J
-
K
)

or.

e e e wvere e

August 1980

Copyright (C) - 1980
The Soit Warehouse

All Rights Reserved Worldwi

Renrinted with nernmiin

Hannes Goldynia
St. Martiner Str. 45
9500 Villach

mullSP/muSTAR-80tm

Artificial Intellivence

Development System
Reiercnce Manual

dﬁ“&

/

e et

Copyright Notice

Copyright (C), 1960 by The Soft Warehouse. All Rights Reserved Worldwide. No part of this manual o
reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any human or corr
language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical manu
otherwise, without the express written permission of The Soft Warehouse, P.O. Box 11174, Hon

Hawaii 96828, U.S.A.

Disclaimer

The Soft Warehouse makes no representations or warranties with respect to the contents hereof and specific
disdaims any implied warranties of merchantability or fitness for any particular purpose. Further,

8701-200-02

Soft Warehouse reserves the right to revise this publication and to make changes from time to time in

content hereof without obligation of The Soft Warehouse to notify any person or organization of s
i revision or changes.

mullSP/muSTAR-80 is distributed exclusively by
Microsoft
10800 N.E. Eighth, Suite 819,
Bellevue, WA 98004

A Brief History of muLISP

muL.ISP-80 represents the culmination of 4 years of effort into
designing a general purpose LISP system. It was developed almost
entirely on micrzocanmputers for microcanputers. The original interpreter
was completed in 1977 by Albert D. Rich using LISP 1.5 as a guide. It
was intencded salely for use in mechanical theorem proving, specifically
for the propositional and predicate calculus of formal logic. This

system, now called muLISP-77, worked quite well for this purpose,
although somewhat slowly.

Through the foresight of David R. Stoutemyer, it became apgarent
that the potential uses for a microcomputer LISP were tremendous. In
particular, the possiblity of implementing for the first time a symbalic
mathematics system on a microcamputer was set as a goal., Influenced by
the imvaluable suggestions of Martin Griss and Peter Deutsch, joint wcrk
by Rich and Stcutemyer yielded a greatly enhanced and robust LIS?
system., It included infinite precisicn arithmetic, streamed disk file
I/0, and a pawerful function body evaluaticn mechanism. This product
was released in June of 1979 as muLISP-79 by The Soft Warehouse, a

partnership set up by Stoutemyer and Rich to facilitate the wicespread
distribution of the software,

The success of muLISP-79 and its companion product the
BuSIMP/muMATE-79t2 Symbalic Math System encouraged further work cn
improving the systems. The need for greater code density and faster
lcading capability resulted in the addition of a pseudo—code compiler
and interpreter for the muLISP-80 system, A major effort went into
making the documention for muLISP-80 of the Same high caliber as the
software, Trhe clarity and completeness of this manual is due in large
part to the persistence of Jcoan H. Rich

Currently work is being done to make muLISP available for other
popular micro and minicomputers. The advent of the 16 bit micro-
processors will make possible the greatly improved perfarmance and data
space sizes required to satisfy the needs of ever larger Al research
effcrts, We intended to fulfill thcse needs, :

Auqust 2, 1580

iv

e e

Preface

The LISP computer language is based on a paper by John McCarthy
{1960] entitled "Recursive Functicns of Symbalic Expressions and Their
Computation by Machine®. Since its first implementation at
the Massachusetts Institute of Technalogy in the early 1960's, LISP has
remained the "machine language" of the AI (Artificial Intelligence)
cammunity. The language and its many derivatives continue to monopalize
all serious work in such diverse fields as rcobotics, natural language
translation, theorem proving, medical diagnosis, game playing, and
program verification, LISP is the lanquage of choice for such attempts
at mechanical intelligence far the fallowing reasons:

1. LISP is an applicative, recursive lanquage which
makes it an ideal formalism for describing complex
mathematical concepts.

2. The principal data structures in LISP are binary
trees. Such abstract cbjects can be made isamarphic to (i.e.
a one—-to—one model of) the actual data in most Al problems.
Once this is accomplished, the properties of the original
prcblem can be investigated by perfaming transfamations on
the LISP data structures.

3. When a computer is programmed to simulate
intelligence, it must be able to respond to queries of
arbitrary difficulty. The static storage allccation schemes
of conventional programming languages makes it very difficult
to dea: with such cpen ended prchlems, These difficulties are
alleviated in LISP by dynamic allocation and recycling of data
storage resources by means of automatic garbage collection.

4. A highly interactive environment is essential for
intelligent human-machine communication. The ease with which
LISP function definitions can be regarded as data encourages
incremental system development and makes LISP an ideal
interactive language,

The develcpment and distribution of muLISP-79 by The SCFT WAREECCSE
helped to make LISP available to the rapidly growing community of
microccmputer users. This was the first e.ﬁfmlem:, *procuction” version
of LISP for such computers and is being used in a wide variety of

- applicatians.

The challenge to meet the ever increasing memory and speed
requirements of most Al scftware systems inspired the development of
muLISP-80. An increase in code density by a factor of three and a 20%
increase in executicn speed has been achieved by means of a pseudo-cocde
compiler and interpreter. Since compilation and de~compilatio occur
automatically, the process is invisible to the user. Thus, the
interactive nature of muLISP, so essential for most AI applications, is
nct sacrificed in the interest of efficiency. Finally, the additicn of
the muSTAR-80 AI Development System to muLISP ramded out the package
with a resicdent display-oriented editar and debugging facilities,

i4i

e ————

Title PACE v v ¢ o o o « o

Table of Contents

Copyright NotiCe v v ¢ o o o ¢ ¢ o o o o o &
PrefaCe . ¢ v o o o o ¢ o o ¢ o o ¢ o s o
A Brief Bistory of MuLISP « o« o o « o o o
weofcontﬂ\ts..---..-.-...
I. An Introduction to muLISP-80
A. M2jOr FEAtUILS & v v o o o o o o = o
B. The Master DisketTe . . « o o o « «
C. The Basic Interacticn Cycle . . « «
D. The Executive Driver LOCP o « « = o
E. MULISP PrOgramiing o« « o o o o o o o
F. Interrupting Program Execution . . .
G. Error DiagnoStiCS o o o o o o o o o
H. Eaviromment SYS FileS . ¢ « o o « «

A,
« -Be
C.

II. Primitive Data Structures

m - . - - L] . - . - * o L] L] - L
NIDELS ¢ o ¢ o ¢ o 0o 0 06 000 0 o
Ma - - L d L] . - - - L L L J - L] L] -

III. Meoory Management

A.
N B'
C'
D.

Initial Data Space Partition . . .
Garbage ColleCtitn « « o o o o o o @

® @ ® o o o o o o o
@ e ® & v e e e o o
@ ® ¢ e o o 0o o o o
@ @ o e o s e o o o

® @ @ o & o o e o o

Reallocation of Data Space Baundaries

Insufficient MemOry TI2D o « o o o o

IV. The mr-LISP Meta—-lanquage
A, Meta—SYNMEAX o« o o o o o o o o o o =
B, Meta—=senantiCS ¢ ¢« ¢ ¢ o« o o o o o o

V. Primitively Defined Punctimas
A, Selector FUNCLIONS o« « o o« o o o o o
. B. Constructor Functions . « « o« « « «
C. Modifier FUNCLICNS ¢ ¢ ¢ o o o o «
D. Recognizer Functions . « « ¢« ¢« o ¢« ©
E. Corparator functicns « « « « o o « «
P. Logical Functions . ¢ o o« o o « o &
G. Assigmment Functions . ¢ ¢« ¢ « ¢ o
H. Property FUNCLIONS . v o o ¢ o o « »
I. FlagPuncticns . o & ¢ o o o o s o «
J. Definition Functions . . « « « ¢« « «
K. Sub-atcmic Functions . . « « o ¢ « «
L. Mmerical Functions . . « « « « « «
M. Reader Functions and Control Variabl

et e g

ﬁc-o-o-n-co-

e o o 0 e & 6 o o o o o

e o 0 o 0 e s 0 0 0 o &

o & o 0

" 8 & 4 8 o 0 8 0 v 2 s

e« ° o o
e o o o
e o o o
. e o e
e o o o
® e o o
* e e o
e o o o
.

o o 8 ¢ 8 8 o o

ii
iii
iv

I-1
I-2
I-3
I-3
I-4
I-6
I-7
I-7

o o 0 & o o 0
e 0 0 o ¢ o s 0

e e o e oo II1
e o o o & o o o II-Z
e o o e o o o o II-3

e 6 8 e e o 8 0 0 s 0 8 ¢

e & o & o 4 6 o 0 ¢ 4 o s

" e 3 o s e 0 0 9 0 o o b

III-1
III-1
I11-2
III1-2

V-1
V-3
V-4
V-5
v-8
V-9
v-11
v-12
v-13
v-14
V-16
v-17

¢« o o o s s 8 2 0 0 s 0 0
A T T I)
s e o & o 0 0 4 0 0 & 0o

N.

Printer Functions and Control Variahles

o. Evaluation functions . , . . e e e e,
P. Memory Management Functicns . . o o 0 Tttt e e -
Q. Enviranment Functions R LR IR P
VI. The muSTAR AIDS
A. Main Menu Commands
%- Bditor Facilities . .
- Debugging Facilities , . . . - - """ * ...
3~DIS’SI/OFacj_lities.:"°""°"""
B.Textmltmg 0-........--..

l. Cursor Control .
2. Display Control
3. Entering Text .
4. Deleting Text .
5. Finding Names .
6. Exiting Editor .

2. The muSTAR Executive , " -
S'MmuSme..b. .-‘-....o-o.
4. Text Primitivies [l Il il

Appendices

Ba.ckxs—NauzFom..........
BowtoCogytheHgsterDiskette D

V=21
V=25
V=31
V=32

VI-2
VIi-3
VI-¢

VI-5
Vi
vi-7
VI-8
VI-8
VIi-8
VIi-s5

VI-10
VI-11
VI-11
VI-12

A-1
A-2
A4
A-5
A6
A-9

@)

A e Lt it

A\

Section I: An Introduction to muLISP-80

Congratulations on your pu
A rchase ifici
::::lllt.\‘gence Deyelopx;xen_t: Sy'stzm (muLISgEaoth}fx:bms‘)-‘L Is'l?x:ieg? A:mfl;lﬂ
rev u xog,zg gi:excxl scgpk;lsnc;;ed software package for‘miézocorig?tt:rr; lea
been e capable of surporting a wide 3 s AT
E 190 ran iow
research efforts. Some degree of study and patiencegfsofei?:ogj ﬁ

properly use muLISP—~80 as a devel '
s et ed Eor st apglicatigx?:ent tool for the large software

. .
Mmmm infsecta.omo& of the muLISP-80 AIDS Reference Manual provides th
minimum infor :cvoir; necessary to load and use the system. The rena.:’.ndéi
of ¢ P es a detailed explanaticn of muLISP data structures
ry man:ge;:knt. and primitively defined functions, Every at-a-m*:iﬂe:as'
beenit i_smadeo‘- e the marmal as clear and precise as possible; row";.v L4
i pot a tutorial cn the LISP programming language., The bést:‘ wave: ;
oeaf mn-x. :mmJSP ais. by ex:p}o:ar.ory use of the system in parallel with su_cy‘ ‘TO
anu If this reveals an insufficient knowledge of LISP on

the part of the user, sev i
Bt ety 2t the e:d'oﬁ eral goof! references are given in the

A. Major Peatures

1. A total of 83 LISP functions
« are defined i i
gnguage for maximum efficiency. Tbhese fvmctiois :;r:;:aiggmaﬁ
ofzasy" efic?:ii sumée piimitivs including a full complement
’ Tuctors, modifiers, recogniz
i conparators. (See secticn V-A,B,C,D,E) f e ers and

Y

2. Infinite precision integer arithmetic, expressed i
'y s c

any desired radix base from 2 through 36, is 'suppogted by:-;1
complete set of numerical primitives, (See section V-L)

3. A two-pass compacting
s b garbage collecto
2utomatic, dynamic memory managemexg: on all dartape;;aocr::

A garbage collection typically require than
s
second to camplete., (See section IIQIEB) ’ Less Balf a

4. Dynamic reallocaticn of data space boundari ocm‘
automatically to most efficiently use all i Te Iy
resources. (See secticn III-C) ! availaple menory

S. Program control constructs includ D

) s e an extend

: m:zlt.}ple exit LOOP, and a powerful functicn body ev:.'?.uatiox'x

ele::.‘a.m.srm. These features permit programs to be written in an
egant, pure LISP style while still allowing the efficiency

of iteration when it is applicable. (See section V-0O)

6. LAMEDA defined functions can be made either call-by-

valve ((BV) or call-by-name {CBN). In addition functions can
(See section

ibs_g;afmd as being either spread or no-spread.

g

P

7. In addition to muLISP's interactive environment,
program debugging is facilitated by a resident display
oriented editor and a trace package, (See secticn VII)

8. muLISP is fully integrated into pigital Research's
Cp/Mtm Disk Operating System and such upward compatible
successors as Cromemco's cpostm, and IMSAI's IMDOSTR.

