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We describe the approach to the concurrent execution of object-oriented programs that is being researched at the 
University of Bath. The aim of this project is the concurrent execution of both new Lisp programs and existing Lisp 
applications. We are pursuing this goal by addressing the problems of concurrent execution at several levels: static 
analysis of Lisp programs as a basis for semi-automatic transformation, modiJication of medium-sized Lisp programs to 
use concurrent primitives to gain experience in their use and behaviour and the implementation of various concurrency 
primitives in a compiled distributed heterogeneous Lisp environment. Each of these topics is described in turn and its 
relationship to the long term aim defined above is examined. 
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1. INTRODUCTION been written and applied to the factoriser of the Reduce 

The aim of our project is to take new and existing Lisp 
applications and execute them on closely coupled multi- 
processors or distributed heterogeneous processors. This 
paper describes our programme for achieving this and 
reports on the progress we have made towards this goal. 
Consequently, a proportion of this paper discusses what 
we have built snd the rest discusses what we intend to 
build. Our plan is to use a semi-automatic compilation 
system which will convert the sequential program into 
one using the concurrency primitives we have defined. 
Clearly, this is a difficult problem and one which we have 
not yet solved. We believe we can arrive at a solution via 
a constructive approach in three stages: 

(1) Developing the concurrency primitives. These are 
our foundation. The concurrency primitives currently 
in use are futures,lg linda7 and time-~oarps.'~ These 
operations have all been implemented in a compiled Lisp 
environment which executes on a heterogeneous network. 
Modules implementing these operations have also been 
written for EuL1sp3' and executed on both tightly- and 
loosely-coupled multi-processing environments. 

(2) Writing or rewriting programs with explicit 
concurrency constructs. This helps us to test the reliability 
and generality of the mechanisms. At the moment we 
have a version of OPS512 rewritten in an object-oriented 
style, in which the RETE network is represented as a 
collection of objects.' Another major Lisp program we 
use is the Reduce algebra system." Some of the 
algorithms in Reduce, in particular those for Grobner 
bases and for Hensel lifting, are particularly suitable for 
concurrent execution. We intend to rewrite these parts 
using explicit concurrency constructs. The Grobner basis 
code in Reduce has been modified for concurrent 
execution using Linda and run successfully. The third 
application area is discrete event simulation and we will 
be adapting the ARSONIST simulation (a forest-fire 
fighting simulation) for concurrent execution. Since 
ARSONIST is already an object-oriented program, this 
will give an opportunity for more abstract experimen- 
tation since the parallelism can be written into the 

~ y s t e m , ~  but the re;;lts of this analysis have yet to be put 
to use. A second, more advanced static analyser is being 
developed. 23 

At the end of these stages we hope to have collected 
sufficient knowledge about the behaviour of concurrent 
programs to enable us to build a general-purpose 
concurrent execution environment. 

An orthogonal issue to concurrent execution is that of 
object management, or, more bluntly, the size of the 
object-oriented program. This is a particular problem for 
both OOPS5 (the object-oriented version of OPS5) and 
for discrete event simulation. In the case of 00PS5.  the 
largest rule-set we have run generates a network 
containing 5,500 objects. In the case of ARSONIST, we 
do not have any such large figures, because, at present 
the simulation is relatively simple. However even a 
realistic modelling of the terrain would need at least 500 
objects per square kilometre. The planning capabilities 
of the fire-fighters can be improved to a certain extent by 
algorithmic means, but in the longer term, we intend to 
provide a separate expert system for each planning agent 
in the domain. The problem is one of scale: quite small 
simulations are certainly going to consume all available 
physical memory, it is even conceivable that large 
simulations could exhaust a 32-bit address space. Our 
solution to this is persistence and object cacheing. 

At present, we are working in two Lisp environments: 
one based on Portable Standard Lisp (PSL),16 which 
provides a compiled heterogenous distributed Lisp 
environment supporting futures, linda and rime-warp and 
the other based on EULISP, which provides an interpreted 
(byte code and native code compilation are under 
development) environment with the same facilities. OPS5 
has been rewritten in an object-oriented style -as  a first 
step towards conversion for concurrent execution - and 
behaves equivalent to the original program. Some parts 
of Reduce have been analysed, the Grobner basis part 
has been modified and a re-write of power-series has 
been planned. There is a dataflow analyser which has 
been applied to some non-trivial programs. 

metaclasses rather than appearing directly in the 
program. 

(3) Static analysis of programs to gather information 
2. CONCURRENCY PRIMITIVES 

for the semi-automatic com~ilation from seauential to Identifying concurrency in a program is one problem; 
parallel programs. A prelimihary data-flow aialyser has expressing that concu~rency e?fe;ively is another. The 
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degree of abstraction provided by the concurrency 
operations is important because that affects how readily 
concurrency can be expressed. We believe semaphores, 
critical regions and even Occam style processes are too 
low-level to be of use in the source language. Therefore 
we seek something with more abstraction. At present we 
have chosen to use three concurrency abstractions. Two 
are quite similar :.futures and linda. The third - time-warp 
- is somewhat different and at a higher level. 

Why have three ways of expressing concurrency? Our 
answer is that there are different granularities of 
concurrency in a program and different abstractions 
capture different granularities. Although, the system, of 
necessity, has primitive concurrency operations, these 
are there to construct concurrency abstractions. In their 
turn, these abstractions incorporate declarative infor- 
mation about the nature of the concurrent process. In 
our opinion, based on empirical observations, time-warp 
is suitable for very coarse-grain concurrency and futures 
and linda are suitable for medium-grain concurrency. 
The latter two have complementary features which 
makes each attractive depending on the circumstances: 
linda inherently offers a means of limiting parallelism, 
whilst futures is simply eager evaluation with no self- 
imposed limits. The attraction of time-warp lies in its 
specu1atiz:e evaluation tactic. However, its effectiveness is 
yet to be fully proven. 

