FEEL: An Implementation of EuLisp
Version 0.92

Concurrent Processing Research Group
School of Mathematical Sciences
University of Bath, United Kingdom
E-mail: eulisp@maths.bath.ac.uk

April 19, 1994

Abstract

This document describes an implementation of EULISP called FEEL. The
primary reference for EULISP is the EULISP definition. In this document, the
environmental operations provided in FEEL, but which are not part of the
EULISP language, are described in detail, and examples on the use of some
EulLisp features are provided.

Contents

1 Getting Further Information

2 Differences Between FEEL And EuLisp
3 Making FEEL

4 The FEEL Environment
4.1 Gettinginandout L oL
4.2 Start-Up Configuration 0.
4.3 Interacting with FEEL00

5 The Bytecode Compiler
5.1 File Types

5.2 Compiling
5.3 Loading

6 The EuLisp Object System
6.1 Generic Functions
6.2 Classes e
6.3 Slot Descriptions Lo
6.4 MIXINS e e
6.5 Eql Methods

7 The PVM Module
8 The PVM3 Module

9 The Reader Module
9.1 Example

10 Thread Abstractions
10.1 Futures
10.2 Linda e

(2 ST ST

-1 oo O

1 Getting Further Information

Information about EULISP and a copy of the FEEL implementation are all available
by anonymous ftp from ftp.bath.ac.uk in the directory pub/eulisp. This doc-
ument and the implementation of EULISP are currently the responsibility of Julian
Padget (jap), Russell Bradford (rjb) and Duncan Batey (4jb) at maths.bath.ac.uk.

2 Differences Between FEEL And EuLisp

Inevitably there are a number of minor ways in which FEEL is not an accurate
implementation of EUuLIsPas described in the EULISP definition (to which we refer
the reader for details of the language itself).

The whole of Level 0 is implemented, but some of the level 0 modules (such
as formatted-io) do not exist, even though the functions they define are in fact
available in the eulisp0 module. Much of Level 1 is also implemented. A major
area of incompatability is in the conditions, some of which are not raised when the
definition says they should be.

3 Making FEEL

The kind of FEEL system you can make depends on the combined capabilities of
your operating system and processor. FEEL has been developed in a solely Unix
environment and this has considerably warped its view of the world. We have
attempted ports to DOS, Windows 3.1 and the Macintosh (ver 7), but these are
currently out of date and we do not have access to suitable hardware to revise them.
If you are interested, please let us know!

A particular feature of EULISP, and hence FEEL, is support for multiple threads
of control. Whether these do actually execute concurrently depends on the host
system, but, in principle, it should be possible to develop a program using threads
on one system—perhaps a uni-processor simulating concurrency—and later execute
the same program on a multi-processor or a distributed processor to achieve the
same net result.

Broadly speaking, FEEL can be made in any of three main configurations:

Generic Under the “ANY” machine configuration, FEEL attempts to be a fully
portable ANSI C program. Because there is no reliably portable method
of implementing threads in C, the thread operations in this mode are not
available and only a serial version of EULISP remains. This mode is most
suitable for getting started quickly and also the most sensible place to begin for
porting to new architectures or operating systems. Memory use is minimised
which may benifit smaller machines such as PCs or any system where memory
s at a premium.

BSD This (badly named) configuration mode requires that a stack switching op-
eration be available for FEEL to use. Given this code (typically a few lines
of the local assembler), the thread operations become available with the lim-
itation that only one thread is run at a time. This mode allows programs
to be written in terms of threads which may later be run in parallel without
alteration. This mode is most useful for allowing the development of multi-
threaded applications under unsupportive operating systems such as BSD 4.2
or 4.3.

System V This configuration requires that stack switching code be available along
with the standard System V shared memory manipulation primitives. Given

these things FEEL becomes a truly parallel multi-threaded system using the
following model: on start-up a piece of shared memory is allocated, then FEEL
forks as many times as there are physical processors in the host machine (this
behaviour may be modified). Each of these forked processes runs the FEEL
scheduler, running threads from the pool in the shared heap. Each such thread
is run to conclusion—unless it yields control, in which case it will be returned
to the pool. More processes may be forked than existing processors to simulate
truly parallel operation on uniprocessor systems such as Suns running SunOS
4.1.

4 The FEEL Environment

FEEL uses the shell variable FEEL_LOAD_PATH when loading modules. Its value is
prepended to a default path consisting of the directory in which FEEL was invoked
in and other directories specified when the system was built. The resulting path
is read at start-up and converted to a list of strings of information in a processor-
defined format concerning the filesystems or disks or directories to be searched when
loading modules. Modules are stored in files with the extension .em.