9. wuLISP requires only 9K bytes of machine code
storage, leaving the remainder of the computer's memory
available for 8ata structures. A minimum system will run in
as little as 20K bytes of computer memory.

10. Extremely fast program execution speeds have been
achieved through the use of such techniques as shallow
variable binding, acdress typed data structures, and a closed
pointer universe. {See section II)

11. Function definitions are artomatically compiled into
distilled code or D—code when they are defined. The inverse
process of de—compiling occurs automatically when a definition
is retrieved. This compilation results in a threefold
increase in code density over storage as a linked list and
about a 20% improvement in execution (See secticn V=J)

12. Numerous 1/0 control variables bave been included to
handle such issues as upper/lower case conversion, console
edit mode, and the printing of quoted strings. (See section
H,N)

: 13. A means is provided to conveniently link to user-
defined machine lanquage subroutines. (See sectiocn V=)

|
B. The Master Diskette

The muLISP-80 System is distributed for microcomputers as a set of
disk files on CP/M formatted floppy diskettes. The executable command
f£ile MULISP.COM is an cbject code version of the muLISP interpretec and

compiler. Also included on the diskette are the following muLISP
MOSTAR. SYS The muSTAR Al Development System
OTILITY.LIB An assortment of utility functions
TRACE.LIB A function-trace debugging package
METAMDD.LIB A sample program f£or the MasterMind game
ANIMAL.LIB A sample program for the Animal game
DOCTCR.LIB An implementation of the Doctor program

As soon as possible after receipt of your muLISP-80 diskette,
make a copy of the master on a blank diskette for use as a working copy-
An appendix to this manual provides more informaticn on how this can be
accomplished. Once copied, the master diskette should be kept in a
safe, cool place to be used only in emergencies.

C. The Basic Interaction Cycle

Once. the master diskette is safely backed up, it is a simple matter
to initiate execution of muLISP. First bring up the computer's disk
operating system in the normal manner. Next, if necessary, switch to
the drive with the copy of the MULISP-80 diskette. Then enter the
following operating system command, terminated by a carriage retum:

AOMULISP

After a few seconds of load time, the system should respond with
a logon message of the following form:

muLISP-80 (8080 Version mm/dd/yy)
Copyright (c) 1980 The SCET WAREHOUSE
$

where rcpriate numbers appear for the version month, day, and year.
This v:?;i?r’x date should be included in all i.nqu_xnes cox:cer:u._ng the
system, Naturally, the 280 version of muLISP-80 will have *Z80" instead
of "8080" in the logon message,

muLISP prom the user with a dollar sign to indicate readiness to
accept charagte.x:priiptxt: from the console, After a complete expzesszt;ne
expression, and prints the resulving value beginning on a new Line,
ion, and prin e : ral . ¢
msex?:efnstezactx' ion cycle is repeated mde.f. initely wntil a CIRL~C is typed,
returning control to the disk operating system,

ince muLISP uses the line editing routines of the host computer's
operasting system, all the applicable features of 'that system are
inherited by muLISP. Badcspacinqisus:auymplzsheibytypmgeﬁ
CIRI~H, a RIBout, or a DELeta, Some s echo the deleted character;
others erase the character from the screen and backspace the cu:se;.
Entire lines can be deleted or flushed by typing a CTRL-0 or a CTRL b.
By typing a CTRL~P, all subsequent muLISP console output will also be
sent to the system’s printer.)

In general only the current line can be edited, Tbereismwaytg
modifyalineofinpatonceacarriageremr.nhas.bemtyped. Eoy:;r.ez
rnunaway program can be interrupted as described in the next secti

D. The Executive Driver Loop

i i - tive, First
The defaalt muLISP driver loop is an cval LISP executiv 'ir
the prompt string, “$ ®, is displayed, indicating the system is w?&ugg
for console imput, The user can then entgr an expr;ssmxéet;eegm::ian o oy
iage return. Multi-line expressions can be en
:x;i:.i.si%n is not consicdered complete until .all parentt:gfes :_aze
balanced. O(nce entered, an expression is read using thg fung:..z.‘n R.AD. v
evaluated using the function E£VAL, ard then the result is pcmtdegiuu;sﬁ
the function PRINT. The following is a sample muLISP dialog
demonstrating the basic driver loop:

executive driver loop
particular application. This can be

] ining the function DRIVER. For example, an
eval-quote-LISP driver is given in the library file OTILITY.LIB, If an

eérror or interrupt occurs, program control will return to the user

defined driver rather than the perhaps inappropriate default driver
locp.

E. muLISP Programming

: The fallowing muLISP dialogue illustrates how 2 LAMBDA defined
function can be defined and then used:

. s (P(g'm (QUOTE FACTORIAL) (QUOTE (LAMEDA ()

((ZEROP N) 1)
(T (TIMES N (FACTORIAL (DIFFERENCE N 1))))))))

§ (FACIORIAL 5)
120

This definition of the factorial function is defined in the style
of the original LISP as described in McCarthy's LISP 1.5 Progr r
Mazual [1962]. Although it does not fully utilize the capabilities of
RULISP, it is a perfectly acceptahle definition,

Study of this mamual and the mufISp library files will reveal that
muLISP-80 incorporates numerous upward compatible extensions of LISP
1.5. For the most part these extensions consist of defining useful,
well-defined results for which the original LISP is noncommittal. They
significantly increase readability and execution speed, while
substantially decreasing the Storage requirements for function

definitions, The fallawing are a few of the significant extensions:

1. As a name is read or generated by muLISP, its value is
automatically set to itself. This self-referencing of new
names is called auto—quoting. It recduces the need for using

the QUOTE functicn when the EVAL-LISP executive driver locp is
being used for input,

VA

2. .'rne COND fgnction has been generalized so'all the
expressions following the predicate are evaluated in turn.

The value returned by this extended COND is the value of the
last expression.

. 3. The evaluaticn algorithm for a function body or
lambda expressicn includes an implied COND. This cbviates the
need for explicit use of COND within function definiticns.

For example, compare the following definition of FACTORIAL
with that given above:

(PUTD FACTORIAL (QUOTE (LAMBDA (N)
‘ ((ZEROP N) 1)

(TIMES N (FACTORIAL (DIFFERENCE N 1))))))

With the principal exception of the PROG program contral construct,
the original LISP was an exemplary applicative and structured lancuage
long before these adjectives became pocular. muLlISP has two features
which dispcse of any need for such unstructured contral features:

1. The pawerful multiple-exit LOOP function permits the
programming of non—-recursive looos. This is achieved withaut
the use of the totally unstructured GO feature.

2. Arguments in a function's formal argument list that
are in excess of the actnal number of arguments used in a call
to the functicn are simply bound to NIL. These excess
arguments are availahle for use as local variables within the

function; hence PROG is not needed to estaplish such local
variables.

For these reasons muLISP-80 has no primitively defined PROG, GO, cr
RETURN constructs. Instead of having such explicit contral constructs,
prosram central within a muLISP function body is quided primarily by the
structure of the linked list representing the function's derfinition.
Implicit program control results in function definitions whose
appearances are uncluttered and whose meanings are more transparzent.

See secticn V-0 for a detailed explanation of tne muLIS? evaluation
mechanism,

As an example of how to avoid the use of these constructs and
thereby write more structured LISP programs, consider the following
definitions of the FACTORIAL functim:

(PCID FACTORIAL (QUOTE (LAMEDA (N)

(PROG (M)
(SER M 1)
A (CaD

((ZEROP N) (RETURN M)))
(SER M (TIMES M N))
(SERQ N (DIFFERENCE N 1))
(GO A)

(PUTD FACTCRIAL (QUOTE (LAMBDA (N M)
(SEm M 1)
* (LooP
((ZEROP N) M)
(SER M (TIMES M N))
(SEM N (DIFFERENCE N 1))))))

The first is a conventicnal non~recursive definition, The second
is the equivalent muLISP-80 definiticn, also non-recursive. The reader
can decide for him/her self which definition is more elegant and
structured. It is interesting to note that the muLISP definition
requires only 29 nodes; whereas, the canventional version reguires 38.
This is not an insignificant ratio for a LISP system running in a very
limited address space.

P. Interrupting Program Execution

At any time during the execution of a program, a user initiated
software interrupt will halt program executicn, This may be necessary
to stop a “runaway”® or non-terminating program and return contrel to the
consale. An interrupt is initiated by depressing either the ESCape key
or ALTnode key. The faollowing options available message will then be
displayed on the console:

*r% TNTFRRIPY: To Contime Type: REI;
Pxecutive: ESC, ALT; Restart: RO8, DEL; Systems CHL2

The user may then choose e of the fallowing optians by typing the
appropriate option charactec:

1. The Continue option causesi/program _execut:f.on to
continue from the point of the interrupt. This option 1is
_ selected by depressing the RETurnm key.

2. The Executive option returns control to the current
executive driver loop. All variable bindings, fu.np:ign
definitions, o property values are preserved. This option 1S
selected by depressing either the ESCape oc ALTnode key. For
terminals with neither of these keys, typing a CTRL-((i.e.
typing a left bracket while halding down the contral key) is
equivalent to ESCape.

3. ‘The Restart option restarts muLISP from scratch and
destroys all variable bindings, nen-primitive functicns, and
property values. This option is selected by depressing either
the DELete or RUBout key. Typing a CTRL-H is equivalent to
depressing the DELete key.

4. The System option terminates muLISP and returns

contral to the disk operating system. This option is selected
by typing CIRL-C.

I-6

LVpvS

muLISP output to the console can be interrupted and then restarted
using CIRL-S as a toggle. This output pause is useful to permit reading
of the text prior to its being scrolled off the screen,

G. Error Diagnostics

There is only one situation in muLISP-80 for which there is no
satisfactory recovery other than program termination and an error trap.
The exhaustion of all available storage in the four daca spaces will

result in an error trap, See section III-D for a discussion of the trap
and the options then available to the user.

A less serious problem will cause a warning message to be displayed
on the censole.’ The primitive function in which the error occurs will
return a value of NIL. It is then the responsibility of the user
program to recognize the error and take the appropriate action. The
following are the three possible warning messages. Their causes are
fully described in the indicated secticns of this manual:

ZERO Divide Error Section V-L
BEnd-Qf-File Read Section V-
No Disk Space Section V=N

H. Environment SYS Piles

The muLISP function SAVE is used to save the current environment
for retrieval at a later time. The environment consists of all the
currently active muLISP data structures, including atom values, property
values, and function definitions. The environment is saved as a.disk
file of type SYS. For instance, the following command will generate a
SYS file named WEALE.SYS on the current drive:

$ (SAVE (QUOTE WHALE))

This environment can be restored at any later time by using the
LOAD function. If the file WHALE.SYS is now on drive B, the following
muLISP command will load the SYS file saved above:

$ (LOAD (QUOTE WEALE) (QUOTE B))

Alternatively, the following operating system command can be used
to load the SYS file WHALE.SYS from drive B after loading muLISE®:

ASMILIS? B:WHALE.SYS

Either of the above methods for loading a SYS file will restore the
envirocnment exactly as it was at the time of the save., When a SYS file
is loaded, the various data spaces are re-allocated according to the
computer's current memory size. This means that the current memory size
does pot necessarily have to be the same as when the SYS file was
created.

