer has to be convinced that it is worthwhile and that the strategy can be
explained to the user.

4.5 Type Checking

Superimposed, as a refinement, on the syntax analysis are the type checking abstractions. The
basic types are discussed in Chapter 3 but must be extended to allow for complete type
checking. Type void is the type of a clause with no value i.e. a statement, and there are also
names of type procedure, structure class and structure field in the language.

For good error reports, the types are represented in the compiler by structures. Each scalar
type has a structure whose field is the string name of the type.

e.g. The type int is represented by

let int.sy = "int"
let INT = scalar (int.sy)

Every time type int is used, it is represented by the constant INT for readability, efficiency
and good error reporting.



Each procedure in the syntax analysis now becomes a function which returns the type of the
object compiled. In the same manner that the syntax analysis is performed, as the recursion
progresses, the type checking is done on the return journey. Therefore, each procedure must
check the type of every syntactic element it causes to be parsed at a lower level.

The abstract form of the type checker which is used by the syntax analysis procedures takes
the form of two procedures called match and eq. Match compares the two structures it is
given which represent types and issues an error message if they are not compatible. The
procedure eq performs the comparison on the two types and returns a boolean result. Since
there are an infinite number of types in the language the procedure must be recursive. The
types of non scalar types are represented by building up layers of structures to identify the
compound object. This recursive data structure may be analysed by eq.

The if  clause has the type rule

if  {BOOL} then {T} else {T} => {T}

The code therefore becomes

procedure if.clause (-> pntr )
begin

next.sy
match (BOOL, clause)
mustbe (then.sy)
let t = clause
mustbe (else.sy)
match (t, clause)
t

end

Notice that if t is void, the if  statement has been compiled otherwise the if  expression.

The context sensitive errors that occur at this time are found and reported by the procedure
match. When two types do not match an error message is printed and care has to be taken to
avoid a plethora of messages thereafter. Type ANY is used by the compiler for cases where
the type is not known and the type checker will match ANY with any other types in
subsequent attempts at matching.

It is also convenient to perform the checking for constancy at the same time as the type
checking. By making a small change to the language, that of vectors with constant elements
and vectors with variable elements being assignment incompatible, the checking for
constancy can be performed at compile time. The compiler must check for constancy on
assignment.

Finally, the type checking must handle coercions from type int to type real where necessary.
This will complicate the code for the if  clause when the code generation is added.

4.6 Scope Checking and Environment Handling

Each level of scope of the program being compiled is represented in the compiler by a binary
tree. Each element on the tree represents a user defined name. For each name the following
information is eventually required



• The name itself

• The object's address pair

• The type and constancy attribute

• A pointer to the left and right neighbours

The levels of scope are chained together in a linked list. Entering a new level of scope merely
adds a link to the list and leaving a level gets rid of the current tree as it is no longer required.

The abstractions used at this level are implemented by the functions declare and lookup. The
procedure declare takes a name and its type and enters it in the tree. The function lookup will
check that a name is in scope and if it is it will return its type. Context sensitive errors may be
detected here and error reports may have to be issued.

For good error reporting some names may have to be checked for duplication before they are
declared. For example the simple declaration

let I := E

The name I does not come into scope until after the declaration. Also the type is not known
until the expression E is compiled. However, to obtain a good and early error report the name
must be checked for duplication on finding the := symbol. The function check.name is used
for this purpose.

4.7 Data Address Calculation

A decision about the abstract machine has now to be taken. The technique of recursive
descent lends itself to generating code for a reverse polish machine such as the beta machine
described by Randell and Russell [43].

Each data item on the stack is represented by an address pair. The abstract machine is
described in the next chapter and it is sufficient here to mention that the address pair consists
of the lexicographic level of the item and its offset from the level base. When a stack item is
declared this address pair is calculated.

Items such as structure classes also have an address. The structure class has an address called
a trademark which is an index into the structure table. The structure table has one entry for
each structure class which contains information on the layout of the structure fields. Thus the
trademark uniquely identifies the structure class. The trademark is kept on the stack and the
address of the structure class is the address of the trademark. Fields on the other hand require
both the structure class address and the offset of the field from the base of the structure. The
structure table which describes the structure classes is output by the compiler at the end of the
compilation.

Care must be taken during the address calculation that the difference between compile time
and run time is not confused. An example of this is given in section 4.8

4.8 Code Generation

The final layer of refinement in the development of the compiler is that of code generation.
The compiler produces code for the S-algol stack machine which is described in Chapter 5
with the code for each syntactic construct described in Appendix IV. The code generation is
written in such a manner that code for any machine could be produced. For each abstract
machine instruction a procedure is defined to simulate the execution of the instruction and to
generate code for it.



The simulated evaluation of the code is necessary to keep track of such things as the stack
pointer. Since declarations can occur mixed with clauses it is important to remember the
stack position of the declaration. During the generation of the code it is also necessary to
keep track of the code addresses for jumps. This requires slight modification depending on
the target machine. The method used in the S-code machine is now described.

When code is generated it is held in a large vector in the compiler until the segment being
compiled is complete. At this point, since there are no goto's in the language, all the jumps
will be resolved relative to the segment base. The segment is then written out and replaced by
its closure, see later, on the stack. The address of the segment is relative to the program base.
Inside the segment the jumps are only generated by high level constructs. This means that
forward and backward references may be easily identified. For backward references, the
position of the reference is remembered in the procedure compiling the syntactic construct
and is merely generated with the jump. Forward references are more difficult and require a
backward linked list to the reference to be set up in the code whenever it is used. The list of
references is resolved when the point of the reference is reached. The technique avoids the
complication of label tables etc.

To isolate the code generation as far as possible, the work is done inside the code generation
procedures with calls from the syntactic analysis. The code generated by the compiler for the
if  clause is

if  E0 then E1 else E2 => E0 jumpf(l) E1 jump(m) setlab(l) E2 setlab(m)

The if  clause now becomes

procedure if.clause (-> pntr )
begin

next.sy
match (BOOL, clause)
let l = jumpf (newlab)
mustbe (then.sy)
let t = clause
dec.stack (t)
let m = fjump (newlab)
mustbe (else.sy)
setlab (l)
match (t, clause)
setlab (m)
t

end

Procedure jumpf simulates the execution of the abstract machine instruction jump if false. It
also removes the boolean from the top of the stack. The jump is always forward so the
parameter is the chain so far, in this case a new label, and the result is the position in the code
of this reference. This will be resolved by the procedure setlab just after the else symbol has
been parsed. A similar situation occurs with the label m except that the jump is unconditional
and the stack is not involved. An example between dynamic evaluation and static analysis
can be observed here. After the then symbol has been parsed, the result of the clause must be
removed from the stack during static analysis. This is performed by the procedure dec.stack.
Of course, dec.stack does not generate any code as only one of the two paths will be followed
dynamically.



4.9 Conclusion

The technique of compiling by recursive descent and building the compiler by stepwise
refinement was successful. It resulted in a fast, small and easy to understand compiler. This is
borne out by the code to compile the while clause

BNF

while < clause > do < clause >

and type rule

while {BOOL} do {VOID} => {VOID}

and code

while E0 do E1 => E0 setlab(l) jumpf(m) E1 jump(l) setlab(m)

gives

procedure while.clause (-> pntr )
begin

next.sy
let l = cp
match (BOOL, clause)
let m = jumpf (newlab)
mustbe (do.sy)
match (VOID, clause)
bjump (l)
setlab (m)
VOID

end

With the example of the if  clause as the only previous explanation of the compiler
techniques, it is easy to understand and have confidence in the correctness of the code for the
while clause. The total compiler is about 1500 lines of S-algol laid out rather like these
examples. This compares very favourably with most other compilers.

The structuring and refinement of the compiler is not quite as smooth as Ammann suggests.
In particular the design of certain layers have to be done in conjunction. For example, it is
unwise to proceed with the syntax analysis without designing the abstract lexical analysis and
a similar situation occurs with the type matching and the environment handler. Therefore, the
layers are not as separate as may be desirable.

Furthermore, the choice of abstractions at the coding level, of which Ammann says nothing,
contributes more to the conciseness or verbosity of the compiler than does the structuring. In
other words, the successful compiler depends on the correct level of abstraction being
identified and refined by the implementor and not merely the fact that the technique is



recursive descent. It just so happens that recursive descent lends itself well to this type of
treatment.

5 The S-algol Abstract Machine

The architecture of any abstract machine is determined by the power of the language it has to
support. The recursive nature of the block structured languages, like the algols, lends itself to
implementation by a stack such as described by Hauck and Dent [48]. Most of the
implementations of the algols are based on variations of the beta machine of Randell and
Russell [43]. However, it should be noted that the beta machine is not sufficient to support
languages like Algol W, Pascal, Algol 68 and S-algol which although predominantly stack
based, require a second area of dynamically allocated store. This area is known as the heap.
Many variations of the beta machine exist e.g. Pascal P-code [49] and wherever possible the
S-algol machine has drawn on their experience. The overall design tenet was to design a
simple machine to support the stack and heap nature of S-algol. The resultant machine is the
S-code machine. The description of the S-code machine falls into the three categories of stack
organisation, heap organisation and the instruction set.

5.1 The Stack

The S-algol compiler produces S-code which is a form of reverse polish instruction code. The
S-code is ideally executed on a stack machine. The stack is used to facilitate block and
procedure entry and exit, to provide space for programmer named objects and to provide
space for expression evaluation. Expression evaluation is always performed on the reusable
space at the top of the stack and since the technique is well known little more will be said of
it here.

