
FEEL� An Implementation of EULISP

Version ����

Concurrent Processing Research Group

School of Mathematical Sciences

University of Bath� United Kingdom

E�mail� eulisp�maths�bath�ac�uk

April ��� ����

Abstract

This document describes an implementation of EULISP called FEEL� The

primary reference for EULISP is the EULISP de�nition� In this document� the

environmental operations provided in FEEL� but which are not part of the

EULISP language� are described in detail� and examples on the use of some

EULISP features are provided�



Contents

� Getting Further Information �

� Di�erences Between FEEL And EuLisp �

� Making FEEL �

� The FEEL Environment �

��� Getting in and out � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Start�Up Con�guration � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Interacting with FEEL � � � � � � � � � � � � � � � � � � � � � � � � � � �

� The Bytecode Compiler �

��� File Types � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	
��� Compiling � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	
��� Loading � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 


� The EuLisp Object System �

	�� Generic Functions � � � � � � � � � � � � � � � � � � � � � � � � � � � � 

	�� Classes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
	�� Slot Descriptions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
	�� Mixins � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
	�� Eql Methods � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� The PVM Module ��

	 The PVM� Module ��


 The Reader Module �


��� Example � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Thread Abstractions ��

���� Futures � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
���� Linda � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�



� Getting Further Information

Information about EULISP and a copy of the FEEL implementation are all available
by anonymous ftp from ftp�bath�ac�uk in the directory pub�eulisp� This doc�
ument and the implementation of EULISP are currently the responsibility of Julian
Padget 
jap�� Russell Bradford 
rjb� and Duncan Batey 
djb� at maths�bath�ac�uk�

� Di�erences Between FEEL And EuLisp

Inevitably there are a number of minor ways in which FEEL is not an accurate
implementation of EULISPas described in the EULISP de�nition 
to which we refer
the reader for details of the language itself��

The whole of Level � is implemented� but some of the level � modules 
such
as formatted�io� do not exist� even though the functions they de�ne are in fact
available in the eulisp� module� Much of Level � is also implemented� A major
area of incompatability is in the conditions� some of which are not raised when the
de�nition says they should be�

� Making FEEL

The kind of FEEL system you can make depends on the combined capabilities of
your operating system and processor� FEEL has been developed in a solely Unix
environment and this has considerably warped its view of the world� We have
attempted ports to DOS� Windows ��� and the Macintosh 
ver 
�� but these are
currently out of date and we do not have access to suitable hardware to revise them�
If you are interested� please let us know�

A particular feature of EULISP� and hence FEEL� is support for multiple threads
of control� Whether these do actually execute concurrently depends on the host
system� but� in principle� it should be possible to develop a program using threads
on one system�perhaps a uni�processor simulating concurrency�and later execute
the same program on a multi�processor or a distributed processor to achieve the
same net result�

Broadly speaking� FEEL can be made in any of three main con�gurations�

Generic Under the �ANY� machine con�guration� FEEL attempts to be a fully
portable ANSI C program� Because there is no reliably portable method
of implementing threads in C� the thread operations in this mode are not
available and only a serial version of EULISP remains� This mode is most
suitable for getting started quickly and also the most sensible place to begin for
porting to new architectures or operating systems� Memory use is minimised
which may beni�t smaller machines such as PCs or any system where memory
is at a premium�

BSD This 
badly named� con�guration mode requires that a stack switching op�
eration be available for FEEL to use� Given this code 
typically a few lines
of the local assembler�� the thread operations become available with the lim�
itation that only one thread is run at a time� This mode allows programs
to be written in terms of threads which may later be run in parallel without
alteration� This mode is most useful for allowing the development of multi�
threaded applications under unsupportive operating systems such as BSD ���
or ����

System V This con�guration requires that stack switching code be available along
with the standard System V shared memory manipulation primitives� Given

�



these things FEEL becomes a truly parallel multi�threaded system using the
following model� on start�up a piece of shared memory is allocated� then FEEL

forks as many times as there are physical processors in the host machine 
this
behaviour may be modi�ed�� Each of these forked processes runs the FEEL

scheduler� running threads from the pool in the shared heap� Each such thread
is run to conclusion�unless it yields control� in which case it will be returned
to the pool� More processes may be forked than existing processors to simulate
truly parallel operation on uniprocessor systems such as Suns running SunOS
����

� The FEEL Environment

FEEL uses the shell variable FEEL�LOAD�PATH when loading modules� Its value is
prepended to a default path consisting of the directory in which FEEL was invoked
in and other directories speci�ed when the system was built� The resulting path
is read at start�up and converted to a list of strings of information in a processor�
de�ned format concerning the �lesystems or disks or directories to be searched when
loading modules� Modules are stored in �les with the extension �em�

When booting from a previously compiled bytecode image� the shell variable
FEEL�BOOT�PATH� prepended to a similar default path to that for FEEL�LOAD�PATH�
is used to �nd the bytecode image� Bytecode images are stored as pairs of �les with
�est and �ebc extensions�

When using the bytecode compiler� the shell variable FEEL�INTF�PATH is used
to �nd module interface �les� and the shell variable FEEL�OBJS�PATH used to �nd
compiled modules� before system defaults as above� Interfaces are stored in �les
with the extension �i� and compiled modules in �les with the extension �sc�

��� Getting in and out

FEEL is started by typing feel� assuming correct paths and installation� To leave
FEEL type CNTL�D� or �exit 
see later section��

��� Start�Up Con�guration

FEEL�s default starting behaviour may be modi�ed in two ways�

Command Line Arguments FEEL recognises the following�

�heap n The size of heap to use 
in megabytes if n � ��� else bytes�� This
defaults to �Mb�

�stack�space n Amount of storage to allocate for stacks and static data 
in
megabytes if n � ��� else bytes�� This defaults to � Mb� but should be
more for programs that use threads�

�stack�size n The size of the interpreter thread stack 
in kilobytes if n �

����� else bytes�� This defaults to �	Kb� It should not be necessary to
change this unless your program stops with a �stack over�owing� message�
Beware that an in�nite non�tail recursion problem may also trigger this
message�

�boot name Load the bytecode image name

�noimage Do not load a bytecode image at all

�compiler Load the compiler bytecode image

�sysv Start Feel in System V con�guration 
if available�

�



�procs n Start up using n processors 
works in System V con�guration only�

A Con
guration File Having �rst processed its command line arguments� FEEL
then looks for a �le called �feelrc in the �HOME directory of the user�� If
found� the �le is read and the expressions within executed as if entered at
top�level�

��� Interacting with FEEL

When FEEL starts� the top�level module loaded is the user module�� This imports
eulisp�� and therefore contains most of the usual lisp functions� Most of the module
manipulation functionality is de�ned in the root module� The only operations
de�ned in the root module are those for loading modules and entering modules

see below�� The top�level prompt provides information about which module is the
current focus and the history number of the command� for example�

user��	

signi�es that the current module focus is root and that the command history index
of this line is ��

error
user��	

signi�es that the error handler is executing� that the current module focus is user�
and that the command history index of this line is ��

The following operations are always available at top�level� regardless of the current
module focus�

��	 name
 Feel special form

Arguments

name� Name of module to load�

If name names a module which has been loaded� then the top�level is changed to be
in that module� If a module named name is not currently loaded� then FEEL tries
to load the module from a �le called name�em� If loaded succesfully� top�level is
changed to be in that module�

��		 name
 Feel special form

Arguments

name� name of the module to load�

Reload and enter the speci�ed module� This has the side�e�ect of resetting the
exported bindings of the module� such that any importing module will reference
the new values�

�exit Feel special form

Within a handler loop� returns to previous top�level� At top�level� FEEL terminates�

�Likely to be elsewhere on non�UNIX systems
�This can be changed by setting the environment variable FEEL START MODULE

�



�n Feel special form

Redo the input sequence number n�

�b Feel special form

�q Feel special form

Within a handler loop� �b prints out a backtrace of function calls and their envi�
ronments� A simpler backtrace� only containing the function calls� can be printed
out by typing �q� The eulisp� module exports a function� �B 
not a special form�
which may do a better job in some circumstances� but is more prone to in�nite loops�

� The Bytecode Compiler

The FEEL bytecode compiler is implemented as a FEEL application� The code pro�
duced is quite respectable� and should give signi�cant improvements over interpreted
code�

The compiled code does not do any error checking on car� cdr� vector�ref and
similar functions� A later extension will de�ne these functions as generic so that
type errors can be detected�

��� File Types

Eulisp module 
les These have a �em su�x and contain EULISP source code�

Standard compiled modules These have a �sc su�x� and contain position and
byte�order independent compiled code�

Interface 
les These have a �i su�x� and contain the interface exported by their
module� and information on dependencies� etc�

Bytecode 
les These have �ebc and �est su�cies� They hold the raw bytecodes
and statics for a group of modules�

Fast load 
les These have �fm extensions� and contain raw bytecodes for a single
module�

��� Compiling

feelc ��o image� ��em �les� ��sc �les� �other args�

The FEEL bytecode compiler is started by typing feelc� assuming correct paths and
installation� feelc invokes FEEL once for each module to be compiled� and �nally
one more time if the results are to be linked into a single bytecode image�

The script is not interactive � it takes only command line arguments� All argu�
ments with a �em extension are assumed to be modules to be compiled� all arguments
with a �sc extension are assumed to be compiled modules to be linked � linking
only occurs if the �o image option is given� where image is the name of the resultant
bytecode image�

Modules are compiled in the order presented � since the compilation of a module
relies upon the existence of an interface �le for each module that it imports� directly
or indirectly� these modules must be given in the order that they would normally be
loaded� For example� if module top imports module middle� which in turn imports
module bottom� the compilation of top would be speci�ed by typing�

	



feelc bottom�em middle�em top�em�

All other arguments are passed on to each invocation of FEEL unaltered� The
default heap size when compiling is ��Mb�

Warning � modules are loaded before being compiled� so do not attempt to
compile modules that execute non�terminating forms at top�level�

The compiler generates many incomprehensible messages � these can mostly be
ignored� unless the process stops prematurely� in which case they may give some
clue as to just what went wrong� Be advised that compiling large �les� and linking
in general� can take a long time � � �

��� Loading

By default� the FEEL startup script feel loads a bytecode image which represents
the major part of the implemented EULISP functionality� plus some useful extras�
such as the loopsmodule� To boot FEEL with a di�erent bytecoded image� myimage�
type�

feel �boot myimage

To fast�load a speci�c compiled module� mymodule� type�

���	 mymodule


at top�level 
this will not work if FEEL is invoked with feel �noimage��

� The EuLisp Object System

The EULISP object system is called TELOS� Every data item in EULISP is part of the
class hierarchy� Simple classes can be de�ned by defstruct� more complex classes
with defclass� There is no message send primitive in EULISP� instead generic
functions are used� TELOS has been designed to o�er programmability� e�ciency
and �exibility� The following subsections attempt to illustrate the kinds of things
you can do with it by means of a few examples�

	�� Generic Functions

You see� it�s like this� � � �

Our example in this subsection is an implementation of univariate polynomials
with integer coe�cients� We start with a polynomial structure� this is a single term�
with a reductum that is the rest of the polynomial� A reductum that is an integer
marks the end of the polynomial� A term consists of the leading degree and the
leading coe�cient�

�defclass �polynomial	 ��number	


��ldeg

accessor ldeg

initarg ldeg

initform �


�lc

accessor lc

initarg lc

initform �


�red

�to quote Keith






accessor red

initarg red

initform �



constructor make�polynomial


We de�ne a method on equal so we can check if two polynomials are the same�
Notice we do not have to check for the bottoming�out of the recursion on the reducta�
the generic nature of equal ensures that when we get to the end of a polynomial

and we have an integer as a reductum rather than a polynomial� a di�erent method
is called� This relies on the fact that equal�methods for 
int� poly� and 
poly� int� do
not exist� the generic function discriminator chooses the nearest applicable method
on equal� which in this case is 
object� object�� This method returns �
 
as the
args cannot be eq�� which is just what we want�

�defmethod equal ��p �polynomial	
 �q �polynomial	



�and �equal �ldeg p
 �ldeg q



�equal �lc p
 �lc q

 �equal �red p
 �red q





We now need some operations on this new type� If we are trying to add polyno�
mials to integers� we would like some method for converting between integers and
polynomials� We use the function lift�numbers to do this�

�defmethod lift�numbers ��i �integer	
 �p �polynomial	



�polynomial	


�defmethod lift�numbers ��p �polynomial	
 �i �integer	



�polynomial	


�defmethod �converter �polynomial	
 ��x �integer	



�make�polynomial �lc x �ldeg �



Now if we call any operation with a polynomial and an integer� the integer is
lifted to class polynomial� and the operation proceeds as normal� For two polyno�
mials� the method is easy� A minor wrinkle is when the leading terms cancel� we
must take care not to have a leading coe�cient of ��

�defmethod binary�plus ��p �polynomial	
 �q �polynomial	



�cond ��� �ldeg p
 �ldeg q



�let ��sum �binary�plus �lc p
 �lc q





�if �zerop sum
 �binary�plus �red p
 �red q



�make�polynomial �ldeg �ldeg p
 �lc sum

�red �binary�plus �red p
 �red q







��� �ldeg p
 �ldeg q



�make�polynomial �ldeg �ldeg q
 �lc �lc q


�red �binary�plus p �red q





�t �make�polynomial �ldeg �ldeg p
 �lc �lc p


�red �binary�plus �red p
 q






�defmethod binary�difference ���

and so on for the other arithmetic operations� Also we would put new methods
on generic�prin and generic�write to print out the values of polynomials using
a suitable syntax�

�



	�� Classes

Classes in EULISP are not static items� they can be de�ned and created dynamically
just as any other type in the system� The following example demonstrates this by
de�ning a class whose instances are themselves classes� whose instances are modular
numbers� The intermediate classes are parameterised by an integer� which are the
bases for the modular rings� This also illustrates the use of metaclasses� which
control the structure of classes�

We create a metaclass �zmodn	which is the class of the classes �Zmod�	� �Zmod�	�
�Zmod�	� etc�

�defclass �zmodn�class	 ��class	


��n initarg n reader zmodn�class�n



metaclass �class	


This will be a direct subclass of class� and so will inherit its methods� in par�
ticular the ability to create subclasses which are themselves classes� The instances
of this class will have a slot named n� which will be the modular base�

Now we de�ne a superclass for all of its instances� to place them in their own
sub�hierarchy of the class graph� This class has an instance variable z� since the
instances of its subclasses are the fully instantiated modular numbers�

�defclass �zmodn�object	 ��number	


��z accessor zmodn�z



metaclass �zmodn�class	


The metaclass of the instances of zmodn�object is de�ned to be the class
zmodn�class� Thus the structure of the instances 
the classes Zmod�� etc�� is
determined by zmodn�class�

The constructor for the instances of zmodn�class 
the metaclass� could be the
following�

�defun make�zmodn�class �n


�make �zmodn�class	

�direct�superclasses �list �zmodn�object	


�name �make�symbol �format nil ��zmod��a	� n



�n n



The make�instance requires values for the slots in zmodn�class� which include
n 
the slot we de�ned�� and direct�superclasses� a slot inherited from class�

If you want to avoid creating duplicate zmodn classes with the same N� try this
de�nition instead�

�defconstant �zmodn�table�

�make �table	 �comparator � �hash�function generic�hash



�defun make�zmodn�class� �n


�or �table�ref �zmodn�table� n


�let ��cl �make�zmodn�class n




��setter table�ref
 �zmodn�table� n cl


cl




The function to create the modular objects themselves could be de�ned as fol�
lows�

�defun make�modular�number �z n


�make�instance �make�zmodn�class� n
 �z z



�



Note that this implemenatation guarentees that the number is of the appropriate
range�

�defmethod initialize ��proto �zmodn�object	
 lst


�let ��i �call�next�method




��setter zmodn�z
 i

�remainder �scan�args �z lst required�argument


�zmodn�n i




i



Getting z from one of these instances is already de�ned by the reader on
zmodn�object� Getting n involves going to the class� Making this available from
instances means de�ning the following function�

�defgeneric zmodn�n �obj



�defmethod zmodn�n ��z �zmodn�object	



�zmodn�class�n �class�of z




Next� we want to de�ne some simple arithmetic on modular numbers� for exam�
ple� addition� However� this only makes sense if we have the same modulus in both
of the summands�

�defun compatible�moduli �n m
 �if �� �zmodn�n n
 �zmodn�n m

 t

�error �incompatible moduli� Internal�Error




We de�ne a method for addition on �zmodn�object	� this will then be inherited
by each instance� viz�� the actual rings �zmod�	� �zmod�	� and so on�

�defmethod binary�plus ��n� �zmodn�object	
 �n� �zmodn�object	



�when �compatible�moduli n� n�


�make�modular�number �� �zmodn�z i
 �zmodn�z j



�zmodn�n i





We can add a method to the print function to view numbers prettily

�defmethod generic�prin ��n �zmodn�object	
 s


�format s ��a�mod �a	� �zmodn�z n
 �zmodn�n n




Finally� some examples of numbers

�deflocal zero� �make�modular�number � �



�deflocal one� �make�modular�number � �



�deflocal two� �make�modular�number � �



�deflocal three� �make�modular�number � �



�deflocal four� �make�modular�number � �



�deflocal zero� �make�modular�number � �



�deflocal one� �make�modular�number � �



�deflocal two� �make�modular�number � �



Now if we try an addition�

	 �� two� four�


� ��mod �	

We didn�t have to specify a plus method for each modular ring individually� the
single de�nition on the superclass su�ces�

Thanks to Harley Davis for help on this section�

��



	�� Slot Descriptions

Another aspect of the programmability of TELOS is slot�descriptions� This allows
the user to control how the slots of a class are accessed� Here we present an example
of the use of slot�descriptions to provide a classed 
typed� slot facility� The aim is
to be able to de�ne a class and� at the same time� the class of the values to be
associated with a given slot� The solution is to de�ne a new kind of slot�description
to verify that only values of the correct class are stored in the slot� We start by
de�ning a new kind of slot�description �classed�local�slot�description	�

�defclass �classed�local�slot�description	 ��local�slot�description	


��contents�class

initform �object	

initarg contents�class

reader classed�local�slot�description�contents�class



metaclass �slot�description�class	


The classed�local�slot�description class inherits the normal slots from �local�

�slot�description	 and adds somewhere to keep track of the allowed class of its
contents�

To police the class 
type� constraint� we must check that whenever a value is
written to a slot with this class�that the value is of the speci�ed kind� we therefore
want a new method on compute�primitive�writer�using�slot�description�

�defmethod compute�primitive�writer�using�slot�description

��csd �classed�local�slot�description	
 cl lst


�let ��std�writer �call�next�method



�contents�cl �classed�local�slot�description�contents�class csd




�lambda �obj val


�if �subclassp �class�of val
 contents�cl


�std�writer obj val


�error �invalid class of value for slot�

some�error �object obj �sd csd �val val






The call to the standard writer is reached only if the value satis�es the class
constraint� It just means the value is acceptable�go ahead and do whatever you
normally do to put the slot value inside�

All that remains is how to use one of these slots in a class� The example you
give can be done as follows�but remember that defclass must be used instead of
defstruct because the latter does not support user�de�ned slot classes�

�defclass �person	 �


��age

initarg age

slot�class �classed�local�slot�description	

slot�initargs ��contents�class �integer	


accessor age


�name

slot�class �classed�local�slot�description	

slot�initargs ��contents�class �string	


accessor name


�ordinary�slot

initform �bleagh




The slots age and name are of the new class of slot with their contents class set
to integer and string respectively� Of course� other slots with di�erent classes of

��



slot description may also be de�ned�
Now� we may type the following�

�setq i �make �person	

 ��setter age
 i ��


which is �ne and �age i
 will return ���

��setter age
 i �not�a�number


but this signals an error� Thanks to Luis Mandel for prompting this example�

	�� Mixins

FEEL supplies a mixinmodule� to allow the use of mixin classes �a la Flavors� A mixin
class is a class that can be used in a multiple inheritance network� but has certain
restrictions to enable the creation of more e�cient accessors�multiple inheritance
is restricted to non�instantiable classes and these classes� mixins are then used
for specialisation of instantiable objects� base�objects� Mixins tend to be used to
describe attributes of objects� and then these are �mixed in� with base classes to
create specialized classes� The mixin implementation has two metaclasses

� �mixin�class	 The class of a mixin class

� �mixin�base�class	 The class of a base�object class

Instances of �mixin�class	 are not instantiable� but allow full MI� Only in�
stances of �mixin�base�class	 may inherit from mixin�classes� and the list of
direct superclasses of a �mixin�base�class	 must have all mixin�classes before a
single non�mixin class 
In FEEL� it may inherit from any other class in the system�
including �class	��

Note on the implementation� �mixin�class	 has a di�erent default slot type�
�mixin�slot�description	� When this slot is inherited directly by a �mixin�base�cl�
ass	 its the accessor is computed� If the slot is not newly created� however� no new
access method is computed� therefore reducing the number of such methods for a
given accessor�

	�� Eql Methods

These are supplied by the eqlmodule� which e�ectively de�nes new generic function
and method classes� and allows further eql methods to be de�ned� See eql�em for
full details�

	 The PVM Module

The pvm module provides an interface to the pvm library� This section assumes
that the reader has read at least some of the PVM documentation�

The pvm module di�ers from the pvm library in the following ways�

� Arbitrary lisp expressions 
including circular structures� may be sent from
machine to machine

� The format in which objects are sent is not the XDR format used by pvm�
but an internal format� It is hopefully machine 
and byte order� independent�
See the section on the reader module for more details�

�called mixins

��



�defclass �point	 �


��x initform � accessor point�x initarg x


�y initform � accessor point�y initarg y






�defclass �colored	 �


��color initform �black initarg color

reader color



metaclass �mixin�class	


�defgeneric color�of �obj


method ���obj �object	

 �gray


method ���obj �colored	



�color obj




�defclass �colored�point	 ��colored	 �point	


�


metaclass �mixin�base�class	


�setq p� �make �point	



�color�of p�


�setq p� �make �colored�point	 �x � �y � �color �red



�color�of p�


Figure �� Usage of mixin inhertance

� Several reads may occur simultaneously on separate threads �� In other words�
it is possible to call thread�suspend during a read�

The pvm module exports the following functions�

�pvm�enroll
 PVM

Arguments

name� A string

Result

Enrolls Feel into PVM under the given name� Must be called before any other PVM
function� Return the pvm�id of the enrolled process 
actually a cons cell whose car is
the name provided as argument to pvm�enroll� and whose cdr is an instance number
allocated by PVM��

�pvm�leave
 PVM

Result

Exits from PVM control� After this is called� all PVM functions return an error
message 
except pvm�enroll��

�note that pvm is not yet interfaced to the System V version�

��



�pvm�whoami
 PVM

Result

Returns the pvm�id 
the value returned by enroll� of the process�

�pvm�status id
 PVM

Arguments

id � Identi�er of a pvm�process

Result

Returns non�nil if the process with pvm�id id is running� otherwise nil�

�pvm�send dest type msg �reader�
 PVM

Arguments

dest � A PVM process identi�er

type� The type of the message 
integer�

msg � The message 
can be anything�

�reader�� A reader which is used to write the message�

Result

Sends a message of type type to the process speci�ed by the id dest containing the
value msg� If a reader is speci�ed it is used to handle any complex lisp types inside
the message 
see section ���

�pvm�recv type info� �reader�
 PVM

Arguments

type� The type of message to be recieved 
integer�

info� � Is information on message wanted 
boolean�

�reader�� A reader which is used to read the message�

Result

Blocks until a message of type type is recieved� If info� is nil� then the message is
returned� If info� is non�nil� a list is returned in the following format� �msg type

from
 where msg is the message� type is the type and from is the process�id of the
sending processes� Note that this only blocks the executing thread � ready threads
will automatically be scheduled�

�pvm�recv�multi type�list info� �reader�
 PVM

Arguments

type�list � A list of possible message types 
integers�

info� � Information on message wanted �ag 
t or nil�

�reader�� A reader which is used to read the message�

��



Result

As pvm�recv� but blocks the executing thread until a message which has a type in
the type�list is received�

�pvm�initiate�by�type type name
 PVM

Arguments

type� Type of machine 
string�

name� Name of the new process 
string�

Result

Runs the executable name on a machine of type type� and return the PVM identi�er
of the new process�

�pvm�initiate�by�hostname hostname name
 PVM

Arguments

hostname� Hostname in which to start process

name� Name of the new process

Result

Runs the executable name on the machine hostname� and return the PVM identi�er
of the new process�

�pvm�probe type
 PVM

Arguments

type� A message type 
integer��

Result

Tests for messages of a given type� Returns the type� or nil if no message of that
type is in the input queue�

�pvm�probe�multi type�list
 PVM

Arguments

type�list � A list of message types 
integers��

Result

Tests for messages from a list of types�

Other functions provided are

� pvm�barrier

� pvm�ready

� pvm�waituntil

��



� pvm�terminate

These last are mostly untested� but provide analogous functionality to their PVM
equivalents�

This module is based on PVM version ��� � the next section describes a module
based on PVM version ���� which has a substantially di�erent interface�


 The PVM� Module

Like the pvm module� the pvm� module is not completely analogous to the pvm�
library� The di�erences should be fairly intuitive� and are mainly to make the mod�
ule more useable�

The pvm� module exports the following functions�

�pvm�mytid
 PVM�

Enrolls Feel in PVM if it is not already enrolled� and returns the tid 
task identi�er
� a large integer� in either case�

�pvm�exit
 PVM�

Exits from PVM control

�pvm�config
 PVM�

Returns a list of hostname� architecture type pairs� describing the current PVM
con�guration�

�pvm�spawn�on�host name host �n�
 PVM�

Arguments

name� name of executable

host � name of the host

�n�� number of instances

Result

Runs n instances 
� by default� of the executable name on the machine speci�ed by
host� and returns a list of the tids of the new processes�

�pvm�spawn�on�arch name arch �n�
 PVM�

Arguments

name� name of executable

arch� architecture type

�n�� number of instances

Result

Runs n instances 
� by default� of the executable name on a machine of type arch�
and returns a list of the tids of the new processes�

�	



�pvm�tasks
 PVM�

Returns a list of the tids of all processes currently enrolled in PVM�

�pvm�pstat tid
 PVM�

Returns t if the process with identi�er tid is alive� and nil otherwise�

�pvm�kill tid
 PVM�

Terminates the process with identi�er tid�

�pvm�send tid type message �reader�
 PVM�

Arguments

tid � A PVM task identi�er

type� The type of the message 
integer�

message� The message 
can be anything�

�reader�� A reader used to write the message

Result

Sends a message of type type to the process speci�ed by tid containing the value
message� If a reader is speci�ed it is used to handle any complex lisp types inside
the message 
see section ���

�pvm�mcast tid�list type message �reader�
 PVM�

Arguments

tid�list � A list of PVM task identi�ers

type� The type of the message 
integer�

message� The message 
can be anything�

�reader�� A reader used to write the message

Result

Sends a message of type type to each of the processes speci�ed in tid�list containing
the value message� If a reader is speci�ed it is used to handle any complex lisp
types inside the message 
see section ���

�pvm�bcast type message �reader�
 PVM�

Arguments

type� The type of the message 
integer�

message� The message 
can be anything�

�reader�� A reader used to write the message

�




Result

Sends a message of type type to all enrolled processes containing the value message�
If a reader is speci�ed it is used to handle any complex lisp types inside the message

see section ���

�pvm�receive tid type info� �reader�
 PVM�

Arguments

tid � A PVM task identi�er 
integer� �� is wild card�

type� The type of the message 
integer� �� is wild card�

info� � Is information on message wanted 
boolean�

�reader�� A reader used to read the message

Result

Blocks the executing thread until a message of type type is recieved from the process
speci�ed by tid� If info� is nil� then the message is returned� If info� is non�nil� a
list is returned in the following format� �msg type from
 where msg is the message�
type is the type and from is the process�id of the sending processes�

�pvm�probe tid type
 PVM�

Arguments

tid � A PVM task identi�er 
integer� �� is wild card�

type� The type of the message 
integer� �� is wild card�

Result

Returns t if a message matching tid and type is ready to be received� otherwise nil�

�pvm�joingroup group
 PVM�

Arguments

group� A string used to identify the group

Result

Creates a group called group if one doesn�t already exist� and joins the group in
either case�

�pvm�lvgroup group
 PVM�

Arguments

group� A string used to identify the group

Result

Leaves the group called group�

��



�pvm�gtasks group
 PVM�

Arguments

group� A string used to identify the group

Result

Returns a list of the tids of all processes in the group identi�ed by group�

�pvm�barrier group count
 PVM�

Arguments

group� A string used to identify the group

count � Number of processes involved in the barrier

Result

Blocks the executing thread until count members of group have called pvm�barrier�

� The Reader Module

The reader module provides functions to read and write lisp forms as bytevectors�
It is intended to be reasonably machine independent� although at the current time
it falls a little short� The module currently deals with reading and writing lisp forms
for the pvm module�

The reader in its default form can read any �simple� lisp expression that is�
integers� �oats� strings� symbols�� lists and vectors� The extensibility is provided
via an extra argument which may be supplied to control the reader�s behaviour on
complex lisp types� A type here means a group of classes which can be read in
the same way� The type of an object is given by the integer identi�er passed to
add�writer and add�reader�

�make�obj�reader
 Reader

Result

Makes a new reader object� The class and internals of this object are left unspeci�ed�

�add�writer reader class type�ident function
 Reader

Arguments

reader � A reader

class� A class

type�ident � An identi�er 
� �	�

function� A function to be called when an object of class class is encountered�

�Support for symbols may be removed in future versions because theymay require some caching�

which will be provided by a lisp level

��



Result

Adds a new writer function� function to the given reader� The function is called
when an object of class class 
or one of its subclasses� is encountered by a write
process� It is called with three arguments� the object to be written� a value repre�
senting write bu�er and the reader which called the function� The function should
call write�next with any data associated with the object�

�add�reader reader type�ident function
 Reader

Arguments

reader � A reader

type�ident � An identi�er

function� A function�

Result

Adds a new reader function function to the given reader� The function is called
whenever an object of type type�ident is encountered by a read process� It is called
with two arguments� a value representing the read bu�er plus the reader supplied
by the caller of the read� The function then calls read�next to obtain any data
associated with the object� If the function fails to consume all the data written by
its corresponding write� an unhandled error condition results��

�read�next ptr reader
 Reader

Arguments

ptr � A pointer value

reader � A reader

Result

Returns the next object in the read�bu�er speci�ed by ptr� using reader as the
reader object� This functions can only be called inside the dynamic scope of a read
function�

�write�next object ptr reader
 Reader

Arguments

object � the object to be written

ptr � A pointer value

reader � A reader

Result

Writes the object object onto the write�bu�er speci�ed by ptr� using reader as the
reader object�

�FEEL goes kaboom

��




�� Example

��de�ne a structure which we want to pass around

�defstruct example�cons�pair ��

��car initarg car reader example�car�

�cdr initarg cdr reader example�cdr��

constructor �example�cons car cdr��

��invent a number � this �must� be more than ��
�defconstant �example�type�id� ���

��make a reader

�defconstant �the�reader� �make�obj�reader��

��de�ne readers and writers for example�cons

��note that both these functions �can� side e�ect	 so circular
��structures and caching can be handled 
using tables or similar�	 also that the
��particular reader can be changed for the recursive call
��to the reader 
although I do neither here��

�defun write�example�cons �obj ptr rdr�

��easy really� Just write whats inside�
�write�next �example�car obj� ptr rdr�

�write�next �example�cdr obj� ptr rdr��

�defun read�example�cons �ptr rdr�

��read the internals
�let� ��a�car �read�next ptr rdr��

�a�cdr �read�next ptr rdr���

��construct the appropriate object
�example�cons a�car a�cdr���

��add them to the reader structure

�add�reader �the�reader�

�example�type�id�

read�example�cons�

�add�writer �the�reader�

example�cons�pair

�example�type�id�

write�example�cons�

��we can add more types later���

��should make
��
pvm�send 
pvm�whoami� �
�
��
example�cons 
example�cons � ��
��
example�cons � ���
���the�reader��
��work ok�

��to receive	 
pvm�recv �
� nil �the�reader��

��



�� Thread Abstractions

EULISP provides a set of primitive operations for thread creation and manipulation�
but for most work these are too low�level and require the user to be overly concerned
with their management� One of the design goals of EULISP was to provide an exper�
imentation environment for parallel processing� and as a result of this several thread
abstractions have been built on the EULISP thread primitives� These abstractions
include� futures� linda� timewarp and CSP� The next subsections describe the �rst
two in detail�

���� Futures

The nature of the EULISP thread mechanismmeans that it lends itself quite naturally
to providing a base for the implementation of a simple future abstraction� The acts
of creating futures and of eventually interrogating them for their values map almost
directly onto starting threads and accessing thread results�

The code for basic future manipulation is given below� A couple of examples
of replacements for �strict� functions that allow for future objects are shown� The
extensibility of generic functions and module renaming can be used to make these
necessary changes transparent for users�

The following are the main functions of interest in the futures module � � �

�future expression�
 Future macro

Arguments

expression� The expression to be future�d

Constructs a future object and spawns a thread to calculate the value of ex�
pression� An object of class future is returned by the expression resulting from the
macro expansion� The implementation of future in FEEL is essentially�

�defmacro future exp

��let

��future �make�future�object



�task �make�thread

�lambda �future fun


��setter future�object�value
 future �fun



��setter future�object�done
 future t


t





��setter future�object�thread
 future task


��setter future�object�function
 future �lambda �
 ��exp



�thread�start task future �lambda �
 ��exp



future



�futurep obj
 Future generic

Arguments

obj � The object to be tested

Result

nil if obj is not a future� otherwise� non�nil�

��



�future�value future
 Future

Arguments

future� The value to be evaluated

Result

Forces the evaluation of a future and if the result of the evaluation is also a future

that too is forced until the result is not a future�

���� Linda

The eulinda module implements a simplistic version of the Linda model� Points of
note include

�� multiple pools� so the in�out�read functions take an extra argument

�� matching is always literal on �rst element of tuple

�� function names are pre�xed by linda�

The module exports the following functions�

� �make�linda�pool
 to make a pool�

� �linda�out pool tag val� val� ���
 places the values in the pool under
the tag�

� �linda�in pool tag pat� pat� ���
 does an �in� from the pool under the
tag� using the patterns�

� �linda�read pool tag pat� pat� ���
 does a �read��

� �linda�eval fun arg� arg� ���
 starts a new thread running the function
with the arguments�

A pattern is

� � matches any value�

� �� var
 matches any value� and sets the var to that value�

� anything else is matched literally�

Tags are also always matched literally� Thus� if y has value ��� then
�linda�in pool �foo � �� x
 �� � y



searches for a tuple in the pool under the tag foo that has anything in the �st
or �nd slot� and �� in the �rd slot� When such a tuple is found� x is set to the value
in the �nd slot� the call suspends 
with an implicit thread�reschedule� until then�

A small example�

�defmodule pc �standard eulinda
 �


�deflocal pc�pool �make�linda�pool



�defun producer �tag val


�format t �producer
 out �a to �a� � val tag


�linda�out pc�pool tag val



��



�defun consumer �tag


�let ��x �




�linda�in pc�pool tag �� x



�format t �consumer �a
 got �a� � tag x



�consumer tag



�linda�eval consumer �one


�linda�eval consumer �two





Then� e�g�� �producer �one ��
 will place a tuple in the pool for the thread
one to fetch out�

Minor debugging tools are �tril t
 to turn on a trace of the internals of the
matching process� �tril �

 to turn it o�� Also �print�linda�pool p
 will print
the values in the pool p�

��


	feel-man.ps