.
\ . Y

I-7

i eful in a variety of ways. For instance, an
intez:csgisvcf%ees:iro‘nbga:sbe continued at a later time, .mte(r:::;c:izi
results of a session can be bac?ce‘d up as insurance agan;sitel c?an et
failure, or a set of function definitions deyeloped mtz:_irac t;l cy: oo

cved. Finally, program development is usually done d-y reatin
p:'ei; source files and reading them in using t:he'RDS' command. b,
t::te the program has been perfected,I f:ea%j&x;gfﬁexﬁa :agzegx::ngigteg
i i for an end-user. a
zzgtzgiiens;;pe:;eal:gu:ce, the application program can be loaded both

quickly and conveniently by the end-user. .

N

N’

Section II: Primitive Data Structures

muLISP has three distinct types of primitive building blocks,
callectively called data cbjects. A data cbject is either a muLIS?
name, number, ocr node. Using the recognizer functions, the type of any
data object can be determined. All the data cbjects of a given type
consist of a fixed number of pointer cells. A pointer cell can point ac
refer to other data cbjects or to special purpose data structures. Thus
the set of data cbjects can te envisioned as an interconnected netwcrk

of pointers called a pointer universe.

It is meé:tant; to note that all three types of cdata cbjects have a
car cell and a cdr cell., Moreover, in muLISP the car and cdr cells are
restricted to point anly to other cbjects within the pointer universe,
Thus by fallaving only car and c¢dr cell painters, there is no fiange_: of
wandering outside this closed universe, The advantage of this closed
pointer universe is a simpler and more logical muLISP evaluation
mechanism, For instance, it eliminates the time reguired far censtant
type checking on the part of the primitive LISP functicns,

-+

A. Names

3. A name's function cell contains a pointer to the
current definition of the name, This function definition can
either be a machine coded routine or the D-code representation
of a LAMBDA expressicn, When a function application is to be
made, the function cell is used by the muLISP evaluation
mechanism to locate the name's definition. Access to the cell
is limited to the function definition primitives, which are
used to retrieve and modify function definitions. When a name

tsmc:eated, its function cell points to an undefined function
p.

4. A name's print name cell contains a pointer to the
string of ASCII characters used to print the name. Access to
this cell is restricted to the I/O and sub-atcmic functios,
When a print’‘name string is read in or generated by the
system, a check is first made to see if a name already exists
with that print name. If so, the existing name is used. If
not, another name is created using the new print name. Once
Created, a name's print name string cannct be modified.

" 3

4+

Number | Sign | Vecter |
3

+
t

Numbers

4 —

+-

{

-

+ t + A number is a recognizable data cbject consisting of three pointer
value | Property | function | Pneme | . cells, Numbers are ngot uniquely stored in the sense that equivalent

+ " number vectors can occur in the system, The use made of each of the
three cells is as fallaws: ’
A name is a recognizable data object consisting of four pointer

4 — 4

cells., Names are uniquely stored in the sense that no two rames in the
system can have identical print-names. The use made of each of the four

cells is as fallows: _ . :

1. The car or value cell contains a pointer to the
current value of the name as recognized by the evaluation
functions. When a name is created, its value cell is
initialized to point back to the name itself. This autamatic
self-referencing of a name, called auto—quoting, .oftgn
eliminates the need for explicitly using tne QUCTE function in
functicn definitions. The assignment functions are used to
change the value cell of a name. The value cells of a
functicn's formal arguments are temporarily reassigned when
the function is called, and then restored to their original
value when the function is exited.

2. A name's <dr or property list cell contains a pointer
to the property list of the name. This list is useq and
modified primarily by the property list and flag functions.
Plags on a property list can be distinguished by their being
atomic elements of the list (i.e. names or numbers). In
contrast, properties are non-atomic elements of the list
(i.e. nodes). The car of a pr:op,erty'element: points to t:,le
property’'s indicator and the cdr points to thfe property’s
valye. When a name is created, its property list is set to
NIL, indicating that no flags or properties are present.

1. The car or value cell of a number contains a pointer
to the number itself. Thus numbers do not have to be quoted,
since they evaluate to themselves, Naturally the contents cf
this cell can be changed by using an assignment function;
however, there is no reason to do so and it is not a
recommended thing to do, .

2. The cdr o sign cell of a mmber points to NIL if the
number is non-negative; otherwise, it points to TRUE. The
value of this cell is estahlished when a mmber is created.

3. The number vector cell contains a pointer to the
binary number vector which estahlishes the mumber's numerical
value. The number vector itself consists of a single~byte
byte counter followed by the requisite number of bytes
required to express the number in binary. The size of the

byte comter limits the magnitude of numbers to 256°254-1 or
approximately 107611,

II-2

"
+

"
T

C. Nodes | Car | C& |

h g

Binary trees are the primary data cbjects in muLISP. Internally a
binary tree is implemented as a network of cell pairs called nodes.
Each node consist of a car cell and a cdr cell. As mentioned earlier,
the node's cells may only point to other bonafide muLISP data objects:
a name, a number, ar a node.

1
Traditicnally nodes have been called dotted pairs in deference to
the dot notation used to represent them in print. The expression
X . Y) represents a node whose car cell points to tl;e opject: X, and
whose cdr cell points to the object Y. The dot notation is perfectly
capable of expressing amy LISP data structure.

It is often more convenient to think of data as a linked list of
elements, rather than as a deeply nested binary tree structure. The
structure represented by the list (X1 X2 X3 ... Xn) can be expressed
using dot notatim as

X1 . (X2. (X3 . {(eee « (Xn . NIL)...)N))

Thus a list consists of a caain of nodes linked through their f:dr
cells. The name NIL is used in the last cdir cell to terminate the list.
NIL is also used to dencte the null or empty list.. Thus the expression
() will be read as NIL by the functiocn READ and printed as NIL by the
functicns PRINL and PRINT.

The function READ will accept both the dot notation and the list
notaticn for expressing data structures. Howeverg, the fmct:.qns PRINL
and PRINT will use the list notaticon to the maximum extent possible when
printing structures. :

i S

Section IIX: Memory Management

Dynamic, invisible memory management gives LISP much of its
inherent power. This frees the programmer from concerns about
allocating sufficient memory for a given problem. Such allocation
before run-time is difficult, if not impossible, for most AL
applications since the problems are generally not of a predetermined
Size, Memcry management is accomplished in three phases by muLISP-g80,

A, Initial Data Space Partitionm

During the initialization phase of muLISP, the amount of memory
available to the system is computed. The memory is then partitioned

into four distinct data spaces based on the ratios given in the
fallowing tahle: .

Batio = Space

Contents
4:32 Atam space Name and number pointer cells
3:32 Vector space Print-name strings and number vectors
23:32 Pointer space D—code and nodes
2:32 Stack space System contral/value stack

To create data objects required for a running program, space is
taken from cne of the above spaces. Space for a new name's or 2 new

‘mmber’s painter cells is taken fram the atam space., At the same time

space for the associated print-name string or number vector is taken
fram the vector space, The painter space, which is by far the largest,
provides storage far both D-~code and nodes. The combined contral stack
and value stack is located in the stack space. The above ratios

approximate the relative use made of the spaces by most application
programs. .

B. Garbage Collection

The nature of stack operations makes management of the stack sgace
autaratic and continuous., However, management of the remaining three
spaces reguires explicit recycling of data cbjects which are nolanger
needed, New cdata cbjects are constantly created during the executicn cf
a LISP program, while cothers are implicitly discarded when they are no
longer referenced by active structures, . When the creation process uses
up all available resources within a space, a garbage collection is
performed, The storage space vacated by discarded data structures is
then reclaimed, so the process may continue,

In muLISP-B80 the exhaustion of resources in either the atom,
vector, or noce spaces will cause a callection to occur, The first pass
of the callection consists of marking those data structures accessible
from the value and property list cells of all system names and fram the
variable stack. During the second pass, the marked or active data
objects are ccmpacted into one end of their respective data spaces.
This leaves the remainder of the spaces availahle for new cbjects.

SR

S

e .

Although garbage collection is automatic, it is not entirely
invisible to the user since it periodically causes a pause in the
execution of a program. Less than half a second is required for the
collection process in a 48K byte muLISP-80 system using a 4MHz clock.
The time varies linearly with the computer's memory size and clock
speed. Normally this is of no concern to the application level
programmer; hovever, it shauld be considered in the design of real time
systems, Lo

" C., Reallocation of Data Space Boundaries

If after a garbage collection there is insufficient free storage
within a data space to continue a process, the partitions of all the
staces are reallocated to give more memory to the exhausted space. Thus
muLISP can respond to changing demands placed on the various data
spaces by differing applicaticon programs.

D. Insufficient Memory Trap

Normally, automatically invoked garbage callectims and dynamic
reallocation of data spaces will provide sufficient storage in each
space to continuously satisfy the demands of user programs. Haveves, if
the memory requirements for storing data objects finally exhaust all
available resources, an insufficient memory trap will occur. Since
every other prcblem that arises in muLISP has a satisfactory recovery,
 this is the only situation that causes an error trap. The txap displays
the fallosing message on the consale:

NI, Spaces Exhausted
Executive: ESC, ALT; Restart: RO8, [EL; System:s Cxl-C2

The user may then choose the desired option by typing t!_:e
respective cption character. The Executive cption is the least drastic
since it merely causes control to return to the LISP executive d::.vgr
loop, withaut charging function definiticons, propecty values, etc. This
is the most common response to the error trap. The Restart option
destroys all nonr-primitive muLISP functicns, property values, etc. and
restarts muLISP from scratch. Finally, the Svstem option terminates
muLISP and returns contral to the parent cperating system.

A phenarenc known as thrashing occurs when the system is fe:ced.to
spend an inordirate amamt of time garbage callecting and reallocating
data spaces for a very small net return. The symptom of thrashing is
greatly increased execution time for a given task. This can 9nly be
resolved by increasing the computer's memory size or decreasing the
amamt of progran and data storage :e;uireme.‘nts.

III-2

IV. The muLISP Meta-language

The applicative nature of the language makes LISP an ideal
formalism or meta—language for the precise specification of both natural
and computer languages. In fact LIS? can be used as its own meta-
langquage! The use of LISP in this way dates back to John McCarthy's
original investigations into the language, and the practice has
continued to the present. When LISP is used as a meta-language, it is
customarily written in a more natural, high-level syntax called meta—
LISP. While borrowing heavily from the concepts discussed in Allen's
Aoatomy of LISP [1978], the muLISP meta-language has been syntactically
enhanced to more clearly reflect the extended evaluation capabilities of
the underlying muLISP.

.

A. Meta-syntax

The falloving table defines the syntax of the muLISP meta-language
using Backus-Naur Form (BNF) first described in the ALGOL £Q Report
[1963] and summarized in an appendix to this mamual,

<definition>

1:= (ftype> <identifierd> [<var~listd>] := <dody>;
<ELtype> t:=s BV | QAN
<var-list> ::= <variable>, ..., <variable>
<body> t:= <claused>, ..., <clause>
<clause> i:=w fomd> | <canditianal)> -
<conditicnal> ::= <formd> —> <oodyd:
<fom> s:m (constant> | <variable> | <@pplication> |

<assigrment>

<{assigment> ::= (variable> <— <fom>
<application> ::= Jicdentifier> [<famd, ..., <famd]
<variable> s:= didentifier>
{constant> ::= NIL | TROE | LAMBDA | NLABOA | Qumberd>
<dentifier> is any muLISP name (see Section II.A.)
Quooer> is any muLISP number (see Section II.B.)