When booting from a previously compiled bytecode image, the shell variable
FEEL_BOOT_PATH, prepended to a similar default path to that for FEEL_LOAD_PATH,
is used to find the bytecode image. Bytecode images are stored as pairs of files with
.est and .ebc extensions.

When using the bytecode compiler, the shell variable FEEL_INTF_PATH is used
to find module interface files, and the shell variable FEEL_O0BJS_PATH used to find
compiled modules, before system defaults as above. Interfaces are stored in files
with the extension .1i, and compiled modules in files with the extension .sc.

4.1 Getting in and out

FEEL is started by typing feel, assuming correct paths and installation. To leave
FEEL type CNTL-D, or 'exit (see later section).

4.2 Start-Up Configuration

FEEL’s default starting behaviour may be modified in two ways:
Command Line Arguments FEEL recognises the following:

-heap n The size of heap to use (in megabytes if n < 50, else bytes). This
defaults to 4Mb.

-stack-space n Amount of storage to allocate for stacks and static data (in
megabytes if n < 50, else bytes). This defaults to 1 Mb, but should be
more for programs that use threads.

-stack-size n The size of the interpreter thread stack (in kilobytes if n <
1000, else bytes). This defaults to 96Kb. Tt should not be necessary to
change this unless your program stops with a ’stack overflowing’ message.
Beware that an infinite non-tail recursion problem may also trigger this
message.

-boot name Load the bytecode image name
-noimage Do not load a bytecode image at all
-compiler Load the compiler bytecode image

-sysv Start Feel in System V configuration (if available)

-procs n Start up using n processors (works in System V configuration only)

A Configuration File Having first processed its command line arguments, FEEL
then looks for a file called .feelrc in the $HOME directory of the user'. If
found, the file is read and the expressions within executed as if entered at
top-level.

4.3 Interacting with FEEL

When FEEL starts, the top-level module loaded is the user module?. This imports
eulisp0, and therefore contains most of the usual lisp functions. Most of the module
manipulation functionality is defined in the root module. The only operations
defined in the root module are those for loading modules and entering modules
(see below). The top-level prompt provides information about which module is the
current focus and the history number of the command, for example:

user!0>

signifies that the current module focus is root and that the command history index
of this line is 0.

error:user!i>

signifies that the error handler 1s executing, that the current module focus is user,
and that the command history index of this line is 1.

The following operations are always available at top-level, regardless of the current
module focus:

(!> name) Feel special form

Arguments

name: Name of module to load.

If name names a module which has been loaded, then the top-level is changed to be
in that module. If a module named name is not currently loaded, then FEEL tries
to load the module from a file called name.em. If loaded succesfully, top-level 1s
changed to be in that module.

(!'>> name) Feel special form

Arguments
name: name of the module to load.
Reload and enter the specified module. This has the side-effect of resetting the

exported bindings of the module; such that any importing module will reference
the new values.

lexit Feel special form

Within a handler loop, returns to previous top-level. At top-level, FEEL terminates.

1Likely to be elsewhere on non-UNIX systems
2This can be changed by setting the environment variable FEEL_START_MODULE

'n Feel special form

Redo the input sequence number n.

'b Feel special form

'q Feel specral form

Within a handler loop, !'b prints out a backtrace of function calls and their envi-
ronments. A simpler backtrace, only containing the function calls, can be printed
out by typing !q. The eulisp0 module exports a function, !B (not a special form)
which may do a better job in some circumstances, but is more prone to infinite loops.

5 The Bytecode Compiler

The FEEL bytecode compiler is implemented as a FEEL application. The code pro-
duced is quite respectable, and should give significant improvements over interpreted
code.

The compiled code does not do any error checking on car, cdr, vector-ref and
similar functions. A later extension will define these functions as generic so that
type errors can be detected.

5.1 File Types

Eulisp module files These have a .em suffix and contain EULISP source code.

Standard compiled modules These have a .sc suffix, and contain position and
byte-order independent compiled code.

Interface files These have a .1i suffix, and contain the interface exported by their
module, and information on dependencies, etc.

Bytecode files These have .ebc and .est sufficies. They hold the raw bytecodes
and statics for a group of modules.

Fast load files These have .fm extensions, and contain raw bytecodes for a single
module.

5.2 Compiling
feelc [-o wmagel [.em files] [.sc files] Lother args]

The FEEL bytecode compiler is started by typing feelc, assuming correct paths and
installation. feelc invokes FEEL once for each module to be compiled, and finally
one more time if the results are to be linked into a single bytecode image.