On block or procedure entry or exit, information is placed on or removed from the stack. This
information which contains a Mark Stack Control Word (MSCW), space for local objects and
parameters and working space for expression evaluation, is sometimes known as a stack
frame. Since the length of each stack frame may be different, they must be linked together to
allow correct exit from the block or procedure. Therefore, the MSCW contains a dynamic
link which points to the base of the previously activated stack frame. Thus, the dynamic links
form a chain, known as the dynamic chain, of the currently activated blocks or procedures.

By its very nature the stack records the dynamic evaluation of a program. Some method is
required to reflect the static nature i.e. the scope rules, since not all of the stack frames
available on the stack need be in scope. The MSCW contains a second pointer, known as the
static link, which points to the stack frame of the immediate static outer block or procedure.
These static links form the static chain which can be used to find the stack frame base of any
block or procedure that is in scope.

The position of a stack frame, for a block or a procedure, on the stack may vary depending on
the dynamic evaluation of the program. Therefore, the compiler cannot calculate the absolute
address of stack items other than those of the most outer block. However, if dynamic vectors
are disallowed as stack items (it will be shown later that S-algol vectors cannot be
implemented on the stack anyway), the address of a stack item relative to its stack frame base
may be calculated at compile time.

For each item on the stack the compiler produces an address pair, < ll, dd >, where ll is the
lexicographic level and dd is the displacement from the stack frame base

This address pair is used at run time to calculate the absolute address of the stack item. Note
that if the stack frame base of the item was to be found by chaining down the static chain, the
clever compiler [49] would calculate, instead of ll, the difference in the current lexicographic
level and that of the required item as this is the number of times to link down the static chain.



The next refinement is to use fast registers to form a display [48]. The display duplicates the
values in the static chain and thus the absolute address of any item on the stack is

display (ll) + dd

Finally, Wichmann [50] has shown that stack frames are only required for procedures as
blocks can be considered as part of the procedure and their stack item addresses calculated
relative to the procedure stack frame base. This technique is called procedure level
addressing and extends with a slight modification to languages with block expressions.

5.2 The S-algol Stack

S-algol was designed to be used to write programs in the paradigm of structured
programming [51]. By studying the programs written in such a manner, two observations
which are relevant to this discussion can be made. Firstly, structured programs tend to consist
of a large number of small procedures which are called many times. Secondly, the objects
referred to in these procedures tend to be local or outer block globals. It is therefore
reasonable to design an abstract machine which takes advantage of this to obtain an efficient
implementation.

The display method of implementing the stack has two major drawbacks. Updating the
display may be complex. In general, the number of operations required to update the display
on procedure exit is

p - q + 1 if q <= p and 0 otherwise

where p is the ll of the calling procedure
and q is the ll of the called procedure

In other words, if the environment changes drastically, the overhead in updating the display is
increased. This situation occurs on returning from a procedure declared at a lower level than
the calling one and with procedures passed as parameters. Some compilers e.g. Algol W [42]
panic because of this and simply dump the whole display on to the stack on procedure entry
and restore it on exit.

The other main difficulty of the display scheme is that it relies on there being enough spare
registers on the target machine to reflect the depth of static nesting in any program. In most
cases this usually leads to some arbitrary restriction on the depth of nesting. While this may
be good enough for hand written programs it is almost never satisfactory for automatically
produced programs.

The S-algol abstract machine requires two registers, called stack base, SB, and stack front,
SF, which point to the global and local stack frame bases respectively. Only one register, SF,
is absolutely necessary since the base of the stack may be fixed. On procedure entry SF is
made to point to the new stack frame base and on exit it is restored from the dynamic link.

Thus, since the compiler issues separate instructions for locals and outer block globals, they
can be quickly accessed by using the SF and SB registers. Other free variables are accessed
via the static chain. The method is as fast as the display technique for accessing locals and
outer block globals and does not suffer from any artificial limit on the static depth.



A simple and efficient method of procedure entry and exit is now possible. However, the
technique must be capable of dealing with procedures passed as parameters. Consider the
program to calculate

exydxdy
3

4

∫1

2

∫

procedure integral ( (real -> real)f ; real a, b -> real)
 (b - a) * f ( (a + b) / 2.0)

procedure g (real z -> real)
begin

procedure ep (real y -> real) ; exp (z * y)

integral (ep, 2, 4)
end

write  integral (g, 1, 2) ?

The problem arises on the call of the procedure integral which has ep as a parameter.
Procedure ep uses the non local y and therefore when ep is invoked as procedure f an
environment change is required to obtain the correct results. The difficulty is to devise a
general mechanism which will deal with this case. The S-algol solution is as follows.

Since a procedure can be passed as a parameter and is subject to the same scope rules as other
items, it suggests that it could be implemented as a stack item. The above problem is one of
identifying the correct static environment. When a procedure is declared two items are placed
on the stack as an initialisation. These are the procedure address and its static link and are
collectively called the procedure closure. Each procedure forms a segment of code which is
loaded separately. The only evidence of one segment having been part of another is the
instruction to load the closure. The static link may be calculated at this point as it is merely
the current stack frame base. This can simply be copied and need not be recalculated on each
procedure call.

A procedure call consists of an instruction to load the closure, code to evaluate the
parameters and an instruction to call the procedure. The MSCW contains

• The procedure address

• The static link

• The dynamic link

• The return address

The first two items form the procedure closure and the second two are calculated just before
entry. The closure uniquely represents the procedure on the stack. A procedure declared
inside another will appear at run time as a closure on the stack. To pass a procedure as a
parameter requires the closure to be copied. Thus, the procedure parameter will look like a



locally declared procedure when it is called. For the closure to represent the procedure
uniquely, it is not sufficient to hold the procedure address ; the static link is also required.
The procedure closure carries its own static link and therefore the environment problems are
solved.

The technique also works for forward declared procedures by leaving space on the stack at
the point of declaration and filling the closure in at the point of actual declaration.

Procedure exit is extremely simple. Resetting the SF pointer is all that is required. No
updating of the static chain is required as it is uncovered to the position on the point of entry
automatically. Of course, stack retraction must take place on procedure and block exit and
care has to be taken if they return values.

Whether this technique is more efficient than the display method depends on

• The number of spare registers on the target machine

• The number of non global free variable accesses

• The number of procedure calls

• The number of procedures passed as parameters

and is discussed further by Morrison [52].

5.3 The Heap

The design of the world of data objects in S-algol, makes it impossible for the language to be
implemented on a stack only system. In particular, strings, vectors and structures require a
second area of dynamically allocated store known as the heap.

In S-algol, vectors are first class data objects. They enjoy the same civil rights as any other
data object including assignment, being fields of other vectors or structures and being passed
to procedures. The copying of vectors is not generally used on efficiency grounds. Indeed, on
a stack system with variable size vectors, as in S-algol, it is impossible to copy the vectors
since the space required to hold the vector on the stack cannot be predicted. Therefore, a
vector is represented by a pointer on the stack with the elements on the heap. The value of the
vector is the pointer and assigning the vector means copying the pointer. Since pointers are of
uniform stack size the problem is overcome.

The S-algol structures suffer from the same problems as the vectors. Indeed the language is
designed to make vectors and structures behave in the same manner. Structures may be of
any class and therefore size. For exactly the same reasons as with vectors, structures are
implemented as pointers on the stack which point to the structure fields on the heap.

Since the programmer may alter the fields of a structure or the elements of a vector, it is
necessary to know that vectors and structures are implemented as pointers. For example, a
vector passed to a procedure which alters one of the elements has that element altered
forever. Strings, on the other hand, are pure data objects and may not be altered internally by
the programmer. However, strings also have the same size problems as vectors and
structures. They are therefore implemented on the heap with a pointer to them on the stack.
The pointer in this case is not seen by the programmer.

The efficiency of this approach to strings, vectors and structures is not immediately obvious.
The problem of copying large data structures has been avoided, in general, by the
introduction of the pointer. The pointer is only apparent to the user with vectors and
structures since they may be altered internally. With strings the pointer is hidden and is used
only for efficient implementation.



The abstract machine data structures on the heap must also contain some housekeeping
information to allow them to be used correctly. They are listed for each item

• Vectors must carry their bounds for run time bound checking and an indication if
the elements are pointers for garbage collection purposes.

• Structures must carry their trademark for run time structure class checking and
some means of specifying which fields are pointers for structure creation and
garbage collection.

• Strings must carry their size for index checking.

How this is implemented efficiently on a given target machine is a problem for the ingenuity
of the implementor. The PDP11 solution is given in Chapter 6.

5.4 Heap Organisation

The algol family of languages present the user with a conceptually infinite store. The stack
simulates this by reusing the store allocated to blocks no longer in use. The design
philosophy of S-algol does not wish to alter this. Since the difference between stack and heap
objects is hidden from the user, the heap as well as the stack must be reused. Of course, the
pretence breaks down when the store is finally exhausted and may not be reused. The
technique of garbage collection is used with the heap.

Space is allocated on the heap until there is no more available. At this point it is possible to
have space allocated that is no longer in use. Consider the program section

for  i = 1 to 10000 do
begin

let A = @1 of cstring[ "a", "b", "c", "d" ]
...

end

After executing the loop, 10, 000 versions of A will be on the heap. However, if none of them
has been assigned then none of them will be in use. The same applies to structures and
strings.

At any point in the execution of an S-algol program, the space on the heap may be

• Allocated and in use

• Allocated and not in use

• Free

When the free space is exhausted it is the job of the garbage collector to free the space that is
allocated and not in use. This is performed in two stages by marking and collecting.