This syntax will be used in Section V in the description of the
primitive muLISP functions. However, the formal syntax rules will
occasionally be supplemented in the interest of improving reacability.
For instance, the logical operators "AND” and "OR", and the numerical

operators *+%, "*", etc, will be written in their conventional infix
forms. '

B. Meta-semantics

1. The meta-LISP constant NII, denctes the carresponding
muLIS? name signifying both the empty list, (), and the truth
value false, The constant TRUE denotes the muLISP name T

' signifying the truth value true.

2, The function type, <ftype>, indicates the arqument
evaluation scheme used in calls on the function. If a
function is typed as call by value (CBV), then the argquments

V-1

RCHSUE)

in the fuz}ction call are evaluated prior to passing them to
the function. Cn the other hand, call by name (C3N) functiens
teceive their arquments fram the call without evaluation,

3., Fam evaluation is predicated on the particular type
of form involved. The value of a constant is that constant.
The value of a variable is the contents of the value cell of
the variaple's name. The form asscciated with the right hand
side of an assignment is first evaluated and then the value of

the variable is set to the result. Function applications
proceed as fallows:

a. If the function is CBV, the arquments are
successively evaluated from left to right,

b, The value of the function's formal
arguments are replaced by the actual arguments,
evaluated or unevaluated as apolicable, and the ald
values are saved. Extra formal argquments which have
no corresponding actual arquments are set to NIL.

1

! c. The function is then applied as described
below, and the result saved,

d. The values of formal arquments are restored
to their original value.

e. The result of the applicatiom is returned.

4. The body of a function definition or of a conditional
statement consists of zero or mcre clauses separated by commas
and terminated by a semi-colon. In the application of a
function, its clauses are successively evaluated as fallaows:

a, If aclause is a form it is evaluated as.
described abave.

b. If a clause is a conditiomal, the predicate
form is evaluated. If it evaluates to NIL,
evaluation proceeds as normal to the next clause in
the current clause list. Otherwise, the body within
the conditianal replaces the original body as the
current clause list and the successive clause
evaluation cantinnes,

This process continues until the end of a clause list is reached,

at which paint the value of the last clause is returned as the value of
the application.

w=2

m

Section V: Primitively Defined Punctions

This section describes in detail all of the functions which have
been implemented as machine language subrautines. In addition to the
functiaons actually accessible to the user, several auxiliary functions
are also defined. These "helper” functions are introduced solely to
simplify and clarify the definitions of the functions directly
accessible to the user, Only the accessible functions are nmumbered in
the definitions below and indexed in the appendix.)

The muLISP meta-language described in Sectim IV is used as much as
possihle to define the effects and value of each function. Digressians
to English lanquage text are macde only when an irreducible, primitive
concept must be introcuced. The interpretation which fallows many of
the definitions is an attempt to give an informal description of what
the function does and hov it is typically used. :

A. Selector Puncti ons

Selector functions are used to select a desired sub-tree from a
given binary tree. This gives a method for extracting information from
the primary LISP data structure. Using the functions of this gramp, any
desired sub~-tree or terminal node of a given tree can be reached. The
functions CAR and CDR return the car and cdr branch of a tree
respectively. Successive applications- of these two functions is
sufficient to traverse any tree. As indicated below, the remaining
fincticns are merely compositions of CAR and CDR. They are defined in
machine language primarily for efficiency and convenience.

1., CBV CAR [X] := .
the structure pointed to by the car cell of X;

Interpretation: The correct interpretation of the CAR of
an expressio depends on whether that expression is an
atom or not, and if not whether it is thought of as a
list or a binary tree., If X is an atom, then CAR (X]
returns the current value of X. If X is a list, then
CAR [X] returns the first element of that list.’
Finally if X is a binary tree, then CAR [X] returns
the left or car branch of the tree,

2. & Qar [X] :=
the structure pointed to by the cdr cell of X;

Interpretaticn: ‘Remarks similar to thcse above apply to
the interpretaticn of the COR of an expression, Thus
if X is an atom, then CDR (X] returns the property
list of X. If X is a lisgt, then CDR (X] returns the
tail or everything but the first element of that list.

If X is a binary tree, then (DR {X] returns the right
< cdr branch of the tree,

v-1 ‘

3. v cam X] :=

CaR
R [CR (x]]; B. Constructor Punctions
4. @ cam [X] :m . . Constructor functions are used to generate the data structures
CAR (DR EX . required for the solution of a particular problem, In LISP such
11; structures are realized as a tree or linked list. These can be designed
Interpretat; oy,

. to closely reflect or model the data structure of virtually any problem.
of a list, function retyrng

: The principal member of this group, the CONS function, creates a new
the secong element node. The storage required for this node is taken from the area of
memory called the Pointer Space. If previcus consing has exhausted the
5. v AR [X] :n . Pointer Space, a garbage collection is automatically performed to
R (car EXIP reclaim the space used by data structures which are no langer reguired.
’

1. OB s (X, Y] := : '
6. v CorR X] :=) creates a node or celJ:-pair whose car cell points to X
ar (ar X1 and whese cdr cell points to Y;

. Interpretations: The correct interpretation of CONS

7. v CAAR [x] . depends on how the data structure being built is

CAR [CARI = conceived. When the structure is thought of as a

: (CAR (x]]]; list, CONS [X, Y] returns the list whose first element

is X and whose tail is ¥, If the structure is a

8. @&v caamm (X] := . _ binary tree it returns the tree whose left or car

: CAR [caR [éDR branch is X, and whose right or cdr branch is Y. Note
x111; . that this in no way alters the structures X or Y.

M

9. mVCADAR fXI swm

R . 2. CBN LIST (X1, X2, ..., Xn] 1=
(R [(car X111 : if n=0 -—-'-> NIL;, ‘
o 3 ONS (EVAL [X1], LIST (X2, X3, «..r X0]];
CAR {Q%][“ - Interpretation: This call-by"-name function takes an
@R [X]]]; arbitrary number of arguments and returns a list of
Interpretatyon, the evaluated results.

This ;
of alist, functien feturns the thirg element :
. 3. CBV REVERSE (X, Y] :=

L. v oax X] := %}éj [&i fxi QNS (CAR [X], Y11
R [CAR (CAR IXIJ]: . G ’ ’ ;

‘ Interpretation: When given a list X, this function
2, v AR X] : ! returns the elements of X in reverse orcer. Ncrmally
R [CAR y REVERSE is called with only the one argument.
(@R [x])); : Bowever, if a second argument Y is also given the
5 reversed list is appended to the list Y.
. CBV mDm [x1 em ’
TR (TR (car [X111; 4. CBV CRLIST (] :=)
14 a list of the currently active names in the system;
« GV (Cooer
COR [C&(J[:‘ Interpretation: The ocbject list, or more properly for
@R (x]]]; muLIS?, name list is a list of all the names currently
in the system, Tte names are listed according to the
order in which they werze read in or generated: the
most recent names are first and the primitive names
are last.

V-2

C. Modifier Punctions

Modifier functions actually redirect pointers in LISP data

Thus modifier functicns are used primarily for their effect
rather than their returned value. They can be used very effectively to
modify already existing structures, thereby eliminating the need for the
costly cansing together of a whale new structure, Since they can easily
produce urwanted side—effects such as circular lists, these functions

For a good

structures.

should only be used by the experienced LISP progranmer.,
exanple of their use, see the source listing for the muSTAR editor.

1. CBV RELACA (X, Y] :=
- car cell of X <— Y,
X;

Interpretations:
a. Replace the first element of a list X by Y,

b. Replace the left element of a dotted—pair X by ¥,
¢c. Replace the value of an atam X by Y.

2. Cav RELAD X, Y] =
cdr cell of X <— ¥,
X;

Interpretations:
a. Replace the tail of a list X by ¥,
b. Replace the right element of a dotted-pair X by ¥,
€. Replace the property list of an atom X by Y.

3. GV N (X, Y] :=
KoM [X] —> ¥;,
KoM [CDR [X]] —> mvm X, ¥1:,
NG [CTR [X], Y. ;
X;

Interpretation: Corcat:enate, withaut consing, the list Y
onto the end of the list X. The resulting list is the
same as wauld have been produced by APPEND, However,
NCOC actually modifies the first list by redirecting
the final cdr cell of that 1ist to Dgint to the second
list. Thus, if X and Y point to the same list, a
ciraular list will result, If an attempt is then made

to print this list, the printout will continue
indefinitely.

D. Recognizer Functions

Recomuer. functions are used to identify data structures. They all
take exactly cne argument and return a value of either T or NIL.

1-

2.

3‘

4.

S.

6.

7.

8.

CBV NAME (X] :=
if X is a name —)> TRUE;,
NIL;

Interpretaticn: This function recognizes names.
CBv NMBERP (X] :=
if X is an integer —> TRUE;,
NIL:
Interpretation: This function recognizes numbers.,
By AIM [X] =
NAME [X] OR NUMBERP (X];
Interpretation: This function :ecogrﬁzes‘a:cms: that is,
non-nodes.

{

BV NOLL (X] :=
R (X, NIL];

Interpretation: This functicon recognizes the mll 1ist,
CB PLUSP [X] =

GREATERP (X, O]:
Interpretation: This function recognizes positive numbers.
BV MINUSP [X] ==

LESSP (X, 01:
Interpretation: This function recognize negative numbers.
CBV ZEROP (X] ==

- R X, 0);

Interpretation: This functim recognizes the zero.
{

CBV EVEN [X] :=
2EROP [REMAINDER (X, 2]1:

Interpretation: This functien recognizes even numbers.

E. Coamparator Punctions

Comparator - functions are used to compare data structures. They all

require two arguments and return a value of either T or NIL,

1.

2.

3.

‘.

BV R (X, Y] := .

MIMBERP (X] AND NUMBERP (Y] —> X=Y;,

if X and Y point to the same cbject —> TRIE;,
NIL;

Interpretation: Normally the EQ) test is used for the

equality camparison of atams, i.e, names and mumbers,
For ocbjects other than numbers, EQ tests to see if X
and Y point to the same location in memory. As
described in Sectian @I, names are uniquely stored in
mntLISP. Thus the) comparison is an efficient test
to determine the egquality of names. However, since
numbers are not stored uniquely, K) actually campares
the mumber vectors of mmerical arquments,

RUAL [X, Y] :=

XM [X] —> R [X, Y];,

ATCM [Y] -> NIL;,

HUAL (CAR [X], CAR (Y]] —>
NIL RUAL [CDR [X], TR [X]]:,

Interpretation: The function IQUAL is used for the

equality comparison of two cbjects, as distinct from
the identity comparison provided by the E) test., The
structures X and Y are considered equal if they have
isomorphic tree structures with identical atomic
terminal nodes. Or put more crudely, X and ¥ are
equal if their print-auts are jdentical.

CBv MEMBER (X, Y] :=

e (Y] —> NIL;,
RUAL [X, CR (Y]] —> TRUE;,
MEMBER (X, COR (Y1]:

Interpretation: MEMBER (X, Y] will return T if the

expression X is RQUAL to any member of the list ¥, NIL
ctherwise.

CBV GREATERP [X, Y] 3=

NOMBERP [(X] AND NUMBERP (Y] —>
X>Y;,
NIL;

Interpretation: A simple greater than comparision for the

numbers X and Y. Note that NIL is returned if either

e R T

@)

of the arguments is not an integer.

CBV LESSP (X, Y] :=

NUMBERP [X] AND NUMBERP (Y] —>
X<Y;,
NIL;

Interpretation: A simple less than comparison for the

numbers X and Y. Note that NIL is returned if either
of the arguments is not an integer.

CV CRDERP (X, Y] :=

NOMBERP (X] AND NUMBERP (Y] —~> LESSP [X, Yl:,

if the address of the cbject X is less than the
address of the dbject ¥ —> TRUE;,

NIL;

Interpretaticon: This functim provides a generic ordering

for system names based .cn their crder of introeduction.
Thus if the name X were introduced before the name ¥

.. (i.e. X occurs to the right of Y on the cbject lis;)
‘then ORDERP (X, Y] will return TRUE; otherwise it
. returns NII. When nsed with non-atcmic arguments, the

result of this function is essentially meaningless,

v-7

P. Logical Punctions

by the recognizer and camparator functions, Here as
:rlseewhere in muLISP, any non-NIL value is considered to be logically

1. GV NOT [X] :=
R [X, NIL];

Interpretatia}: The logical NOT function returns T if and
- only if its argument is NIL. Thus it is entirely
equivalent to the function NULL.

