-~

~—r

A-2450 4/65

TM= 4310/100/00

AUTHOR o0 T~ T
Johw/F. Burger yﬁZ%;a

Raobert E. Long

' TECHNICAL o te - 7
RELEASE M
‘ a\rold Sackma\n E
(,&gk CM L Can

a working paper

elssman

System Development Corporation/2500 Colorado Ave./Santa Monica, California 90406 DATE 12-1-69 PAGE 1 COF

19 pages

1

(Author Delivered)

LISP EDIT Program, LISPED Users Guide

ABSTRACT

This document describes the LISPED program, which is
a context editor for LISP data and exists as a

separate program in the programmer's package of the
time-sharing system.

@

1 December 1969 . ’ 2

-TABLE OF CONTENTS

Section

1. INTRODUCTION v & ¢ o ¢ o o
2. LISPED MODES . 3 [N
2 . 1 LISPED IT . L] L] . L] L] ’ L] L] L]
2.2 LISPEDIT Commands
3. EDIT & o v o o o o o o o .

Token String Equivalent of
Visualization of the Token
Format of Commands
Fragment Arguments
EDIT Commands .+ « « o« o+ &

Wwwww
.
U wN -

4. LIBRARY FILES AND DATA STRUCTURES.
TABLES

Table 1. LISPEDIT Commands . + « . o e e e

Table 2. EDIT Commands + « & « o+ & « e e
FIGURES

Figure_l.‘ Token String, Object Fragment. . + o« o « ¢ « o

an S-Expression

String .

TM-4310/100/00

¢ e 3
e e 3
* o 4
e 4
* e 8
. e 8
. 9
s o 10
. . 10
e o 12
. . 18
« e 6
« .« 13
. e 9

1 December 1969 _ : 3 TM-4310/100/00

/1. INTRODUCTION

LISPED is a context editor for LISP 1.5 data and programs. It exist$s in the
programmer's package of TSS as a separate version of LISP, and is made up of
approximately fifty LISP functions used by the three modes of operation:
LISPEDIT, EDIT, and EVALQUOTE.

This paper is adapted from TM-2337/100/00, a similar paper on Q-32 LISPED,

written by Lowell Hawkinson, who programmed the initial versions of LISPED

for the Q-32 Time-Sharing System. LISPED for the 360 systems was adapted from
this earlier program by Robert E. Long and John F. Burger.

An understanding of this document and of the use of the LISPED program pre-
supposes an understanding of LISP 1.5.

2. LISPED MODES

LISPED operates in three modes. LISPED and EVALQUOTE modes are described in
the remainder of Section 1. EDIT is described in Section 2. Within the
descriptions, the following notations will be utilized.

f means LISP library file name. A file name is any
LISP literal atom. It serves no other purpose than
to identify a particular file.

2 means either a single file name or a list of file
names enclosed in parentheses.

LISPEDIT
This is the normal mode in which LISPED is entered. Any
error encountered within LISPEDIT returns to LISPEDIT
mode,

EVALQUOTE
The EVALQUOTE mode is similar to the normal mode of
operation of 360 LISP, operating successive pairs of S-
expressions and printing out the results. EVALQUOTE
is entered from LISPEDIT by the command EVQ, and con-
“tinues until either EXIT or LISPEDIT is given as the
first S—-expression to EVALQUOTE, in which case LISPEDIT
mode resumes. An error occurring in EVALQUOTE mode
returns to EVALQUOTE mode.

EDIT) L

The EDIT mode is entered from LISPEDIT by means of

the commands INPUT, EDIT or STRINGED. The functions

available in EDIT mode are described in Section 2.

EDIT mode continues until the EXIT command is accepted

by EDIT (either the FILE command followed by EXIT, or)
else EXIT EXIT must be used). An error occurring with- :
in EDIT returns to EDIT mode.

‘_/

1 December 1969 ' 4 TM-4310/100/00

'The system is relatively foolproof in that library files are protected from

damage in the event of LISP unwind. After an unwind, the system always returns
to the same state in LISPEDIT, EVALQUOTE, or EDIT which it was in before the

error occurred. \

LISPED is, in general, a talkative system and most of the messages printed out
have a relatively simple interpretation.