The script is not interactive — it takes only command line arguments. All argu-
ments with a . em extension are assumed to be modules to be compiled, all arguments
with a .sc extension are assumed to be compiled modules to be linked — linking
only occurs if the —o image option is given, where image is the name of the resultant
bytecode image.

Modules are compiled in the order presented — since the compilation of a module
relies upon the existence of an interface file for each module that 1t imports, directly
or indirectly, these modules must be given in the order that they would normally be
loaded. For example, if module top imports module middle, which in turn imports
module bottom, the compilation of top would be specified by typing:

feelc bottom.em middle.em top.em.

All other arguments are passed on to each invocation of FEEL unaltered. The
default heap size when compiling i1s 10Mb.

Warning — modules are loaded before being compiled, so do not attempt to
compile modules that execute non-terminating forms at top-level.

The compiler generates many incomprehensible messages — these can mostly be
ignored, unless the process stops prematurely, in which case they may give some
clue as to just what went wrong. Be advised that compiling large files, and linking
in general, can take a long time . ..

5.3 Loading

By default, the FEEL startup script feel loads a bytecode image which represents
the major part of the implemented EULIsP functionality, plus some useful extras,
such as the loops module. To boot FEEL with a different bytecoded image, myimage,

type:
feel -boot myimage
To fast-load a specific compiled module, mymodule, type
("> mymodule)

at top-level (this will not work if FEEL is invoked with feel -noimage).

6 The EuLisp Object System

The EULisP object system is called TELOS. Every data item in EULISP is part of the
class hierarchy. Simple classes can be defined by defstruct, more complex classes
with defclass. There is no message send primitive in EULISP, instead generic
functions are used. TELOS has been designed to offer programmability, efficiency
and flexibility. The following subsections attempt to illustrate the kinds of things
you can do with it by means of a few examples.

6.1 Generic Functions

You see, it’s like this...3

Our example in this subsection is an implementation of univariate polynomials
with integer coefficients. We start with a polynomial structure: this is a single term,
with a reductum that is the rest of the polynomial. A reductum that is an integer
marks the end of the polynomial. A term consists of the leading degree and the
leading coefficient.

(defclass <polynomial> (<number>)
((ldeg
accessor ldeg
initarg ldeg
initform 1)
(1c
accessor lc
initarg lc
initform 1)
(red

3to quote Keith

accessor red
initarg red
initform 0))
constructor make-polynomial)

We define a method on equal so we can check if two polynomials are the same.
Notice we do not have to check for the bottoming-out of the recursion on the reducta:
the generic nature of equal ensures that when we get to the end of a polynomial
(and we have an integer as a reductum rather than a polynomial) a different method
is called. This relies on the fact that equal-methods for (int, poly) and (poly, int) do
not exist: the generic function discriminator chooses the nearest applicable method
on equal, which in this case is (object, object). This method returns () (as the
args cannot be eq), which is just what we want.

(defmethod equal ((p <polynomial>) (q <polynomial>))
(and (equal (1ldeg p) (1ldeg q))
(equal (1lc p) (1lc q)) (equal (red p) (red q))))

We now need some operations on this new type. If we are trying to add polyno-
mials to integers, we would like some method for converting between integers and
polynomials. We use the function lift-numbers to do this.

(defmethod lift-numbers ((i <integer>) (p <polynomial>))
<polynomial>)

(defmethod lift-numbers ((p <polynomial>) (i <integer>))
<polynomial>)

(defmethod (converter <polynomial>) ((x <integer>))
(make-polynomial ’lc x ’ldeg 0))

Now if we call any operation with a polynomial and an integer, the integer is
lifted to class polynomial, and the operation proceeds as normal. For two polyno-
mials, the method is easy. A minor wrinkle is when the leading terms cancel: we
must take care not to have a leading coefficient of 0.

(defmethod binary-plus ((p <polynomial>) (q <polynomial>))
(cond ((= (ldeg p) (ldeg q))
(let ((sum (binary-plus (lc p) (lc g))))
(if (zerop sum) (binary-plus (red p) (red q))
(make-polynomial ’ldeg (ldeg p) ’lc sum
’red (binary-plus (red p) (red q))))))
((< (1deg p) (ldeg q))
(make-polynomial ’ldeg (ldeg q) ’lc (1lc q)
'red (binary-plus p (red q))))
(t (make-polynomial ’ldeg (ldeg p) ’lc (lc p)
'red (binary-plus (red p) q)))))

(defmethod binary-difference ...

and so on for the other arithmetic operations. Also we would put new methods
on generic-prin and generic-write to print out the values of polynomials using
a suitable syntax.