In the marking phase, the pointers on the stack are used to identify some heap items that are
in use. The search is recursive since heap items may point to other heap items. Thus all the
space that is in use will be marked. Once the heap has been marked all the unmarked space is
freed with the possibility of coalescing the free areas into larger blocks or compacting the
used space to one end of the heap.

The main difficulty in this is to identify the pointers on the stack at any point in the execution
of a program. Some pointers are trivial to find as they are at a fixed location relative to the



stack frame base. However, the position of some other pointers on the stack is dependent on
the dynamic flow of the program. Consider the example

structure vecs (*int V1)

let A = vecs (@1 of int [1, 2, 3])

If a garbage collection strikes between the creation of the vector and the structure, the pointer
to the vector will be at an arbitrary position on the stack and therefore difficult to identify. A
solution could be to chain all the pointers on the stack together but this will slow down the
use of items with pointers. Of course, a tagged data architecture machine has no difficulty
with this problem. S-algol proposes a new, simple and extremely obvious solution.

The S-algol system has a separate stack for all pointers. The compiler can always predict the
type of an item and therefore on which stack it will live. The marking algorithm has no
difficulty in finding the initial pointers since they are all on the pointer stack. Thus a
potentially awkward situation is overcome.

The drawbacks to the two stack solution are as follows.

• A third area of dynamically allocated store must be found in the total address
space. This is often no problem at all.

• The second stack must be administered like the first to map the static and
dynamic flow of the program.

The solution to the second problem is to allocate two registers, pointer stack front, PSF, and
pointer stack base, PSB, to point at the current pointer stack frame base and the global pointer
stack frame base. The main stack already maps the dynamic and static flow of the program.
By including in the MSCW a pointer to the equivalent pointer stack frame base, all the
intermediate pointer stack frames may be found by linking down the main stack static chain
and then using the pointer to the pointer stack frame.

The mark stack control word now contains

• The procedure address

• The static link

• The dynamic link

• The pointer stack link

• The return address

This, of course, complicates procedure entry and exit. However, the problem of identifying
these anonymous pointers is such a nasty one that the price paid is felt to be small.

5.5 The Abstract Machine Code

The S-algol abstract machine uses four storage areas

• The instruction code area

• The main stack

• The pointer stack

• The heap



It also has seven special purpose registers

• Stack front SF

• Stack base SB

• Pointer stack frontPSF

• Pointer stack base PSB

• Stack top SP

• Pointer stack top PSP

• Code pointer CP

The S-code generated for each syntactic construct is given in Appendix IV and the S-code
instructions are described in detail in Appendix III. A general discussion of the more unusual
item of the S-code design is given here.

5.6 The Stack Instructions

The S-code machine has the usual battery of stack instructions. There are arithmetic
instructions, like plus, which perform the operation on the top of the stack and leave the
result there. The relational operations such as less than etc. operate on ints, reals and strings
and leave a boolean result on the top of the stack. There are instructions to load literal values
on to the stack and instructions to load other stack items on to the top of the stack prior to
being used. This last group requires three forms since the stack objects may be local, global
or intermediate depending on their scope. The type of the operand is used to indicate which
stack is to be used.

There are a number of miscellaneous instructions such as erase the top of the stack, exchange
the top two elements and assign the top element to the address given in the second top. A new
stack instruction is retract which is used on block exit.

No code is required in procedure level addressing for block entry. However, on block exit the
stack top registers may have to be changed to get rid of any locals on the stack. Furthermore,
if the block returns a value this must be copied to the new stack top.

Finally, to allow a general coercion from type int to real a float instruction which will float
the top or second top stack element is required.

Consider the expression

1 + 2.0

This will generate the code

ll.sint (1) ll.real (2.0) float.op (2) plus.op

5.7 The Heap Instructions

The heap instructions fall into two categories

• Those which create heap objects and therefore may cause garbage collection

• Those which use the heap items



The string operations which create strings on the heap are code which creates a string of
length 1, concat.op which concatenates two strings forming a new one, substr.op which
selects characters from a string to form another and finally read.string. Creating structures is
more complicated. E.g.

structure abc (int  a ; cstring b ; *real c)

let A = abc (1, "ron", @1 of real [1, 2, 3])

The code generated for the structure creation is

load the trademark from the stack

evaluate the expressions

form.structure (n)

The trademark is loaded on to the top of the stack and is n words from the stack frame base.
The expressions are evaluated on the appropriate stack depending on their type. The
trademark must carry some indication of which fields are pointers in order to take the fields
off the correct stack when filling in the fields. This information is also required in the
marking phase of the garbage collector. An indication of how this might be done is given in
Chapter 6.

There are two forms of vector creation. The first

@1 of int [2, 3, 45]

generates the code

ll.sint (1) ll.sint (2)
ll.sint (3)
ll.sint (45)
make.vector (int, n)

The expression types are int and therefore on the main stack. n gives the position of the lower
bound on the main stack relative to the stack frame base. It is a simple matter to calculate the
size of the vector, create it on the heap and fill in the elements. The second form of vector
creation is given by

vector 1::10, 2::11, ........ of "abc"

which generates



evaluate the bound pairs on the stack
evaluate "abc"
iliffe.op (t, n)

t is the type of the expression to be the value of each of the elements of the last bound. n is
the number of bound pairs. This instruction is not very easy to implement as the creation of
the vector entails the recursive creation of the constituent vectors.

There are a number of instructions to access the heap items, the most important being the
subscripting operations which have to check the vector bounds, the structure class or the
string size. The run time structure class checking of S-algol is performed by these
instructions.

5.8 Flow of Control Instructions

These instructions are necessary to map the rich set of high level language constructs in S-
algol which alter the program flow of control. The first pair of these instructions is used to
implement the non-strict version of and and or

E1 or E2 => E1 jumptt (l) E2 l:

Since true or anything gives true and false or anything gives anything, jumptt branches if
the top stack element is true and merely removes it otherwise.

Another S-code instruction in this style is the instruction used to implement the case clause,
cjump

case E0 of E0
E11, E12, ......E1n : E10 E11 cjump(l1) E12 cjump(l1).....E1n cjump(l1)

jump(M1) l1 : E0 jump(xit)
E21, E22, ......E2n : E20 M1: E21 ..........
...
default : Ek+1 0 Mk: Ek+1 0

xit:

The cjump instruction takes the top two stack elements, the stack dependent on the type, and
if they are equal removes them both and jumps. Otherwise it removes only the top element.

An unconditional jump and a jump if the top stack element is false is sufficient to implement
the if  and loop clauses.

if  E1 then E2 else => E1 jumpf(l) E2 jump(m) l: E3 m:

and



while E1 do E2 => l: E1 jumpf(m) E2 jump(l) m:

Another variation is required to allow the coercion from int to real in all cases. consider the
example

if  E1 then 1 else 2.0

It is not until the 2.0 is compiled that the compiler realises that 1 should 1.0. The following
code sequence is applicable to the general case.

E1 jumpf(l) ll.int(1) jump(m) l:ll.real(2.0) jump(n) m:float.op(1) n:

The for  clause is controlled by two instructions, one to perform the test at the beginning of
the loop and one to perform the step at the end. The code generated for the for  clause is

for  i = E1 to E2 by E3 do E4

E1 E2 E3 l:fortest(m) E4 forstep(l) m:

The control constant, limit and increment are at the top of the main stack. The fortest
instruction decides if the loop is finished and jumps if it is. This is used in conjunction with
the forstep instruction at the end of the loop which adds the increment to the control constant
and jumps back to the beginning of the loop. Notice that the limit, increment and initial value
are only calculated once before the start of the loop.

Finally, under flow of control instructions the code sequences to perform procedure entry and
exit are examined. The code to call a procedure is

mst.load
evaluate the parameters
apply.op (m, n)

The mst.load instruction, of which there are three forms depending on the scope of the
procedure, loads the closure on to the top of the stack and leaves space for the dynamic link,
the static link and the return address. After the parameter expressions have been evaluated on
the stack, apply.op is used to call the procedure. The numbers m and n give the positions of
the new values of SF and PSF relative to SP and PSP respectively.

Apply operates like this

• Fill in the dynamic link with the value of SF

• Calculate new SF = SP - m and PSF = PSP - n

• Fill in the pointer stack link with PSF

• Fill in the return address



• Move the contents of the stack location pointed at by SF to CP. This will perform
the branch.

The code for the procedure itself is surrounded by the two instructions enter and return. Enter
has two parameters which are the maximum amount of stack space, on each stack, that the
procedure may require. The enter instruction checks that the space is available. On some
machine architectures e.g. Multics this is not necessary. The return instruction is more
complex and works like this.

• Move the result of the procedure, if any, at SP or PSP to the new stack top at SF
or PSF and set SP and PSP to these values.

• Move the dynamic link to SF

• Move the pointer stack link of the uncovered frame to PSF

• Move the return address to CP

5.9 Input and Output

The S-code machine supports binary and character I/O streams. These are implemented as
files in the language and allow the user to read or write the appropriate data types. Read
functions are defined to read ints, reals, bools and strings and some others to manipulate the
stream. The write functions give the equivalent power for output and contain some additional
formatting capability. The objects in character form may be written out in specified field
widths with more powerful functions for the real.

The abstract machine does not define how the file should be implemented as it is felt that this
may constrain the best environments e.q. UNIX to the low level service of some systems. It is
therefore left to the implementor to organise this.