2.1 LISPEDIT

LISPEDIT is the normal mode in which LISPED is entered. _If the system is
clear, the entrance into LISPEDIT is signified only by the statement

LISPEDIT MODE //
If the system is re-entered following an error, the statement

LISPEDIT RECOVERY // FILES SAVED
is given additionally to indicate that LISPEDIT is ready for input.
The LISPEDIT mode may be used for inputting and editing LISP data, reading
LISP data from tape and disc, performing general file maintenance operations,
and running and testing of LISP programs.

The 'LISPEDIT commands are listed in Table 1 and described in Section 2.2.

2,2 LISPEDIT COMMANDS

LISPEDIT accepts the 16 commands given in Table 1. Commands other than OPEN
and SHUT are followed by their arguments without parentheses. A final space
must always be used except in the case of a list type argument.

OPEN (fdescr)

OPEN works in LISPEDIT mode exactly the same way it works in
360 LISP Release 30 or in EVALQUOTE mode of LISPED.

Files opened in either EVALQUOTE mode or LISPEDIT mode can be
read in either mode.

In LISPEDIT mode, the response to OPEN is

I0 FILE filename OPENED // CONTINUE

1 December 1969 I TM-4310/100/00

SHUT (filename)

SHUT works in LISPEDIT modé exactly the way it works in 360 LISP
Release 30 or in EVALQUOTE‘of LISPED.

Files opened in either LISPEDIT mode or EVALQUOTE mode can be shut
in either mode.

In LISPEDIT mode, the response to SHUT is
I/0 FILE filename SHUT //CONTINUF
For both OPEN and SHUT see also TM-4310/200/00, the standardized LISP 360 I/0.
"READ fdescr : -

Reads the file fdescr and adds the contents to the list of current
" library files. If fdescr is an atom it refers to a tape or disc
file already opened with the OPEN command. in either LISPEDIT or
EVALQUOTE mode. Otherwise fdescr is assumed to be a standard LISP
file descriptor list, in which case the file is opened, read from,
and shut, with appropriate messages printed on the user's terminal
at each stage. ‘ |

During the actual READ stage , in either case, LISPEDIT prints the
name of each library file as it is read, both to keep the user
abreast of the progress of the read function, and to make the

system run slightly faster.)

WRITE fdescr 1

If 1 is any atom (e.g., "ALL") then all current library files are
written onto fdescr.

If 1= (f1 f2 oo fn), 22

..files, then the library files f_ , f . fn are written, in that

where fl’ f . fn are names of library

1’ ~2’
order, onto the output file fdescr.

As each library file is written, its name is printed on the user's
R terminal, and after writing the output file, WRITE writes an e
(Y end-of-file on the output device. i

If fdescr is any atom other than "DLO" it refers to a tape or disc
file already opened with the OPEN command in either LISPEDIT or
EVALQUOTE mode., If fdescr is not an atom it is assumed to be a
standard LISP file descriptor list, in which case the file is~

ij opened, written and shut, with appropriate messages printed at- the
S : user's console. ' :

.

J

1 December 1969

Name

COMBINE
DELETE
EDIT

EVQ
FILES
INPUT
LIST
OPEN
READ
REORDER
RUN
RUNSPEAK
SHUT
STRINGED
WRITE

Table 1.

LISPEDIT Commands

Arguments
f £ £
2
f

£
fdescr
fdescr
L
f
f

(filename)

f
fdeser ¢

TM-4310/100/00

¥

1 December 1969 ' 7 TM-4310/100/00

INPUT

EDIT

' STRINGED

_RUNSPEAK

RUN

FILES

‘'DELETE

REORDER

If fdescr is the special atom DLO, it operates exactly as if it
were the file descriptor list:

(DLO V7XDLO DM WRITE DLO SYM)

INPUT causes LISPED to go into the EDIT mode with an initially empty
string. The only acceptable EDIT command which can reasonably be
used at this point is INSERT to enter new LISP data into a system.
This data will be of use only if eventually a FILE command is given
to supply it with a file name.

f

This is the same as INPUT except that the EDIT is entered with the
string equivalent to the file named £f.