2. CBN AND [n, n' veep Xhl =
if =0 —> TROUE;,
NOT [EVAL (X1]] —> NIL;,
AaD (X2, X3y eeer Xn);

Interpretation: The logical AND function returns T if and
only if each of its arguments evaluate to a non-NIL
value. Note that AND is a CBN functicn and that its
arquments are sequentially evaluated until one
evaluates to NIL or until all have evaluated to a non~

NIL value. Hence not necessarily all the ar ents
will be evaluated, Y -

3. CBN (R m' n' cseey ml =
if =0 —> NIL;,
AL [X1] —> TRUE;,
(0 33 [XZ' B’ Yy ml: !

¢

\ Y

Interpretation: The logical R function returns T if any

-
one of its arguments evaluates to a non~-NIL value.
The arguments are successively evaluated and if any -
evaluates to a non-NIL value, T is returned and none (J
of the remaining arquments are evaluated, .
/D

"~

G. Assignment Punctions

Assignment functions are normally used to assign values to program
variables, For instance, they permit the values of a function's formal
arguments to be mcdified without the need for a recursive functim call,
Thus in some situations they can significantly improve a program's
execution speed. If the variahle being assigned is not a local variahle
(i.e. not a formal arqument of the currently executing function), the
assignment will remain in effect even after the function is exited.
As with the modifier functions described above, this phenomenon is
called a side—effect of the functio.

Use of the function SEM should be familar to programmers of more
conventional languages such as BASIC and PASCAL where the assignment
statement is used pervasively. Though powerful, indiscriminate use af
the assignment functions will result in unstructured programs and
Getrimental side—effects which are exceedingly diffia:lt to cdetug. To
peevent develooing bad habits, the novice LISP programmer should avaid
use of these functions as they doscure the elegant, applicative nature
ct the language.

l, OGN SET (X, Y] :=
. RPLACA [X, Y],
Y:; -

Interpretation: Set the value of the name X to ¥, and
return Y, Note that the function is also defined when
X is not a name; however, its use in that sitnation is
strangly discouraged,

2. CBN SEM (X, Y] :=
SET [X, EVAL (Y1]:

Interpretation: Set the value of X itself to the value of
Y, and return that value, This function is used mcre
often than SET because usually it is desired to assign -
a value to a variable rather than to the value of a
variahle.,

The distinction between the effect of SET and SEWQ on their
arguments is demonstrated by the following. If the value of DCG is
BARK, then

SER [DOG, '(A B Q)]

will change the value of DOG from BARK to (AB C). In contrast, if the
value of DOG is BARK, then

SET (DOG, ‘(A B Q)]

will change the value of BARK to (A B C), and the value of DOG will
renain BARK.

{
i
i
i
|
i
i
¥
i
[

TR 3

3. N poP (X] :=
POPL (X, EVAL (X]];

Csv rOPL (X, Y] :=
SET [X, CDR [¥]1:,
CAR (¥]:

Interpretation: If X is the name of a list, then POP (X]
returns the car of that list while setting X to the
odr of the list. This operaticn is the LISP ana.log‘of
the familar pop stack operation widely used in machine
languages.

4. CBN PUSH [X, ‘Y] :=
SET (Y, NS [EVAL (X], BVAL (Y]ll:

Interpretation: If ¥ is the name of a list and X is an
expressian, then PUSH (X, Y] will cons X onto the lx;t
Y and update. Y to point to this enlarged list. This

operation is the LISP equivalent of pushing infor-
mation onto a stack.

v-10

H. Property Punctions

Property functions provide an excellent means of associating glcbal
properties with names. A name's property list is used to store these
properties along with indicator tags. The property value associated
with an indicator can be retrieved at any later time using the GET
functia. Used in conjuncticn with the flag functios described in the
next section, extremely flexible and efficient data bases can be
established in a very natural and cawenient manner,

1. CW ASSCC (X, Y] 3=
ATOM Y] —> Y;,
ATOM [CAR (Y]] —> AsSCC [X, OR [¥]]:,
RUAL [CARR (Y], X] —> CARR [Y];,
ASSCC (X, OR [Y]]:

Interpretaticn: This function performs a linear search of

L the association list Y, looking for a non-atomic
- . element whose car is RQUAL to X. If famd, the entire
. ! element is returned; otherwise NIL is retuirned.

2., GV GET [X, Y] 3= ’
AT [X] ~> NIL;,
R [X];

Interpretation: GET (X, Y] returns the property value
© associated with the name X under the indicater Y. If
the indicator is not found, then NIL is returned.

3, OB POUT [X, Y, Z] :=
NOLL (GET (X, Y]] —>
gza@ [X, QNS (Cms (¥, 2], ORrR [X]]1,
gmada'[assoc Y, R (x]1, zl.

<«

Interpretation: POT (X, Y, Z] places on the property list
of the name X under the indicatar Y the propercty value
Z, destroying anmy previous value.
{
4. CBV REMPROP (X, Y] :=
ATOM [CDR [X]] — CR [X]:,
RUAL [CAADR [X], Y] —>
Y <— am (X],
RPLAD (X, COR (X]], Y¥Y:»
REMPROP (DR [X], Y):

Interpretaticn: REMPROP (X, Y] removes from the property

list of the name X the property value assocciated with
the indicator Y. It returns the property value.

V-1

AT

I. Plag Punctions

Like the px:oéerty functions the flag'functims also us .
propecty list to stere information. However, e a name's

N . the name is onl
as either having a particular attribute or not, ¥ fagged

1. OBV FLXGP [X, Y] :=
MEMBER (Y, DR (X]]:

Interpretation: This predicate will return T if and only
if the attribute ¥ is an element of the property list .
of X; and NIL otherwise. Note that if Y is an
indicator put on the property list by using the PUT

function, it will anly be recognized by the function
GET and not by FLIGP.

2. CBV FLAG [X, Y] :=
FLXGP [x' Y] —> ¥

%9”‘33 x, axs ¥, ar [X]1],

Inte:ptetatidu FLXG [X, Y] will flag the name X with the

attribute ¥ by making Y the first element of the
property list of X. ’

3. G REMFLAG X, Y] 3= '
MOM [COR (X]] —> NIL;,
RUAL (Y, CAIR [X]] —>
. gpmm X, COOR [X]1, :
i
REMFLXG [CDR (X], ¥]:

Interpretation: This function removes the attribute ¥
fram the property list of the name X, returning NIL if
the attribute is not faund.

A

J. Definition Punctions

The functicon definition functions are the only means of access to a
name's function definition cell. When a function is defined using PUTD,
the definition is pseudo—compiled into an extremely dense farm called
D~Code or Distilled Code. This compilation results in about a 3 fold
increase in code density and approximately a 20% improvement in
execution speed over muLISP-79, The compilation of S~expressions
containing cdr cells which point to non-NIL atoms results in the
replacement of the atom by NIL. In general it is recommended that
QUOTEQ non—-atomic constants NQT be included in function definitions
directly. Instead, the constant can be assigned to a name which can be
used in the definiticn in place of the canstant, The inverse process of
de~compiling D~code back into a linked list also occurs autcarmatically
when GETD is used to retrieve a definiticn, Thus the use of D-~code is
invisible to the user and the interactive nature of LISP is not
conpromised in the interest of efficiency and compactness.

l. OB GEID [X] :=

: NOT (NAME ([X]] OR UNDEFINED [X] —> NIL;,

SIER [X] R FSGBR (X] —>
memccy address of machine language subroutine;,

the S-expression egquivalent of the D~code defining the
functian X; ‘

Interpretation: This function is used to get a functien's
definition for further processing. If the function is
a machine language subroutine, the physical memory
address of the function is returned. Otherwise the
linked list equivalent of the D~code is returned. See
section V-0 for the definitions of SUBR and PSUBR.

2. v U0 [X, YI =
NOT [NAME [X]] —> NIL;,
NOMBERP [Y] —>
function cell of X <— address given by ¥;,
function cell of X <— D—code equivalent of Y,
X;

Interpretation: If Y is a number, PUTD [X, Y] sets the
function cell of X to the memory address ejual to the
mmber Y (modulo 64K). Otherwise the definition cell
is set to the D—code equivalent of Y. The procedure
for using POTD to link to machine language subroutines
is described in Appendix C of this marmual,

3. v MOUD (X, Y] = .
NOT [NAME (X]] CR NOT [NAME (Y]] —> NIL;,

function cell of Y <{— function cell of X,
GEID (Y}:

Interpretation: Set the function cell of Y to point to
the same memory location as that of the function cell

of X. In cases where a MOVD is sufficient it should
be used instead of a GETD and PUTD.

JE———————

K. Sub-atomic Punctions

The sub—-atamic functiocns are so named because they provide access to
a name's print name string or a number's number vector. This makes it
possible to temporarily unpack an atom's print name, operate on the
resulting list of characters, and ultimately repack the list to form a

new name. In addition to its sub-atomic capability the LENGTH function
determines the top-level length cf an S—-expression.

l. GV PXX (X] :=

ATCM [X] —> *%;,

NAME [CAR [X]] —>
concatenate the print name of CAR [X] with
PACX [CDR (X]] and return the resulting name;,

NIMBERP [CAR (X]] —>
concatenate the print name string of the number
CAR [X] with PACK (CDR (X]] and return the

! resulting name;,
PAX [CDR (X]];

Interpretation: This function, called COMPRESS in some
dialects of LISP, returns a name whose print name is a
packed version of the print names of the atoms in the
list X. The currenu kaDIX base is used to determine
the print name string of numbers., Note that PACK
always returns a name, even if it only contains
digits, As shavn in the muLISP library file, PACK can
be used to write a GENSYM (generate symbal) function,

2, BV PACK [X] :=
NAME (X] —>

a list of names whose print names correspond to
the characters in the print name of X; :
NOMBERP (X] —> :
a list of names whose print names are numerals
ccrresponding to the digits of X expressed in the
current radix base;,
NIL;

Interpretation: This function, called EXPLODE in some
dialects of LISP, returns a list of names whose one~
character print names correspond to the successive
characters in the print name of X. The current radix
is used for mmbers and digits are coaverted to names
with single numeral print names.

v-14

3. GILDGTB [X] :=

NAME (X] —>
the mumber of characters in the print name of X;,
NUMBERP (X] —>
the number of digits in the print name equivalent
of X;,
ATM [CDR [X])] —> 1:,
1 + LENGTH [CDR [X]]:

Interpretations: This function is effectively three
functions in one. The value returned follows
intuitively froam the data type of its argument:

a. If X is a name, the number of characters
actually reguired to print X is returned. The current
value of PRINL is taken into account while camputing
this length. The effect of PRIN1 is described under

the control variable subsection under the Printer
Rmnctins.

b. If X is a number, the number of characters
actually required to print X is returned, The current
radix base and if applicable the leading "~" sign
and/or leading "0" are properly taken into account
while computing this length.

c. If X is a non—atomic, the number of top level
nodes in the list is returned. As always in mulLlIS?, 2
odr which is atamic denctes the termimator of a list.

1y ve

L. Numerical Punctions

The mmerical functions implement i
. exact precision integ i i
for ma.\mbe:s of magmmdg up to 272032-1, or Efa;q:t 611 deci:‘:la:d;;?:nseucg
o 1 an rerfley comera, g pns are passed £0 ary of the fmcticns
y con returns ivisi
by zero by any one of t{:e functions QUOI'IENTA, v;l;me S ng ormgllvs;gg
Qauses the fallaving warning message to be displayed on the ::msqle:

ZERO Divide Error
and the function returns a value of NIL.