5.10 Conclusions

It can be readily seen that the S-code machine retains the spirit of the beta machine for its
stack environments. The display mechanism is however gone. It was necessary to add a heap
to the machine to implement vectors, structures and strings. The problem of identifying the
pointers on the stack at garbage collection time lead to the implementation of a second stack
for the pointers only. This complicates the abstract machine but it is felt that it solves the
original problem so well that the complexity is a good investment.

The implementation of S-algol on a machine with two stacks and a heap requires that the
abstract machine code will be different from other abstract machine codes. However, a lot of
the instructions are common to most reverse polish machines and it is only the architecture of
the S- machine that makes the instructions different. There are also some new instructions
which allow the more esoteric S-algol constructs to be implemented at a fairly high level.

It was one of the design aims of S-algol, that the user should not know or not need to know,
the difference between stack and heap objects. Under the rule of orthogonal design all the
data types have the same rights. It is therefore necessary to reuse the heap just as the stack is
reused. This introduced the garbage collector which in turn led to the invention of the two
stacks. Thus, the two stacks and a heap architecture is arrived at.

6 S-algol Implementation

This section describes the implementation of S-algol on the PDP11 computer running under
the UNIX operating system [53]. The main constraints on this system are that the PDP11 is a
16 bit word machine with a user address space maximum of 64K bytes. This immediately
gives rise to space problems. Otherwise the UNIX environment is very friendly and is
especially suited to the implementation of S-algol files.



The space constraint of the PDP11 leads to a severe restriction on the size of program that
can be run. A compact form of code is required and an interpretive system is the solution.
The compiler produces a form of S-code which is then interpreted. Of course, since the
compiler is written in S-algol, it is itself interpreted. In Chapter 8, this decision is justified by
the subsequent measurement of the system. Speed has been traded for space.

The S-code machine is laid out in store thus

S-code Heap
Pointer

Stack

Main

Stack

Figure 6.1

The sizes of the various components are roughly 4K bytes main stack and 2K pointer stack
with an 8K interpreter. The S-code size depends on the program being run and the heap uses
the rest of the 64K bytes.

The PDP11 registers are used thus

Register Use Register Use

r0 general r1 general

r2 code pointer CP r3 pointer stack front PSF

r4 stack front SF r5 pointer stack top PSP

r6 stack top SP r7 PDP11 program counter

Note that there are not enough PDP11 registers to accommodate SB and PSB which have to
be implemented as store locations.

6.1 Instruction Set Design

The instruction set codings were chosen in the first instance for simplicity. This is based on
the belief that the only method of performing optimisation is to measure the system first to
find out where to optimise. The first solution to the problem should involve the designer's
intuitive ideas of efficiency but this should not be of overriding importance at least until some
measurement statistics are available. It is therefore the aim to design a simple system which
can be easily measured.

The PDP11 is a 16 bit word computer with the capability of addressing half words or bytes. It
was decided, in the first instance, to design the instruction set so that one word would hold a
complete S-code instruction. It was realised that this might not be the most efficient method
since using a byte oriented system with long and short instruction forms may produce a better
solution to the design aim of compact code. Only measurement of the results would provide
the answer to this.

The constraints on such a design are that in order to fit both the operation and the address into
16 bits, the address must have a fixed maximum size. This, along with the knowledge of the
work done by Wilner [54] on bit addressable machines led to three formats for the instruction
set. These are

4 bit instructions



bit 15 1 to identify these

bits 12-14 operation code

bits 0-11code address

This format of instruction is used for the jump instructions. There are only eight codes. The
jump address is restricted to 4096 which is not very large. Since S-algol programs cannot
jump out of the procedure segment then the jump address can be relative to the segment base.
Thus the restriction of 4096 bytes of interpretive code in each segment is quite large.

6 bit operations

bits 14-15 01 to identify these

bits 10-13 operation code

bits 0-9 stack address

This format is used for the instructions which involve a stack address. These instructions such
as local, global, plocal etc. are restricted to a ten bit address. That is, the maximum number of
stack elements per stack frame is 512.

9 bit operations

bits 14-15 00 to identify these

bits 7-13 operation code

bits 0-6 type

These instructions usually have the type of the instruction operand encoded in the bottom
seven bits. Of course, some instructions do not fit any of these formats and usually have the
first word in a format with a second word of information following immediately.

This type of organisation requires some involvement by the compiler. It was decided to
simplify affairs by having no loader. The compiler would produce the S-code which would be
directly executable by the interpreter. This is always difficult for a one pass compiler
compiling a blocked structured language. Consider the example

procedure a
begin

...
procedure b
begin

...
end
...

end

The problems are twofold.

• The code will be produced with the procedures mixed up and

• Forward references are difficult to resolve.

The first problem is that the procedures are not separate code segments. This has been
traditionally solved [43] by planting a branch round the inner procedure so that it will not be
executed at the point of declaration. That solution aggravates the problem of the maximum
code displacement from the segment base being 4096 bytes.



The second problem is that a forward reference cannot be resolved once the code has been
written out. The solution is the same for both problems.

A vector is used in the compiler to hold the code produced. Forward references can therefore
be back patched in this vector. At the end of the procedure declaration, the code for the
procedure can be output and the instruction to load its closure left in its place. Thus the
procedures are independent segments of code.

The effectiveness of the instruction set design is discussed in Chapter 7 but as a first guess it
seems to have been good. On a static analysis of the S-code for the compiler itself, the
number of bits required to represent all the operation codes was 58, 542 against a theoretical
minimum [55] of 43, 096.

A description of each instruction in the PDP11 S-code is given in Appendix IV and the
instruction codings in Appendix V.

6.2 The Stacks

The PDP11 computer has instruction modes which allow the store to be manipulated as a
stack. These addressing modes are autoincrement which fetches the operand and increments
the register pointing at it, and autodecrement which decrements the register and uses it as the
address of the operand. One consequence of this is that the PDP11 stacks run backwards from
store high addresses to store low addresses. Stack items not at the top of the stack are usually
addressed by a displacement. In the PDP11 implementation this displacement is subtracted
from and not added to the stack frame base to find the correct item address.

The layout of the MSCW is now

RA LN PSL DL SL @P

SF

☛

The position of SF is convenient for procedure exit. The line number LN in the MSCW is the
number of the line that was executing prior to the procedure being called. In the PDP11
system there is a location which contains the number of the line being executed. This location
is updated by the newline instruction. On procedure entry and exit the location value must be
stored in the MSCW and restored from it respectively. It is used for diagnostic purposes.

The only other unusual use of the stack is that the reserved identifiers are declared as the first
stack elements in the global stack frame. These values must be initialised by the interpreter
before program execution.

6.3 The Heap

There are three heap objects strings, vectors and structures. The empty string is represented
by a nil pointer on the pointer stack so that the heap does not require special arrangements for
them. The instructions which manipulate the strings must take account of this. There is no
way in which a uninitialised vector or structure can be obtained in the language. The manner
in which the heap items are represented is as follows

Strings

word 0

bits 14-15 10 if a string



bit 13 0

bit 12 mark bit for the garbage collector

bits 0-11 number of characters in the string

This is followed by the string elements one to a byte with the last byte spare if there are an
odd number of characters.

Vectors

word 0

bits 14-15 00 if vector

bit 13 1 if elements are pointers

bit 12 mark bit for garbage collection

bits 0-11 size of the vector on the heap

word 1 lower bound

The upper bound is found from the equation

size = (upb - lwb + 1) * 2 + 4

Structures

word 0

bits 14-15 01 if a structure

bit 13 1 if it contains pointers

bit 12 mark bit for garbage collection

bit 0-11 trademark

The structure implementation is perhaps the most clever of the three. The aim is to reduce the
overhead of housekeeping information on each structure. However, the structure must carry
its trademark for structure class checking, an indication of which fields are pointers for
structure creation and garbage collection and its size on the heap also for garbage collection.
The trademark is kept with the structure and is used as a unique pointer for that structure
class into the structure table. The structure table contains the size of the structure on the heap
and the number of pointers it contains for each structure class. Unknown to the user the
compiler arranges the pointer fields to be at one end of the structure. Thus, the garbage
collector can find them all by merely knowing how many there are. It can also find the size of
the item indirectly from the trademark. The number of pointer fields is also required by the
form structure instruction to fill the fields from the correct stack. This arrangement keeps the
amount of information stored with each structure incarnation to a minimum.

6.4 Free Space List

Initially the heap is empty. Requests to form vectors, strings and structures use up the heap
space. Garbage collection frees this space when it is no longer in use. If the garbage collector
is non compacting, as in the PDP11 case, the store may become fragmented. That is, the free
store may not be in one contiguous block but interspersed with allocated heap storage. When
this is the case a quick method of identifying the free store is required since it is this free
store that will be used when new objects are formed.

The PDP11 implementation of the S-algol heap links the blocks of free store together to form
the free space list (FSL). Every block of free store contains two words at the beginning which
contain



• A pointer to the next block of free store or an indication that this is the last block
on the chain

• The size of the block

Every free block on the heap must be at least two words in length. Single free words are
marked as such and not kept on the FSL. However, since they can be recognised, they may be
coalesced into a larger block during garbage collection.

When a piece of store is requested, the free space list is searched using a first fit algorithm. If
no block of the required size is found a garbage collection is performed. If the space still
cannot be found the program is terminated as it is out of store. Otherwise a block of store has
been found. There are three possibilities

• The block fits exactly

• The block is one word too big

• The block is two or more words too big

In the first case the links in the FSL must be altered to remove this block. In the second case
the links must be altered in the same way and the spare word marked appropriately. In the
third case the block looks like this

Free
Space
Link

Size Requested
Block

The requested section of the free block is taken from the top end of the block. This means
that only the size field in the free block need be updated. The free list is held in address order.