£
This is identical to the command EDIT f£.

f , .
The file named f, which must consist of EVALQUOTE pairs, is operated.
Each successive pair of S—-expressions in the file f is passed to
EVALQUOTE and the results printed.

f
This is the same as RUNSPEAK except that the EVALQUOTE output is
not printed. .

This command results in printout of a list of names of all current
files.

L

2 can be either a single library file name or a list of library

file names. After checking appropriately to see that these names
are all names of files in the system and that the user really wanted
to delete these files, this command will cause the library file or
files to be deleted. In response to question from DELETE, a user
should respond with either YES or NO.

L

list of current files. If 2 is a list of file names, these files
are removed from the current list of active files and placed in the
order named at the end of the list of files.

If 2 is a single file name, the named file is placed at the end of the

1 December 1969 8 TM-4310/100/00

COMBINE ' £ £, £

1 "2 73 .
The contents of fl and f2 are concatenated and inserted as a new
file named f3. If a file named f3 is already in the system, the new

file named f3 will replace it.

LIST f
The command LIST f causes the contents of file f to be printed,
one-S-expression per line.

EVQ
The EVQ command causes LISPED to enter the EVALQUOTE mode in which
successive pairs of S—expressions input from the teletype are passed
to EVALQUOTE and the results printed on the teletype. The EVAL-
QUOTE mode is similar to the normal operating mode of LISP 1.5.
If the LISPEDIT system is saved using the /SAVE function,
then when the saved version is loaded the LISPED system will print
out i
LISPEDIT RECOVERY RECOVERY // FILES SAVED
followed by
mode MODE //
where mode is the mode in which the system was saved.
EVQ mode continues until EXIT or LISPEDIT is given as a command
to EVALQUOTE.

EDIT is a context editing program which is used to update an existing LISP
file or to generate a new one.

- When EDIT is entered from its parent program LISPEDIT, the file to be edited

(a series of S-expressions, possibly empty) is converted into the equivalent
token string. This string may then be examined and operated on through

successive commands input on the teletype and interpretively executed by EDIT.
Whenever a desired transformation of the string has been achieved, a command
to file the series of S—expressions equivalent to it may be given. Finally,
after all desired editing and filing to the string has been completed, EDIT
may be exited and control returned to LISPEDIT.

3.1 TOKEN STRING EQUIVALENT OF AN S-EXPRESSION

The rules for converting an S-—expression to its equivalent token string (from
which may also be inferred an 1nverse transformatlon) are expressed in the
table below. : ,

/

/

/
.

\.\
!]
N/

1 December 1969 ‘ 9 T™-4310/100/00

where x is an. S-expression
LP is the atom "left parenthesis"
RP is the atom "right parenthesis"
DT is the atom '"dot" ‘

S—expression x . ‘Token string equivalent

NIL : LP RP

non—NiL atom

(a1 ay ees an) Lg_al 3y ves an‘gg

(al By eee @ g - an) LPa;a,...a ;DT a RP
4é.g., (A (B NIL) . C) LE,A LP B LP RP RP DT C RP
3.2 VISUALIZATION OF THE TOKEN STRING

At any moment during the editing of the token string, there is a particular
portion thereof whose boundaries serve as reference points for whatever
action may be called for by the next EDIT command. This portion of the string
is termed the object fragment (or simply the fragment, abbreviated as FR).

The object fragment may be empty, or it may include the entire string (which
also could be empty).

The token string with its object fragment sub-string should be visualized as
in Figure 1. The symbol "t" denotes here an arbitrary token (parenthesis,
dot, or other LISP atom). Definitions for left boundary (LB), right boundary
(RB), head, and tail are self-evident from the diagram. The directions
backwards and forwards mean "towards the head" and "towards the tail,"
respectively. These six terms will be used extensively in the descrlptlons
of EDIT commands (Section 3.5).. I

left object right

boundary, <+—— fragment — ¥ boundary
(LB) (FR) (RB)
ttt...tt ttttttttttt ' tt...tt...tt\
head < backwards token forward._;__¢> tail
ead ¢———— hac string :
Fig. 1. Token String, Object Fragﬁent

1 December 1969) 10 TM-4310/100/00

3.3 FORMAT OF COMMANDS . i

Commands to EDIT are input, one after another, on the teletype. As many
commands as fit may be entered on a single line; conversely, any command which
would overflow a single line may be continued onto as many additional lines

as are necessary.