1. BV MINUS (X] :=
, NDMBERP (X] —> -X;
NIL;

2. CW PLOS [X, Y] :=
NOMBERP [X] AND NUMBERP X] —>
X+Y;
NIL;

3. GV DIFFERENCE [X, Y] := :
m;:zpéxx AD NRMBERP [Y] —> _
NIL; ! -

4. BV TIMES [X, Y] :=

MBI (] 4D NOMBERP (Y] —>
§m;

S. CBV QUOTIENT (X, Y] :=
NIMBERP (X] AND NOMBERP X] —>
NIL X/Y (Truncated toward zero);

_ Interpretaticn: The truncated integer quotient,

6. CBV REMADDER (X, Y] := '
DIFFERENCE (X, TIMES (Y, QUOTIENT (X, Y1]];

7. CBV DIVIDE (X, Y] :=
NCMBERP (X] AND NUMBERP (Y] —>
'OCNS (QUOTIENT (X, Y], REMAINDER (X, Y]];

.

V=1Kk

M. Reader Punctions and Control Variables

The reéader functions provide for character input to muLISP programs.
The functions read characters fram the curreat input source. This inout
source can be either the console or any text file on the disk or other
Secondary storage device., The current input source can be controlled
through the use of the function RDS in conjunction with the control
variable RDS. .

l. GV RS (X, ¥, 2] := (ReaD Select)
NILL [X] —>
,ROS <— NIL;,
NAME [X] AD NAME (Y] —>
NULL (2] —>
a file named X.Y exists on the currently
logged in disk drive —> .
cpen X.Y for inmput,
ROS <— X;,
ROS <— NIL:,
NAME (2] —>
a file named X.Y exists on drive Z —>
open X.Y on 2 for input,
RDS <— er
RDS <— NIL:,
ROS <— NIL;,
RDS <— NIL;

Interpretaticn: The read select function is used to

: select an input source file. If the selected file is

found, the file is opened for input, and the value of

the variahle RDS is set to the name of the file. Thus

.. this file becomes the new current input source, If

' RDS is called with no argquments, invalid arguments, or

if the file is not found, the variable RDS is set to

NIL making the cconsale the current input scurce, Toe

default DRIVER function sets RDS to NIL, This makes

- the consale the current input source on initial system
startup and after intecrupts or errar traps.

2. GV RATM (] := (Read ATCM)

read one token from the current input source and
return the corresponding name car number. A token is a
string of characters delimited by either separator cr
break characters. See the notes at the end of this
section for details on including comments and quoted
strings within a token. Unlike separators, break
characters are returned by RATOM as single character
LISP names. The RATOM separator characters are:
space, carriage return, line-feed, and tab (CTRL-I).
The RATOM break characters are: ! $ & ' () *
+ . = ./ & < =>2 [\N] T _"
{1} - : ‘

BV READ (] :=
READG (RATM (]];

(READ Expressian)

CBV READO [X] :=
R (X, ‘(] =
: READLIST (RAMM (]];,
R X '[]—
(READLIST [RATM (]], RATM []

READBRACKET {11:
REX 9] ®R DI '] ® B X ']]
RERD (12

x4
.
.

CBV READBRACKET (X, Y] :=
R Y] R DI '] —> x;,

s [X,Imm [REACLIST (Y], RATM []]];

CBV REALLIST [X] :=
TERMINATOR (X] —> NIL;,
R X '] -
READCOT [RERD (], RAIM []];,
OXS (READO (X], REACLIST (RATM (1]];

CBY READDOT [x, Y] o=

4. GN READCH (] := (READ CHaracter)

read cne character from the current input source and

return the corresponding LISP atom. A number is

returned if the character is a decimal digit less than
, the current radix base,

Notes:

1. If a disk file is the current input source and an

attempt is made to read past the end-of-file (EOF), the

fallowing warning message is displayed on the consale:

‘

End-Of-FPile Read

In addition, the contral variahle RDS is set to NIL, making the
cansale the current input source,

2. Comments can occur anywhere in the text of the input
source so long as they are delimited by matching percent signs,
“3". The text of comments is totally ignored by the functians
RATOM and READ., However, the function READCH reads and returns
percent signs just as any other character,

3. Special characters such as the percent sign, double
quote sign, separator characters, and break characters can be
read in as names or parts of names by the use of quoted strings.

: i douhle
Such strings are delimited by double quote marks. The
R X ']] —> ' quote can be included within the string by using two adjacent
unread "]* character back into input source for dauble quotes for each desired double quote,
the next RATM read,)

;' ’ 4. As an added programming conwenience, when 2 name is read
L into the system by READ, RATOM, or READCH, the value of the

- RATOM is set to the new name, Lo
GV RIDM [] = _ variable ‘ ‘

read one token from the current inmput source and

return the corresponding name or number. This

function is identical to RATOM except the RATM

separator characters are: space, comma, carriage K

return, line-feed,. and tab; and the RATM break ‘J

charactersare: () . [] See the notes below

foar details concerning caments and quoted strings,

Interpretaticn: The READ function reads one camplete
symbolic expression from the current input source
while constructing the equivalent LISP data structure.
Well formed expressions using either the list
notation, dot notation, or a combination of both are
acceptable means of input. Brackets can be used as
8uper-parentheses. Thus the right bracket, "]",
closes all left parentheses back to either the
beginning of the expression or to a matching left

bracket, Extra right parentheses, right brackets, and
dots are ignored.

: v-19
v-18 ‘ ' b

‘n‘ze reader control variables extend the flexibility of the reader
functions by making several input options available to the user. They
operate as flags or toggles which are either off or on. Except for
ECHO, the reader control variables have the same names as the reader
functions, This is dene primarily to conserve precicus memory space;
hosever, each variable is usually used in conjunction with the functien
of the same name,

1. RDS: Normally control of the currant input source is
done through the use of the function RDS as described above,
However, after a file has been ocpened and made current, contral
can be returned to the consale without closing the input file,
simply by setting the value of RS to NIL. A subsequent non~NIL
assignment to RDS will then return control to the previously
cpened disk file at the point at which reading was

2. READ: The variahle READ contrals the lawer to upper case
conversion of letters upan inmput, Normally READ is non-NIL and
lower case letters are distinct from their upper case
counterparts, However if it is NIL,'all laver case letters are
converted to upper case as they are read in, In any case, all
laser case letters already in the system remain in laver case,

3. READCH: When the console is the current input source,
the console input mode is controlled by the variable READCH.
Normally the value of the variahble READCH is non-NIL and ccnsale
irput is then in the line edit mode. In this mode, when all the
characters have been read fram the current line, the operating
. system's line edit rcutine is called for further inmput., Until a
- carriage return is typed, the system's normal editing procecures

such as input echoing, backspacing, line deletion, printer
output toggle using control-P, etc, are in force. If the
variable READCH is NIL, all buffering and input echoing is
eliminated., This raw input mode is useful for immediate
response to e character ccamands as demanstrated in the LISP
ST2R editor. '

4. PCI0: If a disk file is the current inout source and the
value of che control variable ECHO is non-NIL, the characters
being read from the file are echoed to the current cutput sink,
which is usually the consale. Note that since comments are, also
echoed, English language text within a comment can conveniently
be displayed withaut having to actually process the text. See
the printer contral variable sectiocn for other effects of BCHG

v-20

The reader contral variables extend the flexibility of the reader
functions by making several input options available to the user. They
operate as flags or toggles which are either off or on, Except for
ECHO, the reader control variables have the same names as the reader
functicns. This is done primarily to conserve precicus memory sgace;
hovever, each variable is usually used in conjunction with the function
of the same name,

1. RDS: Normally control of the current input source is
done through the use of the function RDS as described above.
However, after a file has been opened and made current, contral
can be returned to the cansale without closing the input file,
simply by setting the value of RDS to NIL. A subsequent non-NIL
assignment to RDS will then return control to the previously
cpened disk file at the point at which reading was

2, READ: The variable READ contrals the laver to upper case
coagversion of letters upon input, Narmally READ is nan=NIL ard
lower case letters are distinct from their upper case
comnterparts, However if it is NIL, all lover case letters are
converted to upper case as they are read in., In any case, all
lower case letters already in the system remain in lower case,

3. READCH: When the consale is the current input source,
the console input mode is controlled by the variable READCH.
Normally the value of the variable READCH is non-NIL and conscle
imput is then in the line edit mode., In this mode, when all the
characters have been read from the current line, the operating
system's line edit rautine is called for further input, Until a

T carriage return is typed, the system's normal editing procecures

such as input echoing, backspacing, line deletion, printer
output toggle using control-P, etc, are in force. If the
variable READCHE is NIL, all buffering and input echoing is
eliminated. This raw input mode is useful for immediate

response to cane character ccmmands as demanstrated in the LISP
STAR editor.

4. BCBO: If a disk file is the current input source and the
value of the control variable ECEO is non-NIL, the characters
being read from the file are echoed to the current cutput sink,
which is usually the consale. Note that since comments are also
echoed, English language text within a comment can conveniently
be displayed without having to actually process the text. See
the printer contral variahle section for other effects of BCHQL

N

e Al o

N. Printer Punctions and Control Variables

The mu:'[.ISP printer functions direct character output to the current
output sink. As determined by the function and variable WRS, the

sink can be either the console or a disk file,

l. BV WRS (X, ¥, 2] :=

(WRite Select)
NOT NULL [WRS] —>

write out the final record of the currently open

disk file and close the file,
WRS <-— NIL, '
WRS [X, ¥, 2]:,
NOLL (X] —>
‘WRS <— NIL;,
NAME (X] AND NAME (Y] —>
NOLL [Z] —>
on the currently logged in disk érive, if a
file named X.Y exists delete any existing file
named X.BAK, then rename the file X.Y to
X.BAK, and make a new directory entry for XY,
WIS oo x:'
NAME (2] —>
on drive 2, if a £ile named X.Y exists delete
. any existing file named X.BAK, then rename the
n i " file X.Y to X.BAK, a2nd make a new directory
‘ entry for XY,

WRS <— X;,
WRS <— NIL;,
WRS <— NIL;

Interpretation: The write select functim is used both to
select and later to close cutput sink disk files,
If the current output sink is a disk file and WRS is
called, that £ile is closed. Next, if a £ile name,
tyre, and a drive (opticnal) are supplied as arguments
to WRS, an already existing f£ile of that name is
renamed to a .BAK file of the same name, This
provides an automatic one level file backup feature.
Pinally a new file of the given name and type is
created for output on the appropriate drive, and the
variable WRS is set to the name of the f£ile, Thus
this file becomes the new current output sink. The
default DRIVER function sets WRS to NIL making the
consale the current output sink on initial system
startup and after interrupts or errar traps.

2. CBV PRINT [X] 3=
PRINL (X],
;mmx a.

Interpretaticn: Print the expression X, terminate the
last line and return X,

v-21

3. CBV PRDOQ (X] :=
NAME (X] —>) .
. output to the current ocutput sink the print name
representaticn of Xi,
NOMB _—
gﬁpﬁﬂ to the current output sink the digits
expressing X in the current radix base and
preceeded by a -~ if MINOSP (X]:,
PRINL (“("],
PRINLIST (X],
X;

CBV FRINLIST [X] :=
PRI, (CARR [X]], .
NOLL (COR (X]] —> ERINML (™)"°1:,
-PRINL (" *],
ATOM [ODR (X]] —>
Ple [-o -ll
PRINL (CDR (X1],
RN ()]s,
PRINLIST [CDR [X]1?

k3 s : ’ the
terpretation: The function PRINL w:..l} output

facerp standard list notation of the object X to the
current output sink., X is the returned value,

4, CIV TERPRI)[{Xl =; -
tutput[a] ca.rriage' ':emm and line feed to the current
autput sink,
PLUSP [X] AND LESSP (X, 256] —>
TERPRI - (X-1];/
NIL:

terpretatiocn: If X is a pon-negative number, TERPRI x1
m outputs X number of new lines to the current ocutput
sink. Othewisemenalimismtgmmthesink.