Rather than pursue one method of expressing 
concurrency, we decided that we wanted to get practical 
experience of several. That is to say, we are quite 
prepared to add other concurrency models to our system 
in order to learn more (for example, a CSP model). 
Consequently, we have developed an implementation of 
Lisp which runs on different kinds of processors on a 
local area network to provide us with a cheap distributed 
processing environment, work which was carried out 
partially in cooperation with the RAND Corporation. 
Within this Lisp we have implemented multiple control 
threads and used that to implement futures, linda and 
time-w3arp. This allows programs to be written that use 
any combination of these concurrency primitives. More 
recently, we have developed a new implementation of 
Lisp following the EuLrsp definition. This is a more 
attractive long-term development vehicle because support 
for parallelism has been built into the design of EULISP 
and the abstraction facilities provided by its module 
mechanism and fully integrated object system (TEAoC) 
are what we need for both robust programming and fast 
prototyping. 

2.1 Light-weight processes 

The PSL system was developed without the benefit of a 
multi-processor, so the multiple-thread facility is some- 
what limited. Since then, the arrival of EuLrsp and of two 
Stardent Titan-3 (each with three processors) have led 
to the development of true parallel executing threads in 
our implementation of EuLr s~ .  

The EULISP thread model provides some primitive 
operations for the creation and manipulation of threads, 
but intentionally avoids attempting to be high-level. 
Thus the basic operations are: make- t h r e a d  to create 
a thread, p roceed  to indicate that a thread can continue 
executing and suspend for a thread to give up executing 
voluntarily. The goal for the EULISP thread primitives is 

to provide sufficient power to implement more abstract 
and more usable concurrent processing models without 
being biased towards any particular one and without 
being biased to a particular architecture. Current 
evidence, based on our implementations of futures, linda 
and time-warp on top of these primitives, leads us to 
believe that they are satisfactory. Clearly, some new 
abstract parallelism model may yet modify this situation. 

Process abstraction is another area in which objects 
play a key role in this project. Although a number of the 
applications we are using are object oriented already, 
that does not necessarily make them executable 
concurrently. To make the transition from serial OOP to 
concurrent OOP, we will use TEAOC'~ to define new 
metaclasses which incorporate concurrent execution, so 
that applications written in terms of those metaclasses 
can execute concurrently without major changes to the 
source code of the application. EuLrsp is different from 
most other Lisps in that the object system is tightly 
integrated with the Lisp - indeed the basic Lisp types are 
classes - and so threads are already part of the class 
hierarchy. Indeed the implementations of .futures and 
linda in EULISP are simply classes built on top of the 
thread class. In order to simplify the scheduling of these 
different types ofprocesses which can exist simultaneously, 
the notion of the scheduler as a generic function - which 
dispatches on the class of the process it is being asked to 
schedule - is being developed. 

2.2 Distributed execution 

The concurrency primitives are independent of any 
particular machine architecture or topology. At present 
we are using them in a distributed environment built 
from different Unix workstations linked by ethernet. 
This provides us with a cheap, loosely-coupled, private- 
memory multi-processor. Clearly, such an environment 
is not satisfactory in the long term, but it has worked well 
as a test-bed on which to develop the primitive operations. 

The distributed execution environment has been built 
by adding network operations to the Lisp system and a 
means to start Lisp images on several machines. All the 
Lisp processes then try to establish network connections 
with all of the other Lisp processes. The result is a fully 
connected virtual network of Lisp processes which read 
and write over sockets. 

This environment has forced us to face issues peculiar 
to private memory systems. In particular, a great deal of 
effort has been devoted to the network transmission 
model4 and into process migration techniques. Recent 
work at RAND on the latter has been very effective, 
allowing time-warp processes to migrate during the 
execution of the program, resulting in better processor 
utilisation and much faster run-times. 

2.3 Futures 

The future concept is well-documented.'g~2"2g The idea 
can be summarised briefly by considering the evaluation 
of ( f u t u r e  expression). Unlike an ordinary function 
call, expression is not evaluated and then passed to 
f u t u r e ,  instead a new process is created to manage its 
evaluation. The call to f u t u r e  does not wait for the 
process evaluating expression to be completed, instead it 
returns a future object, which is a handle on the expression 
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process. The process which called f u t u r e  now proceeds 
concurrently with the evaluation of e.upression. The 
future object will contain the result of expression when 
that process terminates, but if any process tries to access 
the value of the future before the expression process is 
completed, it is blocked. 

A disadvantage of future at the implementation level is 
that the application of certain operators must check for 
futures and treat them specially. The consequence is a 
processing overhead to check whether such an operator 
has been given a future or not. In brief, anywhere there 
is a strict function or a function that is strict in some 
particular argument, it must be checked for a future. In 
ref. 25 it is reported that this overhead slows the system 
down by a factor of two. An alternative tactic to handle 
futures is to make every function that might dereference 
a future into a generic function and then write cor- 
responding methods. This would have the effect of 
moving the testing cost into the generic function dispatch 
mechanism. Clearly, it would not reduce the cost in any 
way, just move it elsewhere. A recently developed 
technique34 suggests a lower overhead implementation is 
possible. 

The future is a very simple and attractive concurrency 
abstraction. It is also simple to use: the program is 
examined to decide where a significant amount of work 
could be done in parallel and then that function call is 
wrapped with f u t u r e .  This is the positive side. 

As with any powerful operation, it is quite easy also to 
make mistakes. Mistakes in this context are: too many 
futures and wasted futures. The first clogs the system and 
makes it thrash. The second slows down a concurrent 
program by making tasks insufficiently complex, so that 
the cost of process management becomes more significant 
than the time saved by executing concurrently. This is 
why deciding where to place futures in a program is a 
subtle task. Qlisp13 puts dynamic control over the 
creation of futures in the hands of the programmer - the 
drawback is that such control is local, whilst the problem 
is of a global nature. Recent work on conditional task 
c r e a t i ~ n ~ ~ ~ ~ ~  recognises this fact. Implementations of 
futures have been done for PSL (uniprocessor) and for 
E u L r s ~  (uni +multiprocessor). 

2.4 Linda 

The linda process modeli is not so different from the 
future. Whilst a future is created for each expression that 
is the argument of f u t u r e ,  the linda user creates a pre- 
determined number of process for each kind of expression 
in advance. In effect, linda is a software form of dataflow. 