6.2 Classes

Classes in EULISP are not static items: they can be defined and created dynamically
just as any other type in the system. The following example demonstrates this by
defining a class whose instances are themselves classes, whose instances are modular
numbers. The intermediate classes are parameterised by an integer, which are the
bases for the modular rings. This also illustrates the use of metaclasses, which
control the structure of classes.

We create a metaclass <zmodn> which is the class of the classes <Zmod3>, <Zmod5>,
<ZmodT7>, etc.

(defclass <zmodn-class> (<class>)
((n initarg n reader zmodn-class-n))
metaclass <class>)

This will be a direct subclass of class, and so will inherit its methods, in par-
ticular the ability to create subclasses which are themselves classes. The instances
of this class will have a slot named n, which will be the modular base.

Now we define a superclass for all of its instances, to place them in their own
sub-hierarchy of the class graph. This class has an instance variable z, since the
instances of its subclasses are the fully instantiated modular numbers.

(defclass <zmodn-object> (<number>)
((z accessor zmodn-z))
metaclass <zmodn-class>)

The metaclass of the instances of zmodn-object is defined to be the class
zmodn-class. Thus the structure of the instances (the classes Zmod5, etc.) is
determined by zmodn-class.

The constructor for the instances of zmodn-class (the metaclass) could be the
following:

(defun make-zmodn-class (n)
(make <zmodn-class>
’direct-superclasses (list <zmodn-object>)
'name (make-symbol (format nil "<zmod-"a>" n))
'n n))

The make-instance requires values for the slots in zmodn-class, which include
n (the slot we defined), and direct-superclasses, a slot inherited from class.

If you want to avoid creating duplicate zmodn classes with the same N, try this
definition instead:

(defconstant *zmodn-table*
(make <table> ’comparator = ’hash-function generic-hash))

(defun make-zmodn-class2 (n)
(or (table-ref *zmodn-table* n)
(let ((c1 (make-zmodn-class n)))
((setter table-ref) *zmodn-table* n cl)
cl)))

The function to create the modular objects themselves could be defined as fol-
lows:

(defun make-modular-number (z n)
(make-instance (make-zmodn-class2 n) ’z z))

Note that this implemenatation guarentees that the number is of the appropriate
range:
(defmethod initialize ((proto <zmodn-object>) lst)
(let ((i (call-next-method)))
((setter zmodn-z) i
(remainder (scan-args 'z lst required-argument)
(zmodn-n i)))

i))

Getting z from one of these instances is already defined by the reader on
zmodn-object. Getting n involves going to the class. Making this available from
instances means defining the following function:

(defgeneric zmodn-n (obj))

(defmethod zmodn-n ((z <zmodn-object>))
(zmodn-class—n (class-of z)))

Next, we want to define some simple arithmetic on modular numbers, for exam-
ple, addition. However, this only makes sense if we have the same modulus in both
of the summands.

(defun compatible-moduli (n m) (if (= (zZmodn-n n) (zmodn-n m)) t
(error "incompatible moduli" Internal-Error)))

We define a method for addition on <zmodn-object>: this will then be inherited
by each instance, viz., the actual rings <zmod3>, <zmod5>, and so on.

(defmethod binary-plus ((nl <zmodn-object>) (n2 <zmodn-object>))
(when (compatible-moduli nil n2)
(make-modular-number (+ (zmodn-z i) (zmodn-z j))
(zmodn-n 1))))

We can add a method to the print function to view numbers prettily

(defmethod generic-prin ((n <zmodn-object>) s)
(format s "“a<mod “a>" (zmodn-z n) (zmodn-n n)))

Finally, some examples of numbers

(deflocal zero5 (make-modular-number O 5))
(deflocal one5 (make-modular—-number 1 5))
(deflocal two5 (make-modular-number 2 5))
(deflocal threeb5 (make-modular-number 3 5))
(deflocal four5 (make-modular—-number 4 5))
(deflocal zero3 (make-modular—-number O 3))
(deflocal one3 (make-modular-number 1 3))
(deflocal two3 (make-modular-number 2 3))

Now if we try an addition:

> (+ twob fourb)
< 1<mod 5>

We didn’t have to specify a plus method for each modular ring individually: the
single definition on the superclass suffices.
Thanks to Harley Davis for help on this section.

10

6.3 Slot Descriptions

Another aspect of the programmability of TELOs 1s slot-descriptions. This allows
the user to control how the slots of a class are accessed. Here we present an example
of the use of slot-descriptions to provide a classed (typed) slot facility. The aim is
to be able to define a class and, at the same time, the class of the values to be
associated with a given slot. The solution is to define a new kind of slot-description
to verify that only values of the correct class are stored in the slot. We start by
defining a new kind of slot-description <classed-local-slot-description>.