Each command consists of a name followed by a specific number (zero, one, or
two) of arguments. When input, names and arguments must always be followed by
one or more blanks, even when they occur as final items in a line. (The
algorithm for making the input line-to-line transition, to be followed reflex-
ively, is: type blank and carriage return; allow any output responses to be
printed; await asterisk signal.) :

The name of an EDIT command is a LISP identifier. All but three of the com-
mands (FILE, REFILE and EXIT) are a one- (or two-) character abbreviation.

Each argument of a command is of one of four types:

n integer

2 1label

s fragment :
¢ commands

An integer argument is simply a LISP fixed-point number. A label argument

is any LISP atom other than / or $. A fragment argument has several possible
formats, which are discussed in detail in the next section. A commands
argument, used only in the M(MULT) command, is any string of legal EDIT mode
commands except another M command. It is bounded by the integer argument on
the left and the carriage return on the right. In other words, it consists

of the entire rest of the input line following the integer argument. Should

a particular command be given an argument of the wrong type, an appropriate
diagnostic will be printed and the remainder of the input line will be ignored.

3.4 FRAGMENT ARGUMENTS

A fragment argument of an EDIT command has four distinct formats, each of
which specifies some particular fragment (sequence of tokens) as its value.
These formats, paired with their corresponding values, are listed in the

 table below. Symbol t denotes an arbitrary token (parenthesis, dot, or other

LISP atom). Symbol f denotes the name of a LISP file.

O

®

1 December 1969 '. 11 . T™™-4310/100/00

format of s , value of s
!/ | empty
/ $ £ ' ' | copy of file f
AR ' saved fragment under label &
tt...tt/ non empty input fragment
tt ... tt¢t

In the input of a fragment argument, two syntatic rules involving the delimiter
blank must be observed. i

(1) / and $ must always be separated by one or more blanks.

(2) Two adjacent tokens (t t) must be separated by one or more blanks
when neither is a parenthesis.

A saved fragment (third format above) is one which, by some previous command,
had been copied from the then current FR and saved for future use under a
label 2. The saving of FR may be called for explicitly by means of the LABEL
command (see its description in Section 3.5).

Should a fragment be saved under a label which is already in use, the new
value will supersede (and in fact replace) the old. Thus, only the most

‘recently input and deleted fragments are available at any given moment under

a given label.

There are three particular tokens (namely /, $/, and *%%) which are used as
delimiters within an input fragment (fourth format above). All other tokens
(parenthesis, dot, or other legitimate LISP atom) are taken literally.

@ / is the terminal delimiter of an input fragment and must be
preceded by at least one literal token.

(2) $/ is an escape delimiter, If it is not the first token in an

° input fragment, and is not immediately preceded by *#**, the
command preceding $/ will not be executed, a diagnostic will be
printed and the remainder of the input line will be ignored.

(3) #*#** indicates that the token immediately following it is to be
) taken literally, even if it would normally be interpreted as a
delimiter, e.g., the token / is written *#** /,

N

=

1 December 1969 12 TM-4310/100/00

3.5 . EDIT COMMANDS

The commands available within STRINGED are listed in Table 2, and are described
below.

The command descriptions given below are presented in a standard format. The
heading displays, in order, the name of the command, an abbreviated specification
of the arguments (where n, %, s, c, and a dash denote integer, label, string,
commands, and no arguments, respectively) and in most cases a mnemonic for

the name. The first paragraph describes the action of the command when
conditions are such that it may be properly carried out. The second paragraph
(if any) indicates the conditions required for execution of the command, and

what will happen if they are not fulfilled. The assumption is made in the
descriptions that all arguments have been correctly entered; where this is not

"the case a diagnostic will be printed, execution of the command will not be

attempted, and the remainder of the input line w1ll be ignored (see Sections 3.3
and 3.4).

The reader is referred to the diagram and definitions in Section 3.2, since -
all commands are described in terms of them.

EXIT -
EDIT is exited and control returned to the supervisory program
LISPEDIT. A message confirming successful exit is printed.