5. C3V SPACES [Xi =
PLUSP [X] MND LESSP (X, 256] —>
moa (M "1,
SPXCES [X-1]:, "
the current cursor pesition;

. . X]
terpretaticn: If X is a non-negative number, SPACES Rt
In autputs X number of spaces to the current cutput sink.
Otherwise no spaces are output to the sink. In any

case, the resulting cursar position 1is returned.

v-22

T

The p:im:e:‘ coatral variables are used analogously to their reacer
control counterparts. They function as toggles to contral the current

output sink, case converion, printing of quoted strings, and output
echaing of characters to the consale.

6. CBY LINELEGTH (X] :=
Y GREATERP (X, 11] AND LESSP (X, 256] —>

RS

set maximm output linelength to X,
return the previocus linelength;,
return the current linelength;

Interpretation: If X is a number between 11 and 256,
LINELENGTH (X] sets the maximum number of characters
output per line to X. The function returns the
previcus linelength, If X is not a number or autside
the permissible range, the current linelength is
returned, The default linelength is 72.

7. GV RADIX (X] :=
GREATERP (X, 1] AND LESSP [X, 37] —>
set radix base to X,
return the ald radix base;,
return the current radix base;
Interpretation: If X is a mumber between 1 and 37, RADIX
* + [X] sets the radix base in which numbers are expressed
; for both input and output, and the function returns
; the previous base. - If X is not a number or outside .
the permissible range, the current radix base is
returned. The default radix base is decimal ten,

Notes:

1. If a disk file is the current output sink and there is

insufficient disk space, the fallowing warnin i
disp.laygd on the consales ’ g 9 message 13

No Disk Space

In addition, the contral variable WRS is set to NIL, making the
consale the current cutput sink.

2. If the host_ computer's operating system supports a
printer and muLISP is in the line edit mode (see note 3 under
reader control variables, section V-M), typing a CTRL-P will

direct all muLISP cutput di ed on the tem
or L display sys consale to the

v-23

1. WRS: Normally contral of the current output sink is done
through the use of the function WRS as described above.
However, after a file has been opened using WRS, output can be
directed to the consale without closing the disk file by simply
setting the value of WRS to NIL. A subsequent non—-NIL
assigrment to WRS will then redirect ocutput to the disk file and
append data to the end of the file.

2. PRINT:’ The variable PRINT controals the upper to lower
case coaversion of letters being cutput. Narmally PRINT is nom—
NTL and all letters are printed as stored. However, if it is
NIL, all upper case letters are cawerted to lover case as they
are printed. This conversion in noway affects the internal
storage of anmy name's character string.

3. mnu.: 1f PRINL is NIL, names which contain separator ot

" break characters will be printed using double gquotes as

mcessarytopemittbenametobesubsequently read back in as
the same name. Printing such names using quoted strings is
essential for such applications as LISP editors. Normally,
however, PRINL is non-NIL and a name's print name string will
simply be cutput as is

4. ECHO: If adisk file is the current output sink and the
value of the contral variable ECHO is non-NIL, the characters
being cutput to the file are also echoed to the consale,

V=24

O. Bvaluation Punctions

The evaluation functions are used for expression evaluaticn and
program contral. The algorithm for evaluating function bedies in muLIsp
has been enhanced to make program contral implicit in the structure of
the body itself. As discussed in section I-E, this makes function
definitions cleaner, sharter, and easier to interpret.

A muLISP function definition is specified by a linked list
representing the desired definition. The first element of the list
determines the function's type. It should be either the name. LAMBDA or
NLAMBDA, LAMBDA indicates the function is a call by value (CBV)
function, When a GV function is called, arquments are first evaluated
and only the resulting values are passed to the function. A function
defined using MLAMBDA (i.e. a No~eval LAMBDA) is a call by name (CBN)
function. A CBN function receives its arguments in unevaluated forn,
just as they were given in the call to the functicn, &V functicns are
by far the most prevalent in LISP. Thus the novice programmer need not
be concerned with learning to use the CBN functions until the other
features of the language have been mastered,

The second element of a function'’s definition should be either a
name or a list of names defining the function's formal arguments. If
the formal argument is a name which is not NIL, the function is
consicdered to be a no-spread function., A no-spread functicm receives
its arquments as one list baund to the name, Thus no-spread functions
can have an arbitrary number of arguments, EHowever, if the second
element is a list of atams, the arguments will be passed to this spread
function baund to each farmal argument making up the list, Note that a

function's being spread or no-spread is entirely independent of its
being CBV or GBN. '

The remaining elements of the list make up the definition's function
body. The function body is a list of tasks which are to be successively
performed when the functicn is called. The returned value of the
functicon is the value of the last task performed. Haw a given task is
to be perfarmed depends on the structure of the task, as fallows:

1) If the task is an atom, the value of the task is the
value of the atam.

2) If the car of the task is an atom, the car is considered
to be the name of a function which is to be applied to the list
of arguments making up the ¢dr of the task, The argquments are
evaluated before the application for BV functions,

3) 1£ the car of the car of the task is an atom, the car of
the task is considered to be a predicate, which is then
evaluated as described in 2) above, If the value of the
predicate is NIL, the value of the task is NIL. EHowever, if the
predicate's value is non-NIL, the original function body is
abandaned

and evaluation proceeds using the cdr of the task as
the new function body.

4) Otherwise the task is recursively evaluated as a function
body itself before continuing with the evaluation of the top
level function body. This permits conditicnal forks in function
bodies to later recambine.

This evaluation scheme is very powerful but it does not have any
provisions far non-recursive program contral structures. Such :.ter.ata..Ve
capability can be added to the algorithm above qu:.te.sxmgly. A function
body enclosed within the LOOP contral construct will be evaluated as
described above, except evaluation will start again at the begm;m:g of
the body instead of returning after the last task has been ge:-ormed.
This contimies until a predicate as defined in case 3) above is nan-NIL.
The value of the’loop construct is the value of the function body
fallowing the non-NIL predicate, Note that any number of pr:ed:.qaces can
occur within a loop at any desired location. This implementaticn of a
LOOP preserves the basic evaluation method of muLISP while greatly
improving the perfarmance of the language. .

The fallawing auxiliary finctions are recognizers used to define the
evaluation and function definition functions,

BV MNDEFINED [X] := (Ondefined function recognizer)

NOLL (GET® (X]]:

BV CBVP [X] := (Call-by—value recognizer)

SBR [X] R ECGR [X];

'(BICBNP X] ==

(Call-by-name recognizer)
FSOBR (X] (R FEXPR [X]: :

CBV SUBR [X] := (Cw‘wbrwtine recognizer)
X is a CBv machine lanquage routine —> TRIE;,
NIL;

CBV FSUBR [X] := (CBN subractine recognizer)
X is a 8N machine language routine —> TRUE;,
NIL;

v EXPR [X] :=
N [CAR (X], 'LAMBDA];

(CBV LAMBDA defined functian
recognizer)

CBV FEXFR (X] :=
R (R (X], "'NAMEDA];

(CBN LABDA cdefined function
recognizer)

e -

C

1. GBNQUOIE (X] :=
X;

Interpretaticn: This function suppresses evaluaticn of
its argument and returns the object X itself,

2. CBV VAL (X] ==
ATOM (X] —> CaR [X]:,
NAME [CAR [X]] —>
MDEFINED {CAR (X]] —>
0 (CR [X], VAL [CR (X]]] —>
VLIS (X];,
EVAL [CNS (EVAL [CaR [X]], OR (X]]1:,
CBVP (GEID [CAR [X]]] —>
APPLY [CAR [X], EVLIS [CR [X111:,
e [GED [CR [X]]] —>
APPLY [CAR [X], CR (X]]:,
VLIS [X]:,
BEFR [CAR [X]] —>
_ APPLY [CAR (X], EVLIS [CR (X1]]:.
FEXPR [CAR (X]] —
APPLY [CAR (X], OR [X]]:,
LIS [X]:

Interpretation: If X is an atom, EVAL [X] returns the
contents of the value cell of X. Otherwise, if the
car of X is a CBV functian, each element of the <dIr af
X is evaluated and the function is applied to the
results, If the car of X is a CBN function, the
function is applied to the cdr of X directly.

" Pinally, if the car of X is not a function, each
element of X is evaluated in turn, and a list of the
results is returned. .

7 WVLIS [X] :=
ATCM (X] —> NIL;,
axs (EVAL (CAR [X]], VLIS [OR (X]]]:

Interpretation: This function evaluates each element of a
list and returns a list of the results.

3, CBr APPLY [X, Y] :=
NAME (X] —>
ONDEFINED ([X] —>
R (X, vaL (X]] —> NIL;,
APPLY (EVAL [X], Yl:,
SUBR [GETD (X]] —>
ATM (Y] —>
X [NIL, NIL, NIL};,
A ([CR (Y]] —>
X [CAR (Y], NIL, NIL];,
ATCM [CCOR (Y]] —>

X [CAR (X], CADR (X], NIL l’

.

X [CAR (Y], CADR (Y], CADDR [Y]];
F X EY] ol =
EXPR [GZID' (X]] OR FEXPR (GETD (X]] —>
BN (CADR [GEID [X]], YI,
Y <— EVALBQDY (NIL, CODR {GETD (X]]],
;mam) (CADR (GEID (X1]1,
NIL;,”
EXPR {X] CR FEXPR [X] —>
BN (CADR [X], Y],
Y’ <— EVALBCDY [NIL, CCDR [X]],
SNBDD [{CADR (X]1,
m‘; e

Interpretation: APPLY [X, Y] applz.es the function X to
the list of arguments Y. If X is a machine lanquage
routine, control passes to the routine. If X is a
LAMEDA defined function, the formal arguments of X are
temporarily bound to the actual arguments, the
function body is evaluated, the original values of the
formal arguments are restored, and the value of the
function body evaluation is returned.

CBV EVALBQDY (X, Y] :=
ATOM (Y] —> X;,
ATCM [CAR (Y]] OR ATOM [CAAR (Y]] —
EVALBCODY (EVAL {CAR (Y]], OOR [Yl];,
ATOM (CAAAR (Y]] —>
X <— EVAL [CAAR (Y]],
NOT [X] —>
EVALBQDY (NIL, COR (Y1]l:,
EVALBCDY (X, CDAR (Y]];,
EVALBQDY (EVALBDY (X, CAR (Y]], OR (Y]];

Interpretation: This function evaluates a function body Y
as described in the introduction to this section and

returns the value of the last expression which was
evaluated,

CBV BDD (X, Y] :=
ATOM (Y] —>
ATCM [X] —> NIL;,
PUSH (EVAL [CAR (X]], ARGSTAKX],
SET [CAR (X], NIL},
BIND (R (X], Y]:,
ATCM {X] —> NIL;,
POSH (EVAL [CAR [X]], ARGSTACK],
SET [CAR (X], CAR (Y]],
B (DR [X], COR (¥)];

(>

4.

5.

Interpretation: This function saves the ariginal values
. of the atoms making up the formal arqument list X on
the arqument stack named ARGSTAX. Simultanecusly the
value of the formal arguments is set to the

corresponding elements of the actual arquments given
in the list Y.

CBV MBIND (X] :=
AT [X] —> NIL;,
oBDD (R [X]],
SET [CAR [X], POP [ARGSTAX]]:

Interpretation: This function restores the original

values of the atoms on the formal argument list X
stored on ARGSTACK.

(BN COD (X1, X2, «..r Xn] 2=
EVALOOND (LIST (X1, X2, «eer Xm]];

BV EVALCQD (X, Y] :=
ATCM [X] —> NIL;,
Y <— EVAL {CARR [X]],
NOT (Y] —> EVALOOND [CDR (X1]:,
EVALBODY [Y, COAR [X]];

Interpretaticn: The CD function successively evaluates
the car of X1, X2, .., Xn until either a non-NIL
value is encountered or all have evaluated to NIL. In

- the former case the cdr of that arqument is evaluated
* as a functicn body (see the interpretation of APPLY
for details)., In the latter case NIL is returned by
COND. This extended COND is a powerful upward
compatible extension of the COD functiom described in

- original LISP l.5.