(defclass <classed-local-slot-description> (<local-slot-description>)
((contents-class
initform <object>
initarg contents-class
reader classed-local-slot-description-contents-class))
metaclass <slot-description-class>)

The classed-local-slot-description class inherits the normal slots from <local-
-slot—description> and adds somewhere to keep track of the allowed class of its
contents.

To police the class (type) constraint, we must check that whenever a value is
written to a slot with this class—that the value is of the specified kind. we therefore
want a new method on compute-primitive-writer-using-slot-description.

(defmethod compute-primitive-writer-using-slot-description
((csd <classed-local-slot-description>) cl 1lst)
(let ((std-writer (call-next-method))
(contents-cl (classed-local-slot-description-contents-class csd)))
(lambda (obj wval)
(if (subclassp (class-of val) contents-cl)
(std-writer obj val)
(error "invalid class of value for slot"
some—error ’object obj ’sd csd ’val val)))))

The call to the standard writer is reached only if the value satisfies the class
constraint. It just means the value is acceptable—go ahead and do whatever you
normally do to put the slot value inside.

All that remains is how to use one of these slots in a class. The example you
give can be done as follows—but remember that defclass must be used instead of
defstruct because the latter does not support user-defined slot classes.

(defclass <person> ()
((age
initarg age
slot-class <classed-local-slot-description>
slot-initargs (’contents-class <integer>)
accessor age)
(name
slot-class <classed-local-slot-description>
slot-initargs (’contents-class <string>)
accessor name)
(ordinary-slot
initform ’bleagh)))

The slots age and name are of the new class of slot with their contents class set
to integer and string respectively. Of course, other slots with different classes of

11

slot description may also be defined.
Now, we may type the following:

(setq i (make <person>)) ((setter age) i 27)
which is fine and (age i) will return 27.
((setter age) i ’not-a-number)

but this signals an error. Thanks to Luis Mandel for prompting this example.

6.4 Mixins

FEEL supplies a mixin module? to allow the use of mixin classes & la Flavors. A mixin
class is a class that can be used in a multiple inheritance network, but has certain
restrictions to enable the creation of more efficient accessors—multiple inheritance
is restricted to non-instantiable classes and these classes, mizins are then used
for specialisation of instantiable objects, base-objects. Mixins tend to be used to
describe attributes of objects, and then these are “mixed in” with base classes to
create specialized classes. The mixin implementation has two metaclasses

e <mixin-class> The class of a mixin class
e <mixin-base-class> The class of a base-object class

Instances of <mixin-class> are not instantiable, but allow full MI. Only in-
stances of <mixin-base-class> may inherit from mixin-classes, and the list of
direct superclasses of a <mixin-base-class> must have all mixin-classes before a
single non-mixin class (In FEEL, it may inherit from any other class in the system,
including <class>).

Note on the implementation: <mixin-class> has a different default slot type,
<mixin-slot-description>. When this slot is inherited directly by a <mixin-base-cl-
ass> its the accessor is computed. If the slot is not newly created, however, no new
access method is computed, therefore reducing the number of such methods for a
given accessor.

6.5 Eql Methods

These are supplied by the eql module, which effectively defines new generic function
and method classes, and allows further eql methods to be defined. See eql.em for

full details.

7 The PVM Module

The pvm module provides an interface to the pvm library. This section assumes
that the reader has read at least some of the PVM documentation.

The pvm module differs from the pvm library in the following ways:

o Arbitrary lisp expressions (including circular structures) may be sent from
machine to machine

e The format in which objects are sent is not the XDR, format used by pvm,
but an internal format. Tt is hopefully machine (and byte order) independent.
See the section on the reader module for more details.

4called mixins

12

(defclass <point> ()
((x initform O accessor point-x initarg x)
(y initform O accessor point-y initarg y))

)

(defclass <colored> ()
((color initform ’black initarg color
reader color))
metaclass <mixin-class>)

(defgeneric color-of (obj)
method (((obj <object>)) ’gray)
method (((obj <colored>))

(color obj)))

(defclass <colored-point> (<colored> <point>)

O

metaclass <mixin-base-class>)

(setq pl (make <point>))
(color-of pi)

(setq p2 (make <colored-point> ’x 1 ’y 1 ’color ’red))

(color-of p2)

Figure 1: Usage of mixin inhertance

o Several reads may occur simultaneously on separate threads ®. In other words,
it 1s possible to call thread-suspend during a read.