The linda model capitalizes on the probability that the 
majority of operations that could be done concurrently 
are of the same class, but with different parameters. If we 
consider quicksort, one might insert parallelism by 
processing each of the partitions in parallel. Using 
futures, this would suggest wrapping each recursive call, 
but the future operation would always be the same: the 
qu i  cks o r t function. The difference is the parameter, 
which is a partition of the input list. Of course, this is a 
very particular example and quicksort is not a very 
representative program. However, we have observed that 
often the operation to be performed by many of the 
future processes is the same; only the arguments differ. In 
Linda, we can create as many servers for a particular 

operation as appropriate (a decision to be based on 
resources and the relative importance of this component 
of the parallel computation in question) rather than an 
arbitrary number directly proportional to the magnitude 
of the input. 

In brief, the linda model consists of a collection of 
processes. In that collection there can be many sets of 
identical processes. The number of identical processes of 
a given type offers a means of controlling the amount of 
concurrency of a particular kind of operation. We will 
return to this property of linda later. Processes in the 
linda model communicate through special operations on 
a pool of data. The originators of linda call this pool the 
tuple-space - more recent developments include the use 
of multiple pools organised in hierarchies. The tuple- 
space contains data being communicated from one 
process to another. However, to make sure that the right 
kind of process picks up the right kind of expression, the 
expressions are tagged. A process takes an expression 
from the pool using the operation i n  and puts an 
expression into the pool using the operation ou t .  A 
process takes a copy of an expression from the pool with 
read.  The e v a l  operation puts an unevaluated ex- 
pression into the pool and creates a process to evaluate 
it - this is called an active tuple. When the evaluation is 
complete, the tuple becomes passire and can be taken 
from the pool using either i n  or r ead .  Clearly, e v a l  is 
very similar to a future operation and, indeed, could be 
implemented as such. Thus, we start to see the benefits of 
having several concurrent paradigms in the same 
environment. 

The operation of taking an expression from the pool 
can be quite complex and in the full linda model involves 
pattern matching. Patterns can be seen as a logical 
extension of the use of tags to identify for which process 
a tuple is destined. 

Although linda is, like futures, an abstract model, 
independent of architecture, the tuple-space communi- 
cation model is inherently well suited to a shared- 
memory multi-processor. If they had not existed, all the 
networking operations would have had to be 
implemented to support linda in a distributed environ- 
ment. In practice, we have found managing the tuple- 
space in a distributed environment to be fairly straight- 
forward since we were able to build on the communi- 
cations code already installed-and well-debugged. 
Implementations of linda have been done in PSL 
(uniprocessor and distributed multiprocessor) and in 
EuLrsp (uni + multiprocessor, a distributed version is in 
progress). 

The time-warp process model is somewhat different from 
futures and linda. We call the time-warp model a 
speculatice evaluation model. The reason is that, under 
time-warp, computation is often done before it is required 
to be done. Indeed, it is often not known whether the 
result of a computation is even necessary. The time-warp 
model gambles on what computations will be needed in 
the future. So far, time-warp sounds interesting, if 
somewhat wasteful. The negative side of time-warp 
shows up when it is discovered that the results of a 
computation undertaken speculatively are not needed. In 
a purely functional world this would not be a problem. 
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In a side-effect world, the side-effects have to be undone. 
In time-warp terminology, this operation is called 
rollback. It is the rollback issue that determines most 
peoples' attitude to time-warp; some consider it com- 
pletely unreasonable and reject the whole time-warp 
approach, others consider it as a serious, but not 
insurmountable, problem. The dilemma is captured in 
the time-warp thesis," which is: 

the so-called anti-messages. For each message that must 
be recalled, a corresponding anti-message is sent. If the 
message and the anti-message meet in the time-warp 
object input queue, they cancel each other out. If the 
message is not in the input queue, then it might not yet 
have arrived, or it might have been processed already. In 
the former case, the anti-message is inserted to await the 
arrival of the message, and they will then annihilate. In 
the latter case the- process accepts the anti-message 

that Occurs immediately and starts to back to the tirne of the 
locality) ; anti-message. This might well cascade to many more 
that the cost of rollback is than objects. However, since the algebraic sum of messages in 
what have been wasted by doing any the system - that is messages and (real or potential) anti- 
speculative computation; messages - is zero and because of the requirement that 
that there is a simple implementation of rollback. the receive time of a message be strictly greater than the 

The issue is whether this thesis is credible or not. We 
have decided to test it in an implementation. We have no 
definitive answer yet, but we still feel positive about the 
time-warp approach. We have been involved with an 
initial implementation of time-uurp at the RAND 
Corporation, and two separate implementations at Bath, 
and so can say that in practice, the time-warp model fits 
in very well with object-oriented evaluation and, indeed, 
with concurrent evaluation. 

In brief, the time-warp model is of a collection of 
processes where process interaction is carried out by 
asynchronous message passing. The core of the technique 
lies in how the messages are handled, but in order to 
describe how time-warp operates, first the concept of 
virtual time needs to be exnlained. 

Virtual time in a time-warp program starts at zero and 
progresses to infinity. Each time-warp process has a local 
virtual clock which records the local virtual time (LVT). 
Virtual time is propagated through the network df 
processes by the operation of message passing. When the 
LVT of each process in a program reaches infinity, this 
indicates the termination of the whole time-warp 
program. Thus, virtual time measures the progress made 
by a time-warp program towards the end of its 
computation. 

Each message sent is stamped with the LVT of the 
sending process and an estimated receive time which is 
strictly greater then the LVT of the sending process. 
Each incoming message is queued until the time-warp 
process is ready to evaluate it. The messages are stored in 
receive time order and the LVT of the receiving process 
is advanced to the receive time stored in the message 
immediately before evaluating the message. Thus, virtual 
time is propagated through the collection of processes. 

Rollback occurs when a message arrives late. That is 
to say, the receive time on the message is less than the 
LVT of the receiving process. The receiving process must 
now restore the state that existed at the receive time of 
the message and start computing again from that time. 
The restoration of the state of an object can be done by 
taking snapshots of the slot values of the object between 
processing each message, say. Unfortunately, restoring 
the object's internal state is only part of the picture. 
Between the virtual time at which the message should 
have been processed and the current LVT of the object, 
messages might have been sent to other time-warp 
processes. Hence, those messages must be recalled and, 
perhaps, those processes rolled back too. 

Undoing the effects of messages is achieved by using 

send time, the rollback operation i ~ - ~ u a r a n t e e d  to 
terminate. 