6.5 Marking the Heap

The first phase in collecting the unused space on the heap is to identify the used space. This is
done by taking each element of the active pointer stack and following all the pointers
recursively. The PDP11 version takes the pointer from the pointer stack and places it on the
main stack. The element that it points to is then marked and all the pointers in the element
placed on the main stack overwriting the original pointer. This process is repeated until no
pointers are left on the main stack. Of course, any item that is encountered that has already
been marked need not be followed again. When finally all the pointer stack items have been
used, the marking phase is complete.

The system works well for large linked lists since only one pointer at a time will be on the
main stack. Vectors with pointer elements may cause size problems on the main stack if they
are too big. However, it should be possible to write a marker that handles these two items
differently.

String literals on the PDP11 version are kept with the program code. These will be marked.
This could be avoided by checking that the element being marked is in the heap. But, it is of
no consequence since nothing apart from the garbage collector looks at the mark bit.

6.6 Garbage Collection

Once the heap has been marked it is the job of the collection phase to release the unused
space on to the free list. This is achieved by looking at every heap item in turn. The item can
be in one of four states



• On the free list

• A single free word

• Allocated but not marked

• Allocated and marked

The heap and the free list are scanned simultaneously in address order. If the block under
consideration is marked, the garbage collector unmarks it and skips over it. It was explained
earlier how the size of the block is found. If the block is on the FSL it is skipped over. Blocks
freed by the garbage collector are placed on the free list. As this is being done the blocks are
coalesced into larger blocks if possible by looking at the adjacent blocks. Any free single
words may also be made part of a larger block if possible.

This method of garbage collection is extremely simple and very efficient in performance. Of
course, since the collector does not compact the free space, it takes longer to allocate store
and some requests may not be granted even although there was enough free store available. It
is felt that the complexity of writing a compacting garbage collector does not balance the
advantages. The PDP11 free store allocator and garbage collector is about 128 PDP11
instructions which is very compact.

6.7 The Input Output System

Files are first class data objects in S-algol. However, there is no method of creating an object
of type file in the language. It is left to the individual environment to provide the facilities for
file manipulation. In UNIX, the file system allows the user to create file dynamically. This is
reflected in the facilities to use files in the UNIX version of S-algol.

There are five standard functions which use files.

procedure open (string name ; int mode -> file)

procedure close (file F)

procedure seek (file F ; int  offset, ptrname)

procedure eof (file F -> bool)

procedure create (string name ; int mode -> file)

The use of these functions should be fairly obvious.

To cut down the number of system calls the I/O is buffered. The I/O descriptor is a pointer to
a vector on the heap which contains the buffer. This buffer contains

• The number of items left

• A pointer to the next item

• A pointer to the start of the buffer

• An end of file indicator

• A read/write indicator

• A 512 byte buffer



The file may be a read file, a write file or both. If it is both then synchronisation can become
a problem and care has to be taken to overcome this. Before any read is performed on these
files a write is executed if necessary. This gives the illusion of unbuffered I/O to the user with
the advantages of buffering to the system.

7 System Measurement

The measurement of any computer system should take place throughout the lifetime of the
system. Since the S-algol system is still being developed the measurement is not complete.
However, a number of software tools have been built to enable an initial assessment of the
implementation technique. These tools are considered only as a basic set and are not meant to
be exhaustive. They have been chosen carefully to give a reasonable picture of the real
system.

7.1 Flow Summary

The first tool is that of a flow trace summary. The user can indicate to the compiler that this
is required and when the program is run information is collected on how many times each
line of source code is executed.

The user can then have this information printed out and an example of the facility is given in
Appendix II. From the summary it can be seen where the program spends its time. Knuth [56]
has suggested that 85- 90% of the time taken in a program comes from 5-10% of the code.
The flow summary facility allows the programmer to find that 5% and optimise if necessary.
This, of course, is extremely useful in the assessment of any algorithm since it is not always
obvious what the results will be.

When applied to the compiler itself the areas of source code which were executed the most
were parts of the lexical analysis and the environment handler. Using this information an
improvement which is discussed later was made to the compiler.

7.2 Static Code Analysis

This tool was built to allow the implementor to assess the effectiveness of the instruction
codings with regard to space. It was originally built for the PDP11 interpretive system but
could be easily applied to a code generation system as well. The program will analyse the
code output by the compiler and print out the number of occurrences of each instruction. The
space taken up by the operation codes and the data is then calculated followed by a Huffman
[55] coding to give a theoretical minimum.

This tool allows the implementor to experiment with different instruction encodings and
calculate their effect on the code size. Predictions can also be made on how much space an
implementation, interpretive or code generative, will use.

7.3 Dynamic Instruction Analysis

The final tool that was developed to measure the S-algol system was a dynamic instruction
count. Every time an abstract machine instruction is executed, the count for that instruction is
incremented. By weighting each instruction according to its execution time, an estimate of
the total system run time can be made. Altering one of the instruction weightings will give a
new estimate for the total time. Therefore, this may be used to identify the most commonly
used instructions and to measure the effect on the speed of the system in improving their
implementation. This tool is again only of interest to the implementor.

7.4 Results

Appendix II gives the results of all three measurement tools on a smallish program. To the
user, only the flow summary is of real use. However, to the implementor of the S-algol



system all three tools would be used together. Wilner [54] suggests that only first order
improvements are worth achieving in altering implementations. Thereafter a law of
diminishing returns applies. For greater effect the basic source algorithms of the program
must be improved. The advantage of the three S-algol tools is that they identify the source
areas of interest as well as giving information on the effectiveness of the improvements.

The measurement system was applied to the compiler itself and a number of results obtained.
Since the compiler is still being improved the figures quoted are valid only at the time of
measurement and do not necessarily reflect the position at the present time. However, when
comparisons have been made care has been taken that like is being compared with like.

The compiler, on compiling itself, was first subjected to a flow summary. One of the areas
which was found to be heavily used was the environment handler. At this time the
environment was held as a simple linked list with a list superimposed on it to mark the
blocks. The static size of the program was 9492 words with 12, 897, 438 interpretive
instructions being executed when the program was run. The environment representation was
altered to a linked list of binary trees as described in Chapter 4. The result was that the
compiler size remained the same, a coincidence, but the dynamic count was reduced to 8,
541, 602 interpretive instruction executions. This is an improvement of 33.8%.

The S-algol case clause allows the user to specify the order in which to look for a match. By
ordering the case selectors in order of dynamic frequency, the total number of instructions for
the above system was further reduced to 7, 745, 125 instructions. This is a further reduction
of 9.4%. This is a typical result of using the measurement system to improve the source code.
However, it should be remembered that the changes refer to the dynamic evaluation of one
program with fixed data and may not be appropriate in all cases.

The static analysis is used to improve the store compaction. In one version of the compiler it
was found that there were 903 procedure calls. The code for a procedure call consisted of

load.closure
mark.stack
evaluate parameters
apply

This version of the compiler consisted of 10813 words. By combining the load.closure and
mark.stack instructions a saving of 903 words is made. This is an 8.4% reduction in space.
This meant a speed increase as well since only one instruction has now to be decoded.

A Huffman coding was also performed on the S-code for the compiler. The result was that a
minimum of 43, 096 bits were required to represent the operation codes in the compiler. The
initial guess at instruction formats of 4, 6 and 9 bits required 58, 545 bits which is 73.6% of
the optimum. Wilner suggests that a result as good as this constitutes a good initial estimate.

Finally, in Chapter 5 an assumption on the distribution of names between local, global and
intermediate environments was used in the basic design of the S-code machine. The static and
dynamic counts for the instructions which access these values is now given for one version of
the compiler.



Static count

local 315 global 234 load 9

localaddr 35 globaladdr 101 loadaddr 6

plocal 599 pglobal 636 pload 12

plocaladdr 61 pglobaladdr 35 ploadaddr 4

dlocal 10 dglobal 3 dload 0

mst.local 76 mst.global 813 mst.load 14

Total 1096 1822 45

% 37.0% 61.5% 1.5%

Dynamic count

local 535, 031 global 594, 308 load 1, 037

localaddr 58, 679 globaladdr 145, 219 loadaddr 303

plocal 888, 766 pglobal 696, 610 pload 3, 406

plocaladdr 36, 276 pglobaladdr 71, 540 ploadaddr 1, 001

dlocal 0 dglobal 0 dload 0

mst.local 8, 675 mst.global 325, 400 mst.load 180

Total 1, 527, 427 1, 833, 077 5, 927

% 45.4% 54.5% 0.1%

The assumption that most names are either local or global is borne out by the above results,
but this may merely reflect the style in which the compiler was written.

In the final analysis these tools have proved very useful and effective. Part of their strength
derives from the fact that they not only measure an existing system but can also be used to
predict the effect of an alteration. However, further work must be performed before any
major claims can be made.

8 Conclusions

At the end of any piece of work an attempt should be made to assess its worth. Realistically,
quantum jumps in research are rarely achieved and more often small additions to knowledge
are made. However, it is from the base of these small additions that the quantum jumps are
made. So much for expectation. What has been achieved?

It was observed that our general purpose programming languages were becoming
intellectually unmanageable. Progress in language design had been equated with continuously
producing innovations without much emphasis on how they could be used. It was therefore
felt that an attempt to place language design on a firmer basis was necessary. Of course, it is
of little use proposing a methodology of language design without being prepared to put it to
use. A language in the algol tradition, called S-algol, was designed under the proposed rules



and implemented. This thesis describes that design methodology and the design and
implementation of S-algol.