The pvm module exports the following functions:

(pvm-enroll) PVM

Arguments

name: A string

Result

Enrolls Feel into PVM under the given name. Must be called before any other PVM
function. Return the pvm-id of the enrolled process (actually a cons cell whose car is
the name provided as argument to pvm-enroll, and whose cdr is an instance number

allocated by PVM).

(pvm-leave) PVM

Result

Exits from PVM control. After this is called, all PVM functions return an error
message (except pvm-enroll).

5note that pvm is not yet interfaced to the System V version.

13

(pvm-whoami) PVM

Result

Returns the pvm-id (the value returned by enroll) of the process.

(pvm-status id) PVM

Arguments

td: Identifier of a pvm-process

Result

Returns non-nil if the process with pvm-id ¢d is running, otherwise nil.

(pvm-send dest type msg Lreader]) PVM

Arguments

dest: A PVM process identifier

type: The type of the message (integer)
msg: The message (can be anything)

[reader]: A reader which is used to write the message.

Result

Sends a message of type type to the process specified by the id dest containing the
value msg. If a reader 1s specified it 1s used to handle any complex lisp types inside
the message (see section 9).

(pvm-recv type info? Lreader]) PVM

Arguments
type: The type of message to be recieved (integer)
info?: Ts information on message wanted (boolean)

[reader]: A reader which is used to read the message.

Result

Blocks until a message of type type is recieved. If info? is nil, then the message is
returned. If info? is non-nil, a list is returned in the following format: (msg type
from) where msg is the message, type is the type and from is the process-id of the
sending processes. Note that this only blocks the executing thread — ready threads
will automatically be scheduled.

(pvm-recv-multi iype-list info? L[reader]) PVM

Arguments
type-list: A list of possible message types (integers)
info?: Information on message wanted flag (t or nil)

[reader]: A reader which is used to read the message.

14

Result

As pvm-recv, but blocks the executing thread until a message which has a type in
the type-list is received.

(pvm-initiate-by-type {ype name) PVM

Arguments

type: Type of machine (string)

name: Name of the new process (string)

Result

Runs the executable name on a machine of type type, and return the PVM identifier
of the new process.

(pvm-initiate-by-hostname hostname name) PVM

Arguments

hostname: Hostname in which to start process

name: Name of the new process

Result

Runs the executable name on the machine hostname, and return the PVM identifier
of the new process.

(pvm-probe type) PVM

Arguments

type: A message type (integer).

Result

Tests for messages of a given type. Returns the type, or nil if no message of that
type is in the input queue.

(pvm-probe-multi type-list) PVM

Arguments

type-list: A list of message types (integers).

Result

Tests for messages from a list of types.

Other functions provided are
e pvm-barrier
e pvm-ready

e pvm-waituntil

15

e pvm-terminate

These last are mostly untested, but provide analogous functionality to their PVM
equivalents.

This module is based on PVM version 2.3 — the next section describes a module
based on PVM version 3.2, which has a substantially different interface.

8 The PVM3 Module

Like the pvm module, the pvm3 module is not completely analogous to the pvm3
library. The differences should be fairly intuitive, and are mainly to make the mod-
ule more useable.

The pvm3 module exports the following functions:

(pvm-mytid) PVMs

Enrolls Feel in PVM if it is not already enrolled, and returns the tid (task identifier
— a large integer) in either case.

(pvm-exit) PVM3

Exits from PVM control

(pvm-config) PVM3

Returns a list of hostname, architecture type pairs, describing the current PVM
configuration.

(pvm-spawn-on-host name host Lnl) PVMs

Arguments

name: name of executable
host: name of the host

[»]: number of instances

Result

Runs n instances (1 by default) of the executable name on the machine specified by
host, and returns a list of the tids of the new processes.

(pvm-spawn-on-arch name arch [n]) PVMs

Arguments

name: name of executable
arch: architecture type

[»]: number of instances

Result

Runs n instances (1 by default) of the executable name on a machine of type arch,
and returns a list of the tids of the new processes.

16

(pvm-tasks) PVMs

Returns a list of the tids of all processes currently enrolled in PVM.

(pvm-pstat tid) PVMs

Returns t if the process with identifier tid 1s alive, and nil otherwise.

(pvm-kill tid) PVMs

Terminates the process with identifier #id.

(pvm-send fid {ype message Lreader]) PVMS3

Arguments

tid: A PVM task identifier
type: The type of the message (integer)
message: The message (can be anything)

[reader]: A reader used to write the message

Result

Sends a message of type type to the process specified by #id containing the value
message. If a reader is specified it is used to handle any complex lisp types inside
the message (see section 9).