What has been described here is the principles involved 
in time-warp operation. The overheads make it seem 
impossibly expensive. However, like many algorithms, 
the simple explanation and the naive implementation are 
good for understanding how it works, but unreasonable 
in practice. There are many differences between the 
description here and an efficient implementation.'" 
Implementations of time-warp have been done for PSL 
(constructed on top of finda on a uniprocessor) and for 
EULISP (distributed multiprocessor). 

2.6 Process migration 

The use of a distributed system has encouraged us to 
investigate the question of process migration. Clearly, it 
is much harder to change the processor running a process 
if the system is distributed than if it has shared memory. 
In fact, a shared memory processor makes is possible to 
ignore process placement and process migration issues 
for much longer than with a distributed system. It 
became apparent to us early in our research that although 
initial process placement was not unhelpful, some 
dynamic technique was needed. 

Migration of time-warp processes has been imple- 
mented on the RAND system and has proven very 
successful in the sense that the time-warp test programs 
ran about an order of magnitude faster with process 
migration than they did without. The details of the 
migration policies and their relative effectiveness are to 
be found in ref. 6. More recently, we have developed an 
idea, which is currently being implemented at Bath, that 
uses futures as a means of controlling migration 
(described below). 

2.7 Migrating time-warp processes 

A time-warp process is represented as an object. The 
object comprises some slot values, the state queue (used 
in rollback), the input message queue and the output 
message queue. We impose the restriction that a time- 
warp process may only migrate in between message 
processing cycles. In this way we are assured that the 
state of the time-warp process is consistent when it is 
migrated. Consequently, the time-14)arp object is simply a 
data-structure to be transferred from one memory to 
another. This can be accomplished using the network 
primitives mentioned earlier. 
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2.8 Futures as a migration medium previously. The difference is that instead of making an 

The migration of time-warp processes described above 
could be called stop-and-copy because the process is 
halted, copied and restarted. This is probably an 
appropriate strategy for a data structure such as a 
process, which is likely to need to make frequent reference 
to most of its state. In the general case of migration of 
structure between processors, this might not be true. This 
concern has led researchers to talk of copy-on-reference 
and lazy-copying as means of avoiding copying large 
data structures of which only small parts might be 

bbject to- handle the updates to the value, a remote 
reference is installed in its place and the processor 
making the remote reference now becomes the owner of 
the value. Thus, a data structure can be moved rather 
than copied between processors and hence a data 
structure may be distributed across several processors. 
Such a technique might be attractive for divide-and- 
conquer style algorithms in which different processes 
worked on different parts of a common data structure. 

referenced. 2.9 Persistent objects 
Using futures as a control abstraction, an elegant 

model for data structure migration has been developed. 
This model can support copy-on-reference, lazy-copying 
and even move-on-reference and lazy-moving. The 
technique is currently being implemented at Bathz1 and a 
similar approach33 is being used in the ICS-LA (Im- 
plementation Compilation et Simantique des Langages 
Applicative) project at INRIA. In brief, the method 
works by creating a future for each remote reference. 
Then, the process related to the future can either copy the 
data-structure when a process blocks on access to the 
future or copy it as a background process interleaved 
with other computations. There are two interesting 
related issues : 

1. limiting the amount that is copied; 
2. maintaining the integrity of the value to which there 

is a remote reference. 

Limiting the amount of structure copied is an issue for 
copy-on-reference. Two options immediately apparent 
are depth-first and breadth-first copies -which is pref- 
erable will, in all likelihood, depend on the application. 
In the breadth-first case, for instance, copy-on-reference 
would traverse the structure making a new future object 
for each place where the structure might be descended 
further. Further accesses to the structure might encounter 
other futures and thus cause more copying. Hence the 
actual amount of structure moved can be limited to what 
is accessed, but at the price of waiting for those parts on 
almost every access. 

The second issue is maintaining integrity of a value 
after a reference to it has been exported. The remote 
process must be able to refer to the value at the time of 
exporting the reference. Therefore, it must be protected 
against any changes to the value made by the process in 
whose address space it resides. In fact, rather than being 
protected against changes, it is necessary to record the 
changes so that previous values can be recovered. Such 
behaviour is very similar to that provided by a time-warp 
process. The significant difference between the needs of 
this object and a true time-warp object is that there is 
no need to support rollback since old values can be 
determined simply from examining the saved states of 
the object. Thus, we again see an advantage from having 
several concurrent paradigms in the same environment. 

An extension of this idea using futures to copy data 
structures can also be used to distribute a data structure 
across processors. In this way the issue of maintaining 
integrity can be avoided, because the uniqueness of the 
structure is preserved. The operation of handling a 
request for a remote reference is much as described 

The final part of our infrastructure for supporting large 
scale concurrent applications is a mechanism for per- 
sistent objects. In the introduction, we outlined our need 
for persistence : the problems we want to execute are very 
large. Persistence will have two benefits: first is that we 
can run very large problems, even to the extent of 
problems that could not fit in a 32-bit address space, 
second is that it will also aid efficiency in a manner 
analogous to generational and ephemeral garbage col- 
lection by keeping the working set size down. 

The persistent object system in EULISP is a result of 
porting the Persistent Simulation Environment3 from 
Common Lisp, which in turn is an adaptation of the 
Picasso ~ v s t e m ~ ~  develo~ed at Berkelev. However. PSE is 
a simpliLcation of ~icas'so, in that it uies flat files instead 
of Postgres (the successor to Ingres.) Because the 
persistent system is built on top of TEAOZ it has the twin 
advantages of integrating the resulting system with the 
rest of our development environment and making 
development of the persistent facilities simpler since it is 
only an extension of the existing architecture. In brief, 
the approach has been to define a new slot description 
class for persistent slots (in objects) which implements 
the object cache and pre-fetch policies. The accessing of 
a slot in an object is mediated by the slot-reader, which 
is a generic function on the slot description class, hence, 
the slot access can load the object, if necessary, and 
return the contents of the slot. In effect, this looks 
much like virtual memory management. As with virtual 
memory, where it is desirable to try and ensure that the 
page is loaded before each reference, we would like to 
ensure that each object is loaded before the message is 
sent. For this, we need pre-fetch policies and, indeed, 
replacement policies. In the case of the discrete event 
simulations, where a vast number of the objects are map 
and feature data - which rarely change - a pre-fetch 
policy is quite straightforward since there is a strong 
likelihood that adjacent map segments and related feature 
data will be needed. In the production rule system too, 
there is locality in terms of the nodes in the RETE 
network and therein the basis for different pre-fetch 
policy which will suit this problem. 