If, however, this command was not immediately preceded by a successful
FILE command or unsuccessful EXIT command, EDIT will not be exited, a
diagnostic message will be printed, and FR will remain unchanged.

This interlock feature prevents a premature, accidental exit from
EDIT. To leave EDIT without having filed the token string, two EXIT
commands must be issued.

FILE £

' The complete token string is first converted into the particular
series of S-expressions equivalent to it and then is filed under

-~ library file name f for future reference by LISPEDIT commands. If
a LISP library file named f already exists, it will be replaced by
the newly generated one. A message confirming successful filing is
printed, and FR remains unchanged. (See Section 2.2 for descriptions
of LISPEDIT commands and Section 4 for a description of LISP library
files.)

v

If a syntax error is detected during the conversion from token
string to S—-expressions (i.e., if the string contains unmatched
parentheses or dots out of context), no filing will occur, a
diagnostic will be printed, LB will be set to the point at which the
error was detected, RB will be set to the tail of the string, and
the remainder of the current input line will be ignored.

1 December 1969

O

TN

77N

NAME

T o H H YU o w o>

H oo
~ ~

N M =& d 3 v 8 0 " o0 =2 = -

EXIT
FILE
REFILE

13

Table 2.

MNEMONIC

ADVANCE
BOUND

ECHO

DELETE
ELLIPSE
FIND

GROUP

STASH
STASHKEEP
INSERT
INSERTKEEP
LABEL

MULT

NEXT
ONE-EXPRESSION
PRINT |
QUANTIFY
REPLACE
SUBSTITUTE
TOP
OUT-EXPRESSION
WHOLE
EXTEND
POSITION -

EDIT Commands

ARGUMENTS

> 0 n n o

TM-4310/100/00

1 December 1969 ' 14 ‘ : TM~4310/100/00

REFILE

£ : ' .

Identical to file except that if an old copy of f exists in the
library files, it will be deleted before conversion starts. This
is sometimes necessary for very large files in order to regain LISP
storage space. It can also shorten conversion time over using FILE.

However, if a syntax error is detected during conversion, no filing
will occur, as in FILE, and library file f will be gone.

- ECHO

The "echo switch" (initially off) is flipped from off to on, or vice
versa, depending upon its current state. While the echo switch is
on, a PRINT command is implied after every executed command which
does not call for the printing of FR. This feature allows the
editing process to be monitored step-by-step.

- PRINT '

FR is printed in full or elliptically, depending upon its length
(number of tokens within it). If the length is less than 17, FR.is
printed in its entirety (PRINT in this case is identical to the

~command WHOLE). If, however, FR includes 17 or more tokens, only

the first eigHt and last eight of these, separated by the ellipsis
symbol "...", are printed. Thus, whatever the length of FR, PRINT
will, in general, produce only one line to represent it. FR remains
unchanged.

- WHOLE v
FR is printed in full, whatever its length may be. Should FR be
empty, a blank line will appear. FR is unchanged.

- POSITION

A message is printed which indicates the location of LB relative to
the string head, the length of FR, and the total length of the
token string. The specific format of this message is:

POSITION a LENGTH b TOTAL c

where a = number of tokens between string head and LB
b = length of FR (number of tokens therein)
c = length of the token string

FR remains unchanged.

L LABEL . _

A copy of FR is saved under label £ for future reference as a

saved fragment argument. If a saved fragment labeled £ already
exists, it will be replaced by the current FR. FR remains unchanged.
(See Section 3.4 for a full description of saved fragments.)

N

N

]
N4
-

1 December 1969 15 T™-4310/100/00

-

- TOP ‘ v
LB and RB are set to the string head and tail, respectively. Thus,
after execution of this command, FR will include the entire token

string.

- NEXT :

LB is set to the previous RB; RB is reset to the tail of the string.
Thus, after execution of a NEXT command, FR becomes that part of
the token string which was forward of (to the right of) the old FR.
NEXT in combination with the ONE-EXPRESSION command is particularly
useful for skipping over expressions.

- ONE-EXPRESSION

RB is moved, either forward or backward, such that there will be
exactly one S—expression between LB and RB; LB remains unchanged.
After execution of this command, therefore, FR will contain a single
S—-expression.