The success of the modern programming languages is usually dependent on the balance
between the descriptive power it allows and the efficiency that is achieved on the target
machine. The flavour of the language depends on the emphasis the implementor places on
either aspect. Unfortunately this has led to confused and large languages, since a decision by
an implementor to restrict some facility on efficiency grounds is not always clear to the user.
The design technique confuses the two issues and succeeds in satisfying neither.

This work has attempted to clarify the design process. One concession to efficiency is made
at the start. That is, the languages of interest are the algols and in particular they have
conceptually infinite reusable stores.

From then on the design process concentrates on the descriptive power of the language,
returning later to the implementation details. This is not the end of the story however. Merely
removing the implementation in part from the design of the language does not guarantee a
good language. Therefore a design methodology is proposed for use.

The methodology is based around three rules which are well known to workers in the field of
semantics. They are

• The principle of correspondence

• The principle of abstraction

• The principle of data type completeness

Hitherto these rules have been used in the analysis of languages to highlight their differences
and shortcomings. Here they are used in the synthesis of a programming language with the
aim that they simplify and somehow make the language more intellectually manageable. This
simplicity is not achieved at the expense of power, indeed more power is derived from the
simplicity or rather from the lack of restriction.

Just as the implementation and design have been partially separated for clarity, it is felt that
the syntactic and semantic issues of the language should be initially separate. Again this is
not done to downgrade one of the issues but rather to avoid unnecessary confusion. The
semantic domains of the language are first proposed and subjected to the above rules and then
a light coat of syntax is applied.

The language that is the result of all this careful design is S- algol. In what way is the
language new or better? What are the innovations? First of all, S-algol is not without
innovations. In particular, the strings as a scalar data type, only allowing initialising
declarations and call by value parameters, the vectors as first class citizens, the case clause,
the mixing of clauses and declarations and introducing constancy as a protection issue are all
new. Although these ideas help, the strength of the language does not derive from them. It
comes from the fact that it is carefully designed from a set of rules that allow no exceptions
to the general case. Thus, at least S-algol can be assessed scientifically using these ground
rules. Around this castle, a light syntax has been thrown to enhance its beauty.

The language has only four semantically meaningful syntactic categories, clauses typed and
untyped, declarations and sequencers which is about the same as most other algols. Therefore
there is no reduction of power here. The declarations which only allow values to be named
are designed strictly in conjunction with the call by value parameters. This greatly simplifies
the language and makes it safer without loss of power.

Have the rules been broken? The answer is that they have. In the case of abstractions over
declarations and sequencers it is felt that other criteria can be used to justify their exclusion.
However, it should be noted that the technique used to exclude something is new. There is



still a general rule, now with two exceptions, not a whole host of particular rules. There are
no exceptions to the principle of correspondence or the principle of data type completeness.

The implementation technique for S-algol is also investigated. A compilation system loosely
based on the structuring method of Ammann is developed. The layers of abstraction that
comprise the compiler are quite different however, and it is noted that the size of the compiler
owes much to the fact that these layers are well chosen. The compiler is written in S-algol
itself with the machine dependent parts being isolated as far as is possible. This isolation is
never completely successful.

The strength of the recursive descent technique is not that it gives faster compilers, for who
cares in a world of excess processor power, but that it makes the compilers smaller and easier
to check and maintain. It also gives more portable compilers since the portability depends on
the number of alterations to the source code, which is some function of the total size.
Therefore work in the development of this technique has been worthwhile from a software
engineering point of view.

The project lays no claims to the enhancement of the theoretical properties of LL parsing or
even recursive descent but has concentrated on the software engineering aspects. To this end,
an improvement on the methodology of the previous work is proposed and applied.
Hopefully others will be able to develop it further.

An abstract machine, the S-code machine, is also designed and implemented. The first
machine of this style was the beta machine of Randell and Russell. The S-code machine is a
distant relation.

A method of procedure entry and exit which does not use a display is invented. It is based on
the principle that most stack items are either local or global in scope. This is certainly true of
the compiler as the measurement statistics of Chapter 7 show. The S-code machine has a
heap with a garbage collector since not all data items in the language can be implemented on
a stack. The problem of identifying the transient pointers on the stack when a garbage
collection struck led to the invention of the second stack for pointers.

How then can the project be assessed? Certainly the implementation techniques developed
are powerful and easy to use. Enough confidence in them has allowed expansion to other
machines such as the IBM 370, Intel 8086 and the Zilog Z80. It has also dispelled a number
of fears in writing compiler systems and in systems with garbage collectors. Therefore, it is
reasonable to claim an advance in software technology.

It is much more difficult to assess a new language or design methodology. The principle
design tenet is simplicity - power through simplicity, simplicity through generality. However,
with complete generality comes chaos. For example, given a piano and complete freedom in
tuning, it is almost impossible to say anything sensible about the music. A standard tuning is
proposed. However, this may go to the other extreme and only allow trivial notions to be
expressed. It is with this balance between the power of generality and its lack of security that
language designers are concerned.

A design methodology based on semantic principles has been proposed. It was then used in
the synthesis of S-algol. The methodology is concerned with achieving a balance between
power and security but can only be considered as a first step. Hopefully it will provoke
further discussion and be developed further itself. Since programming and programming
languages are still relatively badly understood, it is difficult to hope for more. It is at least an
attempt to systematise the process of language design and provides a technique for comparing
languages.

The language S-algol is itself simple and easy to use. It has the power of an algol between
Algol 68 and Algol W. However, it has far fewer rules and exceptions than either of these
and is therefore simpler to understand and teach. At first it was proposed as the base language



in a family. Now it is presented as a member of a family which is defined by the rules of the
design methodology.
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The S-algol Reference Manual



11 Appendix II

Measurement Tools

********** Execution Flow Summary **********

1 -- 0 %
2 -- 0 %
3 -- 1 let s := "" ; let n := 0 ; let not.done := true
4 -- 0
5 -- 706 procedure add.a.letter ; {s := s ++ "a" ; n := n + 1}
6 -- 0
7 -- 0 procedure alter
8 -- 2118 case s (n|1) of
9 -- 2118 "a" : s := s (1|n-1) ++ "b"
10 -- 1412 "b" : s := s (1|n-1) ++ "c"
11 1- 706 default : {n := n - 1 ; if  n = 0 then not.done := false else alter}
13 -- 0
14 -- 0 procedure acceptable (-> bool)
15 1- 2118 begin
16 -- 2118 let ok := true ; let p := 1
17 -- 8487 while ok and p <= n div 2 do
18 2- 6369 begin
19 -- 6369 ok := s (n - p + 1|p) ~= s (n - 2 * p + 1|p)
20 -- 6369 p := p + 1
21 -2 0 end
22 -- 2118 ok
23 -1 0 end
24 -- 0
25 -- 0 ! Main Program
26 -- 0
27 -- 1 let lnth = 12 ; let count := 0
28 -- 971 while not.done and n <= lnth do
29 1- 970 begin
30 -- 970 if  n = lnth then alter else add.a.letter
31 -- 2119 while not.done and ~acceptable do alter
32 2- 970 if  n = lnth do {write  "An acceptable string is ", s, "'n"
33 -2 264 count := count + 1}
34 -1 0 end
35 -- 1 write  "Total number of strings of length ", lnth : 3, "is ", count : 4, "'n"
37 -- 0 ?