(pvm-mcast tia-l(ist type message Lreader]) PVM3

Arguments

tid-list: A list of PVM task identifiers
type: The type of the message (integer)
message: The message (can be anything)

[reader]: A reader used to write the message

Result

Sends a message of type type to each of the processes specified in tid-list containing
the value message. If a reader is specified it is used to handle any complex lisp
types inside the message (see section 9).

(pvm-bcast type message Lreader]) PVM3

Arguments

type: The type of the message (integer)
message: The message (can be anything)

[reader]: A reader used to write the message

17

Result

Sends a message of type type to all enrolled processes containing the value message.
If a reader is specified 1t is used to handle any complex lisp types inside the message
(see section 9).

(pvm-receive tid type info? Lreader]) PVM3

Arguments

tid: A PVM task identifier (integer: -1 is wild card)
type: The type of the message (integer: -1 is wild card)
info?: Ts information on message wanted (boolean)

[reader]: A reader used to read the message

Result

Blocks the executing thread until a message of type type is recieved from the process
specified by #id. If info? is nil, then the message is returned. If info? is non-nil, a
list is returned in the following format: (msg type from) where msg is the message,
type is the type and from is the process-id of the sending processes.

(pvm-probe tia type) PVMs

Arguments

tid: A PVM task identifier (integer: -1 is wild card)

type: The type of the message (integer: -1 is wild card)

Result

Returns t if a message matching #:d and type 1s ready to be received, otherwise nil.

(pvm-joingroup group) PVMs

Arguments

group: A string used to identify the group

Result

Creates a group called group if one doesn’t already exist, and joins the group in
either case.

(pvm-lvgroup group) PVMs

Arguments

group: A string used to identify the group

Result

Leaves the group called group.

18

(pvm-gtasks group) PVM3

Arguments

group: A string used to identify the group

Result

Returns a list of the tids of all processes in the group identified by group.

(pvm-barrier group count) PVM3

Arguments

group: A string used to identify the group

count: Number of processes involved in the barrier

Result

Blocks the executing thread until count members of group have called pvm-barrier.

9 The Reader Module

The reader module provides functions to read and write lisp forms as bytevectors.
It is intended to be reasonably machine independent, although at the current time
it falls a little short. The module currently deals with reading and writing lisp forms
for the pvm module.

The reader in its default form can read any ’simple’ lisp expression that is:
integers, floats, strings, symbols®, lists and vectors. The extensibility is provided
via an extra argument which may be supplied to control the reader’s behaviour on
complex lisp types. A type here means a group of classes which can be read in
the same way. The type of an object is given by the integer identifier passed to
add-writer and add-reader.

(make-obj-reader) Reader

Result

Makes a new reader object. The class and internals of this object are left unspecified.

(add-writer reader class type-ident function) Reader

Arguments

reader: A reader
class: A class
type-ident: An identifier (> 16)

function: A function to be called when an object of class class is encountered.

6 Support for symbols may be removed in future versions because they may require some caching,
which will be provided by a lisp level

19

Result

Adds a new writer function, function to the given reader. The function is called
when an object of class class (or one of its subclasses) is encountered by a write
process. It is called with three arguments: the object to be written, a value repre-
senting write buffer and the reader which called the function. The function should
call write-next with any data associated with the object.

(add-reader reader type-ident function) Reader

Arguments

reader: A reader
type-ident: An identifier

function: A function.

Result

Adds a new reader function function to the given reader. The function is called
whenever an object of type type-ident is encountered by a read process. It is called
with two arguments: a value representing the read buffer plus the reader supplied
by the caller of the read. The function then calls read-next to obtain any data
associated with the object. If the function fails to consume all the data written by
its corresponding write, an unhandled error condition results”.

(read-next pir reader) Reader

Arguments
pir: A pointer value

reader: A reader

Result

Returns the next object in the read-buffer specified by pir, using reader as the
reader object. This functions can only be called inside the dynamic scope of a read
function.

(write-next object pir reader) Reader

Arguments

object: the object to be written
pir: A pointer value

reader: A reader

Result

Writes the object object onto the write-buffer specified by ptr, using reader as the
reader object.

"FEEL goes kaboom

20

9.1 Example

; s define a structure which we want to pass around

(defstruct example-cons-pair ()
((car initarg car reader example-car)
(cdr initarg cdr reader example-cdr))
constructor (example-cons car cdr))

; stnvent a number — this *must® be more than 16
(defconstant *example-type-id# 18)

;s make a reader
(defconstant *the-reader* (make-obj-reader))
; s define readers and writers for example-cons

; s note that both these functions *can* side effect, so circular

; ; structures and caching can be handled (using tables or similar), also that the
; s particular reader can be changed for the recursive call

; s to the reader (although I do neither here).