If it is syntactically impossible to construct an S-—expression
beginning at LB and reading forward (i.e., if LB is at the tail
of the string, if the first token forward of LB is a right

parenthesis, if an out-of-context dot is encountered, etc.), a
diagnostic message will be printed, LB will be set to the point

- at which the syntax error was detected, RN will be set to the

tail of the string, and the new FR will be elliptically printed.
The user is cautioned to be prepared for such a contingency.

- OUT-EXPRESSION

OUT-EXPRESSION is identical .to ONE-EXPRESSION, except for the
fact that, if a legitimate S-expression is found, it will be
printed in its entirety (using the LISP "PRETTYPRINT" routines).

n ADVANCE

LB is moved forward (backward) n(-n) tokens, where n is a
positive (negative) integer, except that if such movement would
take LB past the tail (head) of the string, then LB is set at the
tail (head). RB remains unchanged unless LB is moved past (i.e.,
to the right of) it, in which case it is set to the tail of the
string. In short, LB is moved n tokens (n positive for forward

direction) with appropriate resolutions being made in impossible

situations.

n EXTEND ‘

RB is moved forward (backward) n (-n) tokens, where m is a positive
(negative) integer, except that if such movement would carry RB past
the string tail (LB), then RB is set at the tail (LB); LB remains
unmoved. Thus, EXTEND does to RB what ADVANCE does for LB, except
that, whereas LB can be advanced past RB, RB cannot be extended back
through LB. In short, RB is moved n tokens (n positive for forward
direction), but not past LB or the tail of the string.

1 December 1969 16 TM-4310/100/00

D - DELETE g
FR is deleted from the string, LB remains at the point of the
deletion, and RB is reset to the same point. Thus, after execution
of a DELETE command, FR is.empty.

H s STASH
String argument s is inserted into the string at LB; FR is set to
the inserted fragment. Thus, the new FR is a fragment input to
the left of the old FR.

HK s STASHKEEP
This command is identical to STASH except that, after its execution,
FR will contain the old FR as well as the newly inserted fragment.

I s INSERT
String argument s is inserted into the string at RB; FR is set
to the inserted fragment. Thus, the new FR is a fragment input to
the right of (forward of) the old FR. INSERT is equivalent to a
NEXT followed by a STASH.

IK s INSERTKEEP
This is identical to INSERT except that, after its execution, FR
will contain the old FR as well as the newly inserted fragment.

R . s REPLACE : '
The old FR is replaced by string argument s, which becomes the new
FR, Thus, the new FR is a fragment input to replace the old FR.
REPLACE is equivalent to a DELETE followed by INSERT or STASH.

F s FIND.
Beginning at LB, a search is made in the forward direction (to the
right) until a portion of the string is encountered which is iden-
tical to the string argument s, FR is then set to that portion.
Two numerical tokens are deemed identical if and only if they are
equal both in value and in type (LISP predicate EQN is used here).
..FIND is probably the most useful of the stringed commands for

purposes of editing.

If a portion of the string identical to s is not found forward

of LB, a diagnostic message will be printed, and FR will ramain

unchanged. The user is cautioned to be prepared for this con-
~ tingency. ’

1 December 1969 . 17 TM~-4310/100/00

s BOUND
BOUND is identical to FIND except that, where the search Has been

successful, instead of setting FR to merely the found fragment, FR

is set to that portion of the string which begins at the original

LB and extends to the right boundary of the found fragment. This
may be stated even more simply--BOUND is identical to FIND except
that under no circumstances is LB allowed to be moved. A particular
use of BOUND in conjunction with FIND is in setting FR to a long
portion of the string. FIND is first employed to locate the left
boundary thereof, then a BOUND command is given to set the right
boundary without having to change the left one.