Dynamic flow analysis of S-code instructions

Nine Bit Operations Six Bit Operations Four Bit Operations

ge.op 0 local 58964 jump 12283

gt.op 0 localaddr 13002 apply.op 4942

le.op 8308 plocal 529 jumpf 14223

lt.op 0 plocaladdr 0 for.test 0

eq.op 2646 dlocal 0 jumpff 11577

neq.op 6369 mst.local 4237 newline 47981

not.op 2118 global 25724 jumptt 0

no.op 0 globaladdr 1413 for.step 0

plus.op 20077 pglobal 16974

times.op 6369 pglobaladdr 2118

minus.op 14856 dglobal 0

divide.op 0 mst.global 705

div.op 7338 make.vector 0

rem.op 0 retract 2119

neg.op 0 form.structure 0

no.op 0 store.sf 3

subs.op 0

subsaddr 0

cjump 3530

ass.op 16533

return 4942

forward.op 0

suba.op 0

subaaddr 0

ldc.pntr 1

ldc.bool 2120

ldc.si 43056

ldc.real 0

ldc.string 6179

ldc.li 0

no.op 0

no.op 0

load 0

loadaddr 0



pload 0

ploadaddr 0

dload 0

mst.load 0

no.op 0

enter 4943

float.op 0

is.op 0

isnt.op 0

upb.op 0

lwb.op 0

finish.op 1

reverse.real 0

erase.op 971

read.op 0

write.op 797

iliffe.op 0

no.op 0

arith.op 0

io.op 0

b.read.op 0

b.write.op 0

code.op 0

decode.op 0

substr.op 16268

concat.op 2118

length.op 0

options.op 0



The operations in order are

local 58964

newline 47981

ldc.si 43056

global 25724

plus.op 20077

pglobal 16974

ass.op 16533

substr.op 16268

minus.op 14856

jumpf 14223

localaddr 13002

jump 12283

jumpff 11577

le.op 8308

div.op 7338

times.op 6369

neq.op 6369

ldc.string 6179

enter 4943

return 4942

apply.op 4942

mst.local 4237

cjump 3530

eq.op 2646

ldc.bool 2120

retract 2119

concat.op 2118

not.op 2118

pglobaladdr 2118

globaladdr 1413

erase.op 971

write.op 797

mst.global 705

plocal 529

store.sf 3

finish.op 1

ldc.pntr 1

The total number of operations = 386334



Static analysis of S-code

Nine Bit Operations Six Bit Operations Four Bit Operations

ge.op 0 local 19 jump 9

gt.op 0 localaddr 3 apply.op 5

le.op 2 plocal 3 jumpf 6

lt.op 0 plocaladdr 0 for.test 0

eq.op 3 dlocal 0 jumpff 3

neq.op 1 mst.local 4 newline 23

not.op 1 global 9 jumptt 0

no.op 0 globaladdr 3 for.step 0

plus.op 5 pglobal 6

times.op 1 pglobaladdr 3

minus.op 5 dglobal 0

divide.op 0 mst.global 1

div.op 1 make.vector 0

rem.op 0 retract 2

neg.op 0 form.structure 0

no.op 0 store.sf 3

subs.op 0

subsaddr 0

cjump 2

ass.op 9

return 3

forward.op 0

suba.op 0

subaaddr 0

ldc.pntr 1

ldc.bool 3

ldc.si 26

ldc.real 0

ldc.string 10

ldc.li 0

no.op 0

no.op 0

load 0



loadaddr 0

pload 0

ploadaddr 0

dload 0

mst.load 0

no.op 0

enter 4

float.op 0

is.op 0

isnt.op 0

upb.op 0

lwb.op 0

finish.op 1

reverse.real 0

erase.op 3

read.op 0

write.op 8

iliffe.op 0

no.op 0

arith.op 0

io.op 0

b.read.op 0

b.write.op 0

code.op 0

decode.op 0

substr.op 5

concat.op 3

length.op 0

options 0

Number of string elements = 70

Number of bits used for operation codes is = 1393



Huffman coding total bits = 925

Instruction Frequency Level Binary Coding

finish.op 1 8 11010010

ldc.pntr 1 8 11010011

div.op 1 8 11010000

times.op 1 8 11010001

not.op 1 9 111101110

neq.op 1 9 111101111

mst.global 1 8 11110110

cjump 2 7 1100110

le.op 2 7 1100111

retract 2 7 1111010

concat.op 3 6 010100

erase.op 3 6 010101

ldc.bool 3 6 100010

return 3 6 100011

eq.op 3 6 100000

store.sf 3 6 100001

pglobaladdr 3 6 100110

globaladdr 3 6 100111

plocal 3 6 100100

localaddr 3 6 100101

jumpff 3 6 110010

enter 4 6 110101

mst.local 4 6 111100

substr.op 5 5 00110

minus.op 5 5 00111

plus.op 5 5 00100

apply.op 5 5 00101

pglobal 6 5 01011

jumpf 6 5 11000

write.op 8 5 11011

ass.op 9 5 11111

global 9 5 11100

jump 9 5 11101

ldc.string 10 4 0100

local 19 3 000

newline 23 3 011

ldc.si 26 3 101
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The Abstract Machine Code

The S-algol abstract machine code, S-code, is designed to fit exactly the needs of the S-algol
language. Appendix IV describes the code generated for each syntactic construct and
Appendix V the format of each instruction in the PDP11 implementation. Here the individual
instructions are described. They fall naturally into groups.

Jumps

jump(l) unconditional jump to address l

jumpf(l) jump to l if the top stack element is false. Remove the top element of the
stack

jumptt(l) jump to l if the top element is rue. Otherwise remove the top stack element

jumpff(l) jump to l if the top stack element is false. Otherwise remove the top stack
element

cjump(t, l) t is the type and determines which stack to use. If the top two stack
elements are equal, remove both and jump to l. Otherwise remove only the
top stack element. Be careful on equality of strings

fortest.op(l) The control constant, increment and limit are the top three elements of the
stack. If the increment is negative and the control constant is less than the
limit or the increment is positive and the control constant is greater than the
limit then remove them from the stack and jump to l

forstep.op(l) Update the control constant by adding the increment. Then jump to l

Stack Load Instructions

These instructions are used to load any data item that is in scope, on to the top of the stack.
The data items may be in the local, global or intermediate environments and a separate
instruction exists for each form. Different instructions are also used for the separate stacks.
The local and global forms of the instruction have a parameter which is the displacement of
the item from the stack frame base. The intermediate form of the instruction requires the
number of times to chain down the static chain as well as the displacement. Only one form of
each type is described.

local(n), global(n), load(r, n) load on the main stack

plocal(n), pglobal(n), pload(r, n) load on the pointer stack

localaddr(n), globaladdr(n), loadaddr(r, n) load address on the main stack

plocaladdr(n), pglobaladdr(n), ploadaddr(r, n) load the address of the pointer stack item
on the main stack

dlocal(n), dglobal(n), dload(r, n) load double length item main stack

Relational Operations

The relational operations act on the data types int, real and string. The top two elements of
the stack are compared and removed. The boolean result true  or false is left on the main
stack. The instructions have a parameter to indicate the type. Care should again be taken in
the equality of strings. Equality is defined on all the data objects in the language.



ge.op(t) greater than or equal to

gt.op(t) greater than

le.op(t) less than or equal

lt.op(t) less than

eq.op(t) equal to

neq.op(t) not equal to

Arithmetic Operators

These instructions operate on the data types real and integer. The top two elements of the
stack are replaced by the result except for negate and float which use only the top element.

plus.op(t) add

times.op(t) multiply

minus.op(t) subtract

divide.op divide real

div.op divide int leaving quotient

rem.op divide int leaving remainder

neg.op negate

float.op coerce the int to a real

Procedure Entry and Exit

The code to execute a procedure is surrounded by the two instructions enter and return.

enter(p, q) Check that the main stack has p cells left and the pointer stack has q
cells

return(t) This is executed on procedure exit. The SF and PSF registers are
updated. The SF register is first set to the current dynamic link and
then PSF is set to the pointer stack link of the uncovered stack frame.
The stack tops must be altered to remove the MSCW and any local
items. The new stack tops are the current pointer stack link for the
pointer stack and the position of the MSCW for the main stack. If the
type of the procedure is not void, the result must be copied to the new
stack top

The code sequence to call a procedure is

mst.load

evaluate the parameters

apply.op

The code for the evaluation of the parameters is the same as for any expression. The mark
stack and load instruction, loads the procedure closure and leaves space on the stack for the
rest of the MSCW. The apply instruction fills in the MSCW with the dynamic link and the
pointer stack link. These are calculated from the new stack top minus the space already
allocated in these frames. Since procedure names follow the same scope rules as any other
name, there are three forms of the instruction.



mst.local(n), mst.global(n), mst.load(r, n) load the procedure closure from the stack
and leave space for the rest of the
MSCW

apply.op(m, n) fill in the dynamic link (SP - m), the
pointer stack link (psp - n) and the return
address. Update SF and PSF and jump to
the address pointed at by SF

There are two further instructions involved with procedures.

forward.op leave space for the procedure closure on the stack

store.sf(n) place the procedure closure on the stack. If the address n is not the top of
the stack, it is a forward declared procedure and n is its stack address

Vector and Structure Creation Instructions   

These instructions take information off the stack and create heap objects. These objects are
then initialised and the pointer to them left on the top of the pointer stack.

make.vector(t, m, n) t indicates the type of the objects in the vector and therefore on
which stack they reside. m points to the position of the lower
bound on the main stack. The difference between PSP and n or SP
and m depending on which stack is in use, gives the number of
vector elements. The instruction creates a vector and fills in the
elements. The stack pointers are then reduced to m and n with the
pointer to the vector being placed on the pointer stack

iliffe.op(t, n) t indicates the base type. n pairs of bounds are on the main stack.
However, the top of one of the stacks will contain the initial value.
The instruction creates an iliffe vector of the shape indicated by
the bound pairs and the value of the initial expression is copied
into the elements of the last dimension. The expression value and
the bound pairs are removed from the stack and the pointer to the
vector is placed on the pointer stack

form.structure(n) The expressions which initialise the structure fields have been
evaluated on the appropriates stacks. n points to the trademark on
the main stack. A structure of the correct size is made up and the
fields filled in. To do this the structure table is referred to, to give
the number of pointer fields. After removing the fields from the
stacks the pointer to the structure is placed on the pointer stack

Vector and Structure Accessing Instructions   

These instructions are generated by the compiler to index a vector or a structure. The index of
the vector must be checked against the bounds before the indexing is done. Similarly the
structure class (trademark) of a structure must be checked.

suba.op(t) The vector index is on the top of the main stack and the vector pointer
on the pointer stack. These are used to check that the index is legal and
then to find the required value. They are removed from the stack and
replaced by the value, on the stack indicated by the result type t

subs.op(t) The structure pointer is on the top of the pointer stack. The main stack
contains the trademark and the field address. The trademark is checked
against the structure trademark and if it is the same the field address is
added to the pointer to yield the absolute field address. The trademark,



field address and the structure pointer are replaced on the stack by the
result whose type is t

subaaddr(t) This is the same as suba.op except that the address of the item is
calculated and placed on the main stack

subsaddr This is the same as subs.op except that the address of the item is
calculated and placed on the main stack

lwb remove the pointer to the vector from the pointer stack and place its
lower bound on the main stack

upb remove the pointer to the vector from the pointer stack and place its
upper bound on the main stack

is.op The trademark is on the main stack and is compared with the trademark
of the structure pointed at by the top element of the pointer stack.
Remove both and place the boolean result of the comparison on the main
stack

isnt.op This is the same as is.op except it has the opposite test

Load Literal Instructions   

These are used to load the value of a literal on to the stack. The literal usually follows the
instruction in the code stream and so the CP register has to be updated accordingly.

ll.pntr load the nil pointer on to the pointer stack

ll.bool(n) load the boolean value n (true or false) on to the main stack

ll.sint(n) load the value of a short integer (-64 to 63) on to the main stack

ll.real(n) load the real on to the main stack

ll.string(s) load the string address on to the pointer stack

ll.lint load a long integer, 16 bits, on to the main stack

String Instructions   

These are used to perform the string operations in S-algol.

code.op The integer n at the top of the stack is removed and a string of length 1
with character |n| rem 128 placed on the top of the pointer stack.

decode.op The string at the top of the pointer stack is removed and the value of its
first character placed on the main stack as an integer

length.op The string at the top of the pointer stack is removed and its length placed
on the main stack

concat.op remove the two strings from the top of the pointer stack and replace
them with a new string which is the concatenation of them

substr.op A new string is created from the one at the top of the pointer stack and
replaces it. It is formed by using the length at the top of the main stack
and the starting position at the second top. After checking that these are
legal they are removed

Arithmetic Instructions   

There are a number of arithmetic functions supported by the language which take a real value
off the main stack and replace it by the result. They are



sin, cos, exp, ln, atan, truncate, abs

Truncate takes a real and leaves an integer, and abs may map from int toint or real to real.
These functions are defined in the language reference manual.