(defun write-example-cons (obj ptr rdr)
;s easy really. Just write whats inside.
(write-next (example-car obj) ptr rdr)
(write-next (example-cdr obj) ptr rdr))

(defun read-example-cons (ptr rdr)
; s read the internals
(let* ((a-car (read-next ptr rdr))
(a-cdr (read-next ptr rdr)))
; 3 construct the appropriate object
(example-cons a-car a-cdr)))

;s add them to the reader structure

(add-reader *the-reader*
¥example-type-id#
read-example-cons)

(add-writer *the-reader*
example-cons-pair
¥example-type-id#
write-example-cons)

;s we can add more types later...

;3 should make

; 3 (pvm-send (pvm-whoami) 102

; ; (ezample-cons (example-cons 1 2)
; ; (example-cons 3 4))

; 3 ¥the-reader®)

s swork ok.

; s to receive, (pvm-recv 102 nil *the-reader*®)

21

10 Thread Abstractions

EuLisp provides a set of primitive operations for thread creation and manipulation,
but for most work these are too low-level and require the user to be overly concerned
with their management. One of the design goals of EULISP was to provide an exper-
imentation environment for parallel processing, and as a result of this several thread
abstractions have been built on the EULIsP thread primitives. These abstractions
include: futures, linda, timewarp and CSP. The next subsections describe the first
two in detail.

10.1 Futures

The nature of the EULIsP thread mechanism means that it lends itself quite naturally
to providing a base for the implementation of a simple future abstraction. The acts
of creating futures and of eventually interrogating them for their values map almost
directly onto starting threads and accessing thread results.

The code for basic future manipulation is given below. A couple of examples
of replacements for “strict” functions that allow for future objects are shown. The
extensibility of generic functions and module renaming can be used to make these
necessary changes transparent for users.

The following are the main functions of interest in the futures module . ..

(future expression™) Future macro

Arguments

erpression: The expression to be future’d

Constructs a future object and spawns a thread to calculate the value of ez-
pression. An object of class future is returned by the expression resulting from the
macro expansion. The implementation of future in FEEL is essentially:

(defmacro future exp
“(let
((future (make-future-object))
(task (make-thread
(lambda (future fun)
((setter future-object-value) future (fun))
((setter future-object-done) future t)
t))))
((setter future-object-thread) future task)
((setter future-object—function) future (lambda () ,Qexp))
(thread-start task future (lambda () ,Qexp))
future))

(futurep oby) Future generic

Arguments

0bj: The object to be tested

Result

nil if obj 1s not a future, otherwise, non-nil.

22

(future-value future)

Arguments

future: The value to be evaluated

Result

Forces the evaluation of a future and if the result of the evaluation is also a future

that too is forced until the result is not a future.

10.2 Linda

The eulinda module implements a simplistic version of the Linda model. Points of

note include
1. multiple pools, so the in/out/read functions take an extra argument
2. matching is always literal on first element of tuple
3. function names are prefixed by 1linda-
The module exports the following functions:

e (make-linda-pool) to make a pool.

e (linda-out pool tag vall val2 ...) places the values in the pool under
the tag.
e (linda-in pool tag patl pat2 ...) does an “in” from the pool under the

tag, using the patterns.

e (linda-read pool tag patl pat2 ...) does a “read”.

e (linda-eval fun argl arg2 ...) starts a new thread running the function

with the arguments.
A pattern 1s
e ? matches any value.
e (7 var) matches any value, and sets the var to that value.
e anything else is matched literally.

Tags are also always matched literally. Thus, if y has value 22, then
(linda-in pool ’foo ? (? x) (+ 1 y))

searches for a tuple in the pool under the tag foo that has anything in the 1st
or 2nd slot, and 23 in the 3rd slot. When such a tuple is found, x is set to the value
in the 2nd slot; the call suspends (with an implicit thread-reschedule) until then.

A small example:

(defmodule pc (standard eulinda) ()
(deflocal pc-pool (make-linda-pool))
(defun producer (tag val)

(format t "producer: out “a to “a"%" val tag)
(1inda-out pc-pool tag val))

23

(defun consumer (tag)
(et ((x O))
(1inda-in pc-pool tag (7 x))
(format t "consumer “a: got “a"}" tag x))
(consumer tag))

(linda-eval consumer ’one)
(linda-eval consumer ’two)

Then, e.g., (producer ’one 23) will place a tuple in the pool for the thread

one to fetch out.
Minor debugging tools are (tril t) to turn on a trace of the internals of the

matching process; (tril ()) to turn it off. Also (print-linda-pool p) will print
the values in the pool p.

24

	feel-man.ps