The persistent object system has been used to run some 
small simulations based on US Army map data to find 
shortest paths between locations and to simulate an 
activity network. Under development at the moment is 
a Petri net simulation language using persistence. Com- 
plementary to this work, an interface has also been 
developed to the Unix database manager, dbm (in fact, to 
the GNU version, called gdbm, which supports access to 
multiple databases). Again, some small experiments have 
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been run on sample map data, this time supplied by use objects so that the RETE network is represented by 
Bartholomews, covering a 100 km2 region centred on a collection of instances of condition elements and 
Bristol. working memory elements. Testing on several widely 

used rule-sets has shown the rewritten OPS5 to behave in 

3. MANUAL PARALLELISATION 

Implementing a concurrent operation such as future, 
linda or time-warp is only the first step towards concurrent 
processing. What is needed more than anything else is 
experience in the use and effectiveness of these concurrent 
operations. Initially, one needs to know whether the 
implementation is correct - as far as can be told from 
empirical observation - and then one wants to find out 
how easy it is to use the concurrent operation in practice. 
In the long term we expect the concurrent operations 
to be inserted semi-automatically into the application 
program. In the short term it is part of our programme 
to modify existing Lisp applications in order to gain 
practical experience. Not least, this experience will be 
useful in developing the semi-automatic paralleliser. 

We have taken two auite well-known small- and 
medium-sized Lisp programs as the basis of our 
experiments in manual parallelisation: the OPS5 pro- 
duction rule interpreter and the Reduce algebra system. 
We are working on each of these in quite different 
ways. OPS5 has been rewritten as 00PS5.  Reduce is 
being analysed - as a prelude to rewriting and to test 
the analyser - and one part of it has been rewritten 
(many other parts remain). The third program, called 
ARSONIST, was developed at RAND for forest fire 
simulation. 

The OPS5 production rule interpreter is, in its original 
form, a small program written in Franz Lisp. It has been 
ported to many different Lisps including Common Lisp, 
Cambridge Lisp, PSL and Le-Lisp. The interpreter 
comes in two parts: one builds the so-called RETE 
network from the left hand sides of the productions, the 
other drives the recognise-act cycle of the interpreter. 
Briefly, a production rule interpreter works by matching 
the current state of the working memory against the left 
hand sides of the production rules to generate the conflict 
set. This is the recognise phase. The conflict set is the set 
of productions which match the current state of working 
memory. The act phase selects one production from the 
conflict set and takes the actions specified on the right 
hand side of that rule. Then, a new recognise phase 
starts. As with most other work on parallelising 
production s y ~ t e m ' ~ . ' ~ ,  we are concentrating on the 
recognise phase of the recognise-act cycle. 

The interpreter has been rewritten to use six different 
classes. For brevity here, we assume familiarity with 
OPS5 terminology, but for details see ref. 12. The six 
classes are: 

1. production rule; 
2. working memory distributor; 
3. condition element ; 
4. conflict resolution manager; 
5. working memory element; 
6. working memory clock. 

The first part of the interpreter has been rewritten to 

an equivalent manner to the original OPS5 program. 
This is the current state of the project. Having objectified 
the network we can now consider executing it con- 
currently on a distributed network. Each of the condition 
elements and working memory elements can now be 
treated as a separate process and distributed across the 
multi-processing system. Consequently, searches through 
the network can be executed concurrently. However, 
although it is widely recognised that production systems 
spend the majority of execution time in the recognise 
phase, there is still a bottleneck on parallelism in the act 
phase. The act phase can be likened to the commit 
operation in a database - having selected the rule to fire, 
we must await the completion of the execution of the 
right hand side before starting the next recognise 
iteration. 

The use of time-warp style execution offers an 
interesting way of avoiding the synchronisation at act 
time. Because a t i m e - ~ ~ a r p  object is able to rollback to 
previous states - it could be likened to backtracking - if 
the working memory elements could record differe~lt 
values corresponding to different virtual times, a similar 
effect could be achieved. Thus, the recognise-act cycles 
can be overlapped and the act phase does not require a 
synchronisation once for every loop of the interpreter. 
The support for this has been implemented but it has not 
been tested seriously yet. This work has been carried out 
in PSL using a uniprocessor. 

3.2 Reduce 

We are using Reduce in two ways. As a source of large 
amounts of Lisp to feed to the dataflow analyser (see 
section on Semi-Automatic Parallelisation) and as a test- 
bed for manual insertion of concurrent constructs into 
programs. These two uses provide mutual feedback, 
since the dataflow analysis suggests where there is 
parallelism to be released and the manual insertion 
(and inspection) suggests where the analyser has 
not discovered enough information. However, there is 
another reason for the interest in computer algebra. The 
reason is that computer algebra problems consume large 
amounts of time (and space) and a number of the 
common algebraic algorithms offer a lot of potential for 
parallelism. 

The two algorithms of primary interest are the Hensel 
lifting stage of polynomial factorisation and Grobner 
basis  computation^.^' Grijbner bases are becoming 
the lynch-pin of many new algorithms proposed in 
the computer algebra community as well as being 
fundamental in solving algebraic problems in robotics 
related to the movement of objects in confined spaces. 
Hence, computing Grobner bases quickly is becoming 
increasingly important - and increasingly difficult for a 
uni-processor as the polynomials get larger and more 
numerous. A third area is power series evaluation - since 
the Reduce implementation of power series31 is modelled 
as a network of streams, this could easily be transformed 
into a network of communicating processes. 
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3.3 Discrete event simulation 4.1 Static analysis 

At present we only have one discrete event simulation 
program; the ARSONIST forest fire fighting simulation. 
In the case of simulation, it does not matter so much 
whether the program is widely known or used - as 
distinct from our other choices - because it is the 
mechanisms of discrete event simulation that are im- 
portant and much less so the scenario being simulated. 
However, the size and sophistication of the simulation 
do affect the generality of the results. 

The programming language for the simulation is a 
development of the RLISP language in which Reduce is 
written, called RLISP88. RLISP88 is an object-oriented 
language designed to support the writing of discrete 
event simulations and is implemented as a parser from 
RLISP88 to Lisp running on top of Lisp. 