n s SUBSTITUTE

String argument S replaces FR and the n-1 string portions iden-
tical to FR, searching to the right with FIND. Algorithmically,
execution of the command involves the following loop: REPLACE
current FR by a copy of s, use NEXT to move past the replacement,
FIND portion identical to the original FR, repeat if FIND command
was successful and decremented n is non-zero, otherwise terminate
with FR set to the last replacement made. SUBSTITUTE is used
generally for three purposes: multiple substitution, multiple
deletion and multiple replication. For multiple substitution, the
first instance of the fragment to be replaced must be located
(using FIND), and then a SUBSTITUTE command given with the replace-
ment fragment and number of replacements to be made as arguments.
Multiple deletion is accomplished similarly with an empty fragment
being entered as the string argument of SUBSTITUTE. For multiple
replication, the point at which the copies are to be placed is
located, a FIND command with an empty argument is issued (FR
becomes an empty fragment situated at the prior LB of FR), and
finally a SUBSTITUTE command is given with n as the number of
copies of the string argument to be produced (upon termination,

FR will be set to the rightmost of the copies).

If argument n is not an integer greater than zero, a diagnostic

message is printed and FR remains unchanged. If a search fails

at any time before n reaches zero, the action of SUBSTITUTE. is
effectively terminated by the action of the FIND,

B ELLIPSE . ot e e e e e L e

_FR is first set to a single S-expression using ONE-EXPRESSION. It

is then printed, using a depth-controlled elliptical printer in
which n determined the depth to which parenthetical nesting will
be displayed. Any sub S-expression of FR whose depth is greater
than n is replaced in its entirety by the ellipsis symbol "&",
This type of display of FR is sometimes easier to read than that
generated by the P (PRINT) command. However the E command calls
ONE-EXPRESSION, which may cause RB to move.

L

N4

O

1 December 1969 ' 18 | TM-4310/100/00

Q - QUANTIFY ’

.QUANTIFY works for the most part like the W (WHOLE) command. The
entire fragment FR is printed without making any adjustment for
syntax. LISP PRETTYPRINT is not used. The difference between

QUANTIFY and WHOLE is that QUANTIFY numbers every parenthesis
encountered. The numbering starts with 1 and counts up one for

each left parenthesis encountered and down one for each right
parenthesis. This command can be very useful for matching left-
and right-parentheses.

G - GROUP
This command is similar to Q (QUANTIFY) with two exceptions: GROUP
calls ONE-EXPRESSION which may move RB, and QUANTIFY does not}
also, GROUP uses the LISP PRETTYPRINT which QUANTIFY does not.

Thus G (GROUP) is to O (OUT-EXPRESSION) as Q (QUANTIFY) is to
W (WHOLE).

M n c MULT
In this command, the argument c refers to the entire remainder of
the string of EDIT mode commands following the argument n and
before the next following carriage return. C may contain any
legal EDIT mode commands except another MULT.

MULT causes the string of commands in ¢ to be processed end to end,
n times.

An error at any time causes the remainder of the MULT operation
to be aborted.

4, LIBRARY FILES AND DATA STRUCTURES N

The data files maintained by LISPEDIT consist of a list of S-expressions
(library file) stored on the VARIABLE (GLST . 120). Each library file con-
sists of a single S-expression whose CAR is the file name and whose CDR is a
list of the contents of the file. To be compatible with RUN, RUNSPEAK and
LOADEXP, the contents of a file should be a series of EVALOUOTE pairs.

The corresponding tape and disc format consists of one S—expression containing
each library file. For example, suppose that there are two files LIBl and
LIB2 containing :

CSET (AA 2) EVAL (AA)
and .

DEFINE (((NILF (LAMBDA () ())) (ONEP (LAMBDA (J) (EQUAL J 1)))))
respectively. The LISP library files would appear on tape or disc as

(LIB1 CSET (AA 2) EVAL1 (AA))

(LIB2 DEFINE (((NILF (LAMBDA () ())) (ONEP (LAMBDA (J) (EQUAL J 1))))))
End-of-file

/s

p—y

N

i

1 December 1969 19 TM-4310/100/00

(Last page)

After the LISPED READ command is performed, the VARIABLE (GLST . 120) contains
the files., - '

Two functions exist within LISPEDIT to provide access to the contents of files
from within EVALQUOTE mode.

TEDSEEKER (f) yields the library file %f as the
entire S-expression whose CAR is name of the file, f

TEDFILER (2f) enters the library file &f into the list
of files under the name f given as the CAR of &f.