Input and Output   

The s-code machine supports both binary and character I/O streams. For every character
stream instruction there is an equivalent binary stream one. Only the character ones are given
here.

read.op(n) the stream descriptor is on the top of the pointer stack. This is removed
and the value read is placed on the appropriate stack. n indicates which
read function to use. They are

read read a character and form it into a string

reads read a string

readi read an integer

readr read a real

readb read a boolean

read.name read an S-algol identifier and form it into a string

peek same as read but do not advance the input stream

write.op(t) The field width is on the top of the main stack and the item to be written
out either under it or on the pointer stack. The stream descriptor is under
all this on the pointer stack. The field width and the item are removed
from the stack. The type t of the write may be

write.int write an integer

write.real write a real

write.bool write a boolean

write.string write a string

If the field width is not specified then i.w and r.w come into use for int and real. s.w spaces
are always written after integers or reals for character streams.

Format Operations   

There are three format operations in S-code which take a real number and return a string
representing that number in Fortran E, F or G format.

eformat.op, fformat.op This takes the real number and the number of places before
and after the decimal point and returns a string

gformat Takes the real number and returns a string

Miscellaneous   

reverse.stack(t) Swap the top two elements of the stack indicated by type t

erase.op(t) remove an element from the stack indicated by t

finish.op stop the program execution

not.op perform a not on the boolean at the top of the stack



ass.op assign the value at the top of the stack to the address on the
main stack and remove them

retract(t, n, m) retract the main stack to n and the pointer stack to m. If t is
not void move the value at the old stack top to the new stack
top
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S-code Generated by the S-algol Compiler   

A summary of the S-code generated by the S-algol compiler for each syntactic construct is
given here. In the description E, in the source code represents an expression and E, in the
code represents the S-code for that expression. Sometimes the expressions are of type void. A
description of the instructions themselves is given in Appendix III.

Source       S-code
~E E not.op
+E E
-E E neg.op
unary.function(E) E unary.function.op
write  E1:E1' .....En:En' s.o E1 E1' write.op...

...En En' write.op erase.op
Write operates for reals, ints, bools and strings.

output E0, E1:E1'....En:En' E0 E1 E1' write.op..........
.......En En' write.op erase.op
similarly for binary output.

read s.i read.op
read (E) E read.op

similarly for peek, read.name, reads, readi, readb, eof.
E1 := E2 E1* E2 ass.op

where E1* is an L-value which may generate a load 
address.

E1(E2)* E1 E2 subsaddr or subaaddr
E1 or E2 E1 jumptt(l) E2 l:
E1 and E2 E1 jumpff(l) E2 l:
E1 <binary.op> E2 E1 E2 binary.op
(E) E
E1(E2|E3) E1 E2 E3 substr.op
E1(E2) E1 E2 subs.op or suba.op
E(E1, .....En) mst.load E E1....En apply.op
 @E of T[E1, ....En] E E1.......En make.vector
E(E1, .....En) E E1.......En formvec.op
vector E1::E1', ...En::En' of E E1 E1'...En En' E iliffe.op
if  E1 do E2 E1 jumpf(l) E2 l:
if  E1 then E2 else E3 E1 jumpf(l) E2 jump(m) l: E3 m:
repeat E1 while E2 l: E1 E2 not.op jumpf(l)
repeat E1 while E2 do E3 l: E1 E2 jumpf(m) E3 jump(l) m:
while E1 do E2 l: E1 jumppf(m) E2 jump(l) m:
for  I=E1 to E2 by E3 do E4 E1 E2 E3 l: fortest.op(m) E4 forstep.op(l) m:
let I = E E
let I := E E
procedure I ; E enter E return
structure I ll.int
<literal> ll.literal dependent on type
<identifier> load.stack



A load.stack instruction may be one of load, local, global, pload, plocal, pglobal, dload,
dlocal or dglobal.

The unary functions are code, decode, length, upb, lwb, float, sin, cos, exp, ln, sqrt, atan,
truncate, abs, eformat, gformat and fformat.

The binary operations are eq.op, neq.op, lt.op, le.op, gt.op, ge.op, plus.op, times.op,
minus.op, div.op, rem.op, divide.op, is.op, isnt.op andconcat.op.

case E0 of E0
E11, E12, ...E1n : E10 E11 cjump(l1) E12 cjump(l1)...E1n cjump(l1)

jump(M1) l1 : E0 jump(xit)
E21, E22, ......E2n : E20 M1:E21 ...
...
default : Ek+1 0 Mk:Ek+1 0

xit:
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The PDP11 S-code Operation Codes   

4 Bit Operations

bit 15 1 to identify these

bits 12-14 operation code

bits 0-11 code address

The operation codes are

0 jump 1 apply.op

2 jumpf 3 for.test

4 jumpff 5 newline

6 jumptt 7 for.step

Newline uses bit 0-11 for the line number. Apply.op uses bits 0-4 for the pstack retraction
and bits 5-11 for the main stack retraction values. The pstack number is half the correct
value.

6 Bit Operations

bits 14-15 01 to identify these

bits 10-13 operation codes

bits 0-9 stack address

The operation codes are

0 local 1 localaddr

2 plocal 3 plocaladdr

4 dlocal 5 mst.local

6 global 7 globaladdr

8 pglobal 9 pglobaladdr

10 dglobal 11 mst.global

12 make.vector 13 retract

14 form.structure 15 store.closure

Retract uses bits 0-9 as the address on the main stack to retract to and another word in the
same format indicating the block type (bits 10-15) and the pstack retraction (bits 0-9).
Make.vector is the same. Store.closure takes a second word giving the procedure address.

9 Bit Operations

bits 14-15 00 to identify these

bits 7-13 operation codes

bits 0-6 usually the type

The operations are



0 ge.op 1 gt.op

2 le.op 3 lt.op

4 eq.op 5 neq.op

6 not.op

Not.op does not require a parameter

8 plus.op 9 times.op

10 minus.op 11 divide.op

12 div.op 13 rem.op

14 neg.op

16 subs.op 17 subsaddr

18 cjump 19 ass.op

20 return 21 forward.op

22 suba.op 23 subaaddr

Forward.op does not require a parameter and cjump uses a second word for the jump address.

24 ll.pointer 25 ll.bool

26 ll.sint 27 ll.real

28 ll.string 29 ll.lint

These are the load literals. The pointer is used for the empty string and the UNIX nullfile has
only one possible value. The boolean has two values and the short integer values between -64
and 63. The long integer is followed by a word holding the integer and a real is followed by
two words. The string instruction is followed by the string in its heap format.

32 load 33 loadaddr

34 pload 35 ploadaddr

36 dload 37 mst.load

38 39 enter

Enter uses bits 0-2 and bits 10-15 of the second word as the maximum main stack address
and bits 0-9 of the second word for the maximum pstack address. The other instructions use
bits 0-6 as the reverse lexicographic level and a second word as the stack displacement.

40 float.op 41 is.op

42 isnt.op 43 upb.op

44 lwb.op 45 finish.op

46 reverse.stack 47 erase.op

Is.op, isnt.op and finish.op have no parameter. Reverse.stack codes bits 0-6 as 0 for main
stack, 1 for pstack. Float.op uses bits 0-6 to indicate which stack element 0-top, 1-2nd. top.

48 read.op 49 write.op

50 iliffe.op

52 arith.func 53 is.op



54 b.read 55 b.write

Iliffe.op uses a second word to indicate the number of bound pairs.

The codings for read and b.read are

0 readi b.readi 1 readr b.readr

2 readb b.readb 3 reads b.reads

4 peek b.peek 5 read b.read

6 read.name b.read.name

and for write and b.write

0 int 1 real

2 bool

4 string 5 fformat

6 eformat 7 gformat

The arithmetic functions are coded thus

1 sin 2 cos

3 exp 4 ln

5 sqrt 6 atan

7 truncate 8 integer abs

9 real abs 10 fiddle.r

56 code.op 57 decode.op

58 substring.op 59 concat.op

60 length.op 61 options.op

These do not have a parameter.

In general the type codings for the 9 bit operations are

0 int 1 real

2 bool 3 file

4 pntr 5 void

6 string 7 vector
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