The ARSONIST simulation comprises a hypothetical 
map, the grid positions of which are either trees, grass, 
dirt, houses, water, ash, fire-break or  fire. The fire- 
fighters are bulldozers which roam across this terrain 
building fire-breaks to contain the fire with the primary 
goal of saving houses and the secondary one of saving 
trees. There is a single control centre which has aerial 
reconnaissance to track the svread of fires and radio 
contact with each of the bulldoiers. Scenarios are created 
by starting fires in various places and specifying factors 
such as wind speed and bearing and the ease with which 
materials will catch fire. By changing the root class of the 
objects in this system and changing how messages are 
passed, we will be able to experiment with concurrent 
execution. 

4. S E M I - A U T O M A T I C  
P A R A L L E L I S A T I O N  

To develop our intuitions and then our knowledge of the 
behaviour of concurrent programs, we believe we have to 
start by (re)writing programs with explicit concurrent 
operations. However, as stated at the beginning, our long 
term goal is an environment for the development of 
concurrent programs where the concurrent operations 
are inserted automatically or semi-automatically. To 
address this problem one dataflow analyser has been 
developed and another, more advanced, is under de- 
velopment. The purpose of these programs is to make a 
static analysis of a program written without concurrent 
constructs and use the information to insert or to suggest 
where to insert concurrent operations. This is one part of 
semi-automatic parallelisation. This is a means to identify 
what can be done concurrently. The second part of semi- 
automatic parallelisation is to decide whether it is worth 
executing something concurrently - static estimation of 
run-time, The third part is to modify what is done 
concurrently based on observed behaviour - dynamic 
analysis. 

We are working with two dataflow analysers: one is 
based on the ideas in ref. 27 developed in ref. 10 and 
taken further in ref. 9. This only produces a record of the 
analysis. As yet, here is no integration with any compiler. 
The other analyser is being developed" and has produced 
analyses and rewrites of some quite complex test 
cases. 

The current dataflow analyser takes functions, or other 
fragments of code, and constructs a flow graph from it. 
The analyser contains tables of semantic information 
about the basic Lisp functions and rules about composing 
this semantic information depending on the form of the 
program being analysed. This flow graph is processed 
using this semantic information to yield a semantic 
description of the side effects of each function of code 
fragment. In effect this description is an annotated 
closure of the function identifying the non-local effects of 
the function. 

The description is a 4-tuple: 

1 .  read only non-local references ; 
2. readlwrite non-local references and modifications, 

of which the latter implies a need for exclusive 
access ; 

3. write only non-locals modified (before reference, or 
not referenced at all); 

4. hard a boolean which is true if nothing could be 
determined about the side-effects of the function 
(expressions involving s e t  or nconc might cause 
this). 

The resulting descriptions may be saved in a file and 
input to the analyser to provide a means of adding to the 
analyser's knowledge of the program on which it is 
working. Hence one can analyse a module at a time but 
provide the semantic information about each module as 
needed when working on a large program. An issue that 
is often overlooked in parallelism is whether code that 
can be executed in is worth executing in parallel 
- that is, the grain size is too small for the overheads of 
a given architecture. We measure the complexity of a 
piece of code using a technique called the static estimation 
of run-time, which is explained in the next section. 

The new static a n a l y ~ e r ~ ~  uses new techniques for 
representing and analysing the program based on the 
ideas in single static assignment (SSA)' and the PTRAN 
analyser.' The new analyser also builds on ideas from the 
current analyser, in particular with respect to the cost of 
executing a block concurrently. The task is seen as one of 
partitioning the program for concurrent execution. 
Although this problem is NP-complete, a heuristic 
approximation algorithm has been developed with near 
optimal behaviour. The algorithm works by taking the 
units of finest grain parallelism in the program and 
composing them to build successively coarser grains of 
parallelism until the units are sufficiently large to cross 
the cost function (communications and scheduling 
overhead) of the architecture for which the program is 
being prepared. Effectively, the partioning algorithm 
tries to minimise the cost function for a given architecture. 
Some preliminary results of this algorithm are in 
preparation. 

4.2 Static estimation of run-time 

Discovering what can be executed concurrently is a hard 
problem. Deciding whether it is worth executing con- 
currently is insoluble. However, one can make a good 
guess." We call it a good guess because we have been 
surprised at the accuracy of the guesses made by the run- 

THE COMPUTER JOURNAL, VOL. 34, NO. 4, 1991 3 17 



J .  PADGET,  R. BRA1 D F O R D  A N D  J. F I T C H  

time estimator. The static estimation of run-time concerns 
trying to guess how complex is a given piece of program 
and therefore whether the overheads of managing its 
concurrent execution are greater than the benefits of its 
concurrent execution. 

Determining the complexity of a program by static 
analysis is equivalent to determining whether a program 
terminates. Hence, it is insoluble. But to avoid creating 
tasks with too fine a grain of parallelism some estimate 
of what is and is not worth executing concurrently can be 
very useful. The practical results of estimating the 
run-time of a program have been surprisingly, even 
frighteningly, accurate. The approach is constructive, as 
might be expected, in that each of the primitive operations 
is assigned a cost relative to the cost of a particular 
primitive. In this case, the base primitive chosen is 
car. Each basic operation is timed on a given processor 
to obtain the spectral analysis of the Lisp operations on 
that processor. These data are then used in the last stage 
of the dataflow analysis to estimate the cost of each 
identified concurrent unit and, hence, provide a basis 
for a decision about whether to execute that unit 
concurrently. 

4.3 Dynamic analysis 

In the first instance a static analysis can determine the 
major independent regions of the code and a static 
estimation of run-time can help make decisions about 
whether it is worth separating off a task. However, the 
dynamic behaviour of a concurrent program is difficult 
to predict and almost as hard to observe. A multi- 
processor profiling tool has been developed at RAND as 
a first step in this direction5 and we hope to be able to use 
the trace information it collects from executing con- 
current programs to improve their performance in 
subsequent executions. 

REFERENCES 

1 .  F. A. Allen, M. Burke, P. Charles, R. Cytron, and J. 
Ferrante, An overview of the PTRAN analysis system for 
multiprocessing. Journal of Parallel and Distributed Com- 
puting 5, 617-640 (1988). 

2. M. F. Awdeh, OOPS5 - an object oriented production rule 
system. Technical report, University of Bath, Concurrent 
Processing Research Group (1989). 

3. C. Burdorf and S. Cammarata, PSE: a CLOS-based per- 
sistent simulation environment with prefetching capa- 
bilities. In Proceedings of the CLOS Workshop (1989). 

4. C. Burdorf, J. P. Fitch and J. B. Marti, Minimising 
interprocessor computation overhead. Accepted for pub- 
lication. 

5. C. Burdorf, J. P. Fitch, J.  B. Marti and J. A. Padget, A 
multiprocessor execution profiler. In Proceedings of 2Znd 
Annual Hawaii International Conference on System 
Sciences, pp. 524-531. IEE (1989). 

6. C. Burdorf and J. B. Marti, Load balancing strategies for 
time warp on multi-user workstations. In preparation 
(1989). 

7. N.  Carriero and D. Gelernter. Linda in context. Comm. 
ACM 32 (4) ;  444-459 (1989). 

8. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman and 
F. K. Zadeck. An efficient method of computing single 
static assignment form. In Proceedings of Sixteenth Annual 
ACM Symposium on Principles of Programming Languages, 
pp. 25-35. ACM (1989). 

5.  CONCLUSION 

This paper cannot really have a conclusion, since it only 
describes some steps along the way to a distant goal. 
What we believe we have established so far is that 
different concurrent processing primitives can co-exist 
and can be implemented fairly efficiently even on ordinary 
workstations connected on a local area network. We are 
now in the process of transferring this to a loosely- 
coupled system of tightly-coupled vector processors (that 
is, two multi-processor Stardent systems connected by 
ethernet). Our work on analysing Lisp programs has 
produced meaningful and usable results. 

We conjecture that no single concurrent operator is 
ideal for all granularities of parallelism and that the 
mixture we have captures a useful selection of granu- 
larities. We also conjecture that extracting concurrency 
from existing and new applications, written without any 
particular regard for concurrency is tractable and that, in 
a few years, semi-automatic translators from sequential 
to concurrent programs are feasible. 

Acknowledgements 

As must be obvious from the breadth of the topics 
covered in this paper, this is the work of a large number 
of people. Acknowledgements are due to the other 
members of the Concurrent Processing Research Group 
(CPRG) at  Bath : Mohammed Awdeh, James Davenport, 
Dave De'Roure, Nuong Quang Dinh, David Hutchinson, 
Spiridon Kalogeropolous, Keith Playford and Icarus 
Sparry and to the Concurrent Processing for Advanced 
Simulation group (CPAS) at the RAND Corporation, 
Santa Monica: Christopher Burdorf, Barbara Gates, 
Tony Hearn and Jed Marti. 

9. J. P. Fitch, How can REDUCE be run in parallel? In 
Proceedings of ISSAC'89, pp. 155-162. ACM (1989). 

10. J. P. Fitch and J. B. Marti, The Bath concurrent Lisp 
machine. In Proceedings of EUROCAL '83, vol. 162 of 
LNCS, pp. 78-90. Springer-Verlag (1984). 

11. J P. Fitch and J. B. Marti, The static estimation of run 
time. Technical report, University of Bath Computing 
Group (1987). 

12. L. Forgy, OPS5 user's manual. Technical Report CMU- 
CS-80-13, Department of Computer Science, Carnegie- 
Mellon University (1981). 

13. R. P. Gabriel and J. M. McCarthy, Queue-based multi- 
processing lisp. In Proceedings of 1984 ACM Conference 
on Lisp and Functional Programming. ACM (1984). 

14. B. L. Gates and J. B. Marti, An empirical study of time- 
warp systems. In Proceedings of the Winter Simulation 
Conference (1988). 

15. N. Graube. Architectures re'flexices et imple'mentations des 
langages a taxonomic de classes en Lisp. Applications a 
ObjVlisp, Common Lisp Object System et TEAOZ. PhD 
thesis, I'Universite Paris 6 (1989). 

16. M. L. Griss, E. Benson and G. Q. Maguire, PSL: a port- 
able LISP system. In Proceedings of1982 ACM Symposium 
on LISP and Functional Programming. ACM (1982). 

17. A. Gupta, Parallelism in Production Systems. PhD thesis, 
Carnegie-Mellon University (1987). 

18. A. Gupta and H. G .  Okuno, Parallelising production 

318 THE COMPUTER JOURNAL, VOL. 34, NO. 4, 



C O N C U R R E N T  O B J E C T - O R I E N T E D  P R O G R A M M I N G  I N  LISP 

systems. Technical report ,  S tanford  University C o m p u t e r  28. H .  Melenk a n d  W. N e u n ,  Parallel po lynomina l  opera t ions  
Science Depar tment ,  (1988). in  the  Burchberger algori thm. In  Conzputer Algebra and 

19. R .  H .  Halstead,  Mult i l isp:  a language for  concurrent  Parallelism. Academic Press (1989). 
symbolic computa t ion .  A C M  T O P L A S  7, 501-538, (1985). 29. J. S.  Miller, MultiScheme: A Parallel Processing System. 

20. A .  C .  Hearn .  The Reduce Mannual. T h e  R A N D  C o r -  P h D  thesis, Massachusset ts  Inst i tute o f  Technology (1987). 
pora t ion  (1988). 30. E .  M o h r .  D. A. K r a n z  a n d  R. H. Hals tead ,  Lazy task  

21. D. J. C. Hutchinson,  Implementing futures a n d  l inda.  c rea t ion :  a technique for  increasing t h e  granulari ty o f  
Technical report ,  University o f  Bath,  Concurren t  parallel p rograms.  I n  Proceedings of 1990 A C M  Conference 
Processing Research G r o u p  (1989). on Lisp and Functional Programming. A C M  (1990). 

22. D. Jefferson. Virtual time. A C M  T O P L A S  7, 4 0 4 4 2 5  31. J. A .  Padget  a n d  A .  Barnes, Univar ia te  power  series 
(1985). expansions in  Reduce.  I n  Proceedings of ISSAC'90. 

23. S. Kalogeropolous,  Part i t ioning Lisp programs for  parallel Addison-Wesley (1990). 
execution. Technical R e p o r t  TR-89-28, University o f  B a t h  32. J .  A. Padget  and G .  N u y e n s  (eds), T h e  EULISP definition 

Comput ing  G r o u p  (1989). (version 0.69). Technical report ,  University o f  Bath  
24. S. Kalogeropolous,  The Static Analysis of Lisp Programs C o m p u t i n g  G r o u p  (1990). 

for Parallel Execution. P h D  thesis, University o f  Bath  33. J. Piquer,  Multi-processus e n  Le-Lisp:  Pive 11. R a p p o r t  d e  

(1990). Stage, Universite d e  Par i s  X I ,  Orsay  (1988). 
25. D .  A .  Kranz ,  R .  H .  Halstead a n d  E. M o h r ,  Mul-T:  A 34. M .  Radlhammer ,  T h e  fu ture  o f  futures,  o r ,  h o w  futures 

high-performance parallel Lisp. In  Proceedings of can  be implemented o n  stock hardware .  I n  BCS High 
SIGPLAN '89 Conference on Programming Language Performance and Parallel Lisp Workshop. EUROPAL 
Design and Implementation, p p .  81-90. ACM (1989). (1990). 

26. J-J. Levy, private communica t ion  (1990) 35. L. A .  Rowe,  A shared object  hierarchy.  I n  International 
27. J. B. Mart i .  The Hasty Eoaluator. PhD thesis, University o f  Workshop on Object-Oriented Database Systems. I E E E  

U t a h  (1978). (1986). 

Book Review 

RANALD ROBERTSON GORDON HUGHES (editor) many offerings from 'security consultants' 
Legal Prolection of Computer Software. Essays on Computer Law. London: Longman intent on selling their latest gimmick for 
London: Longman Law Tax and Finance, Group UK Ltd, 1990. ISBN 0 582 93991 7. making management feel happy. whilst not 
1990. ISBN 085121 6846. Price £35.00. Price £39.00. significantly decreasing their risk. 

Section G on Evidence and Court Pro- 
In the Foreword' the of ceedings is of general interest. The article on This is a well-researched and well-presented A ~ ~ ~ ~ ~ ~ ~ ~ ,  sir Ninian Stephen, says ' A  re- 

covering al] aspects the subject markable feature of this collection of essays is Admissibility of Computer Output reviews the 
contractual protection, through copyright, the great diversity of its themes' and goes on problems without getting entangled in the 
trade secrets and trade marks to patent to remark c~hroug, the pages of this volume matters which have incited Colin Tapper 
protection. There is a very useful table of computers can be seen both as useful tools of 

elsewhere to remark that the legal position in 
cases, and the book ends with a section on the legal education and practice of the law and, as the UK is of 'Byzantine complexity' - perhaps 

Australia has escaped this fate! The following 
remedies any of the rights themselves, formidably at work in changing article on Dispute Resolution 
being protected be infringed. the whole legal environment; creating new 

Primarily it is a book for lawyers and expert and important and subject mat- indicates that matters have advanced further 
witnesses, but it is readable enough that a ters, which the law must come to in some Australian states than they have in 
computer professional would find little dif- A, ,ill be seen from the foregoing, this is an this country. The lawyers there appear to be 
ficulty in following it, and would find much of ambitious work, whilst the background of the more friendly to attempts to simplify the 
it instructive. Two important matters are dealt contributors links it to the common L~~ as settlement of disputes other than by litigation 
with in appendices, namely a form contract practised 'down under'. This, ofcourse, means than is the case in the UK. and to be already 
guidelines for program licensing prepared that it is largely relevant to ~ ~ ~ l i ~ h  law, following the US lead in this matter, whereas 
by the CSA, and a guide to the position although not directly aimed a t  it, but only only tentative moves are being made here. 
relating to protection of software in Europe. confronts the situation in the EEC occa- Section H on Practical Uses of Computers 
Both of these are too short to contain the sionally, as in the contribution of ~ i ~ h ~ ~ l  has a strong Australian flavour, and is mainly 
quality of information provided in the main ~ i ~ b ~  on T~~~~ ~~~d~~ D~~~ ~ l ~ ~ ~ ,  where he of interest in comparing what is going on there 
text. One might hope that later editions will has had an important influence on our thinking with what is on the agenda here and elsewhere. 
include more detailed coverage of the Euro- through his involvement with the OECD, It is fol1owed by a series of essays on Progress 
pean situation, since EEC directives are having l t  is inevitable that on a canvas so large as (0' lack of it) in other countries, including 
an increasing influence in UK courts. Con- this, the coverage of detail is often variable, New Zealand. Malaysia, Singapore, the USA, 
tractual matters are, I understand, more fully certainly the treatment will be criticised by Canada and South Africa, and a summary of 
dealt with in other Longman publications. readers depending on their background know- how the Europeans and Japanese have ap- 

I do not recommend all computer profes- ledge, l fco l in  T~~~~~ wrote less interestingly. Proached similar problems. It is interesting to 
sionals go Out  and purchase a lawyers could probably skip his introduction. find an article in this section by Fhilippa Perry 
immediately. However, if they become in- c~~~~~~~ people probably don.t need to read reviewing developments in the UK, a good 
volved in matters of legal protection of their M,  id^.^ introduction to computers, UK deal of which has been overtaken by the 
software, and particularly if they are freelances practitioners, legal or technical, will have little rapidly moving events in the last year or so. 
who wish to retain their rights, it is very interest in section F on ~ ~ ~ ~ ~ i ~ ~ ,  which Overall there is much to commend these 
valuable reading and explains clearly how the relates wholly to A~~~~~~~~~ peculiarities, essays to SOmeone wishing to get an overview 
law affects them. For those with a greater Similarities with, and from, the of the legal situation in Australia and to 
interest in the law in this area, whether UK position are well brought out in the compare this with the situation in the UK.  As 
computer professionals or lawyers, it is un- sections on Intellectual Property, Data Pro- I have indicated. some of the essays are 
doubtedly strongly recommended reading. tection, Crime and the Supply of Computer deserving of a wider audience, being of greater 

A. S. Products. Some parts of these have general generality. I believe this book should be in any 
London application - I  have already mentioned T~~~~ library relating to computers and the law, but 

Border Data Flows, which come under Data I could not wholeheartedly recommend it for 

Protection, and should draw attention also to purchase by students in the UK' 
another essay in that section on Computer A. S. DOUGLAS 

London Security, which appears better balanced than 
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