QBN LOCP (X1, X2, eeey XN] 3=
EVALLOOP [LIST {X1, X2, ..., Xn],
LIST (X1, X2, ...r Xnl];

GV EVMLLOCOP [X, ¥, 2] :=

ATM (Y] —>
EVALLOCP X, XI:,

ATM [CAR (Y]] (R AIM [CAAR (Y]] —>
EVAL [CAR (Y]],
EVALLOOP [X, COR [Y]]:,

KIOM [CAAZR [Y]] —>
Z <(— BEVAL [CAXR (Y]],
NOT (2] —> EVALLOOP (X, OR (Y¥]}:,
EVALBODY (2, CDAR [Y]]:,

EVALBCDY (NIL, CAR (Y]],

EVALLOOP (X, COR [Y]]: '

V=29

6.

Interpretation: The LOOP construct evaluates its argument
in a manner identical to the evaluaticn of the clauses
in a functicn body. Haowever, if all the arguments are
evaluated withaut a conditional having been satisfied,
evaluation begins again with the first argqument.

CBN PROGL [X1, X2, «e., Xn] :=
EVALPROGL [EVAL [X1], LIST (X2, X3, .., Xn]];

CB&v EVALPROGL [X, Y] :=
ATOM lY] -> Xz,
EVAL (CAR (Y]],
EVALPROGL [X, COR (Y]]:

Interpretation: This function successively evaluates X1,
X2, ..es Xn and return the result of the evaluation of
bal

GV DRIVER (] := (Eval muLISP driver)
: RS {— NIL' | -

WRS {— NIL' ' i
BECHO <— NIL, '
READCH <— 'REACH,
TERPRI (],
PRINL ['°S *],
PRINT (EVAL (READ (]]]:

Interpretation: This is the default eval-LISP driver
function as primitively defined in machine language,
The function DRIVER is repeatedly evaluated by the
muLISP executive driver loocp, Therefore DRIVER can be
redefined at will to suit the user’s needs, Por

instance the fallowing is a sample eval-quote-LISP
driver:

C3V DRIVER [] :=
RCS <— NIL,
WRS <— NIL,
BCHO <— NIL, :
READCH <— ‘'READCH,

TERPRI (],
PRI ['*> "],
PRINT [APFLY (READ (], READ (]]]:

b}

(Eval-quote muLISP driver)

v-30

S e o A LR

P. Memory Management Functions

The memory management function is used to force a garbage collecticn
and return the amount of currently available data space. Since memory
management is fully automatic in muLISP, normally there is no need to
explicitly use the function except for its value. See section III for a
discussion of the memory management System.

l. GV RBG'fAm {1 == Llection
orm a garbage collectl .
Exe:ue amount of free space exp;essed in bytes;

taticn: This function forces a garbage collection
mte:t'grg@r. The total amount of free space in the atom,
vector, and pointer spaces is returned, expressed in
bytes. Note that two bytes are :equiged for each
mULISP pointer cell. Thus nodes require 4 bytes,
numbers require 6 bytes, and names require 8 bytes.
In addition names and numbers require storage for
their respective print name strings and number
vectors.

V=31

Q. Environment Punctions

The environment functions are used to save and load muLISP
environments., Prior to saving a system, all the data spaces are
automatically compacted into one area of memory so the resulting SYS
file will be of minimum size. The SYS file can be locaded into a
different size computer system than the ane that produced the SYS file.
See section I-H for a detailed discussion on the use of SYS files.

1. GV saVE (X, ¥] ==
NUT BULL [WRS] ~—>

write out the final record of the current output
sink and close the file,

WRS <— NIL,
SAVE (X, ¥):,
' NME (X] A0 NME (Y] —

v . NILL (Y] —>
caompact all current data structures,
! save a memory image of the current environment
v . as a SYS file named X on the current drive,
, TRUE; ,
i compact all current data structures,
save a memory image of the current environment as a
SYS file named X on drive Y,
TROE;
NIL;

Interpretation: This function saves the current muLISP
environment on a disk file. Since the currently
active data structures are compacted before the save,

the size of the SYS file is proportional to the mumber
of these structures in the system,

R

2. CBV LOAD (X, Y] := !
NAME (X] AND NAME (Y] —>
NIL (Y] —>
load the memory image SYS file named X from
the current disk,
ROS <— NIL, ‘
return directly to the executive driver loop;,
load the memory image SYS file named X from drive Y,
ROS <— NIL,

return directly to the executive driver loop;
- NIL;

Interpretation: This function restores the muLIS?
environment present at the time of the SAVE. If the
SYS file is successfully loaded, LOAD does not return

a value but jumps directly to the new executive driver
loop.

e

@

Section VI: The muSTAR AIDS

~— muLISP source files can be generated in one of two ways: either an

N 3. CBV SYSTEM 1] := .) extex:nal e@:.to: or a resident LISP editor can be used. The text editor
’ canrpact all data'stmctuzes into low memory, provided with your computer's disk operating system is an example of an
return to operating system; ‘ external editor. Program development using an external editor consists

Interpretation: When this fncticn is executed, all data of iteratively editing, lcading, and testing source files.

is compacted into low‘ memory and ;:en con;::i%t Jc-; The pcincipa} advantages of using an external editor are that

returned to the operating system. T @‘:hPadE came usyally the user is familiar with it and that comments can easily be

data allows for a re—entry into m o £ the call included as part of the text, Although an external editor is a

environment that was present at the t‘;:d.lge e_g.s for C2/H perfectly satisfactory method of program development, it is somewhat

to the function SYSTEM. The re—entry acdr slow and cumbetrsome, and not conducive to creative work. Repeated disk

versions of muULISP is 100H (hexadecimal). ggesses aré required to make even minor changes to function

‘ ’ initions,

i

i These problems are conveniently resolved in muLISP~80 with the
introduction of the muSTAR Artificial Intelligence Development System.
muSTAR greatly reduces program development time and fully utilizes the
interactive nature of LISP. Using the resident editor and tracing

: J facilities provided by muSTAR, function definitions can be created,
| tested, and throughly debugged all within the system., This encourages
' the incremental approach to programming and avoids the curbersome edit-
) debug-reedit cycle, Thus program development moves much faster and is
; ' definitely more enjoyable.

The remainder of this section will acquaint you with the use of
muSTAR AIDS: how to get into it, how to fully utilize the various
cptions available, and bow to use the text editing commands, The text

. editing commands include cursor control, text display, and

" insertion/deletion of text. The description in section VI-C of how

muSTAR works will be of value to those users who wish to extend or
... modify it to suit their needs,

. The muSTAR editor will work for virtually any modern CRT terminal
running at a high BAUD or data transfer rate. The only non-standard
features used by muSTAR are the characters which move the cursor up a
line and move the cursor to the home position, or upper left-hand corner
of the screen. The distributed version is customized for the ADM-3A
terminal. If some other terminal is being used, customized functicns
will have to be written to perform these functions, as described in
section VI-C below.

YT

ITAE L

A. Main Menu Commands

WuSTAR is distributed as a muLISP SYS file. Thus it can be loaded
by either method described in section I-H of this manual. Probably the
easiest way is to use the following CP/M level command:

AOMOLISP MOSTAR

This command will first load muLISP and display the logon prompt.
Next the muSTAR system will be loaded and its executive driver will be
called, The driver will display the muSTAR menu of opticns available to
the user. This is the menu as displayed on the console:

OPTIONS: F EDIT FUNCTION
EDIT VARIAELE
EDIT PROPERTY
EVAL LISP
EVAL~QUOTE LISP
TRACE FINCTION
UNTRACE FUNCTION
READ FILE
WRITE FILE
SELECT CRIVE

vEwaloOmu<

ENTER CEOICE:

The facilities available in muSTAR fall into three catagories, as
reflected in the list above. The first three options call the display-
oriented editor. The next four are used for program debugging. The
last three fall into the category of disk file storage.

When this menu is displayed, entering any of the valid option
characters will initiate the corresponding facility as described below.
The system will only respond to valid option characters. An unwanted
choice can be aborted by simply typing a carriage return when the option
prompts the user for imput,

l. Editor Pacilities

F EDIT FUNCTION — This option is used to create and/or edit -
a muLISP function's LAMEDA definition. When activated,
this option displays the following prompt:

FUNCTION NAME(S) @

As many function names as will f£it on one line can then
be typed. After a carriage return is entered, the system
will display the definition(s) in pretty-printed form,
using indentation to highlight %he structure of the
functicon definition(s). The cursor is positicned at the
beginning of the text. The editor can then be used to
modify the text as described in VI-B below. Once editing
is completed and if the user desires, the function(s) are
redefined using the modified definition(s).

-

VI-2

S —_- ¥

V EDIT VARIABLE — Thj : .
4 program variab] 12 OPtion is used to create and/ ;
€'s value. When activated o or edit
displays the following prompt: ¢ this option

will display the varj
with the cursor at thtzabblé;(isrzm'm D enY Printed value(s)

can then be used to modi
the varizble(s) can b r:.fy ihe text and the value(s) of

TR T e v
. . value. wh i
first displays the £ollowing p?:mgg: ivated, this option

Again only one propercty indj

) r o Y indicator ¢ Specifi

ﬁ:efaa ii:nage. return is entered, a:hebesystemlili:ef 1
Play € variable name, indicator, and cur:ent

property value, af
can be :mluamter the edit, the modified expression

2. Debugging Facilities
B BVAI..LISP — This option is used to initjate an eval-~LIsSp

String *» = disﬁiﬂgu’-sPes it from the d:afa’ﬁi gfxi?g;

Q Wc?unc:ggfspr‘lfp — This option is used to initiate an eval-
e LIt =fiver, also described in section I-D. Thi

e oe is ptef.erged for debugging by some LISP.LS y

he prompt String is "% *, This eval-quote-LISP lezs.

will continue until the function EXTT () is executed, oop

OCL NLAMBDA defined functio
wh . s : n f
en activated, this option displays the followin

prompt :
FONCTION NaMR(S) -
gs many function names as will o
tﬁaggefd‘, fglloyed Y @ carriage return, Whenever a
azgument:w?md):s called, the function name and actual
both s fe displayed. when ithe function returns
uncticn name and returned value are dlsglayed:

v

Indenting is used to highlight the nesting of function

U UNTRACE PUNCTION — This option is used to untrace or

restore the definition of a traced function to the
original definition. The same prompt as for the TRACE
POUNCTION is displayed, calling for a sequence of
functions to be entered by the user for untracing.

Disk I/O Pacilities

. R READ PILE — This option is used to read muLISP source

files. When activated, this option displays the
following prompt: .

. FILE NAMES:
After a name and a carriage return is entered, an attempt
is made to open the file with the given name of type LIS
for input and read it into the system. If the file is
not found the following message will be displayed and
then you will be re-prompted for a file name:

FILE ROT POOND

Files generated by either muSTAR or an external editor
can be loaded in this way. For files made externally,
the last statement of the file should be a call to the
function RDS to return control to muSTAR., Also the

fuﬁxction DRIVER should not be modified by the source
e.

" W WRITE PILE — This option is used to generate a muLISP

source file. When activated, this option displays the
fallowing prompt:
PILE NANME:
After a name and a carriage return is entered, a new disk
file with the given name of type LIB is created. A
sequence of function definitions and/or variable values
and properties is written to the file in pretty—printed
- form. The functions which are written are those cn the
property list of the file name under the indicator
FUNCTIONS. The variables and/or property values which
get written to the file are those of the names on the
property list of the file name under the indicator
YARIABLES, These property values themselves are also
written to the file so they will automatically be read
back for future muSTAR edits, Note that when the
development phase is complete, files produced by muSTAR
can be read by the muLISP system alone.

D SELECT DISX — This option is used to select the disk drive

to be used in subsequent disk file accesses, Wntil this

option is used to change the drive, the current default
- drive is used. .

VIi-4

B. Text EBditing

The mMuSTAR editor has been specifically designed to facilitate the
editing of muLISP functions, It is a screen—oriented LISP editor, which
continuously displays a "window® or "picture” of the text making up a
function’s definition. Thus the user can make changes and see the
results instantly.

Because muSTAR is written entirely in muLISP, the user can extend
the system to his/her own taste. Basically each ASCII control character
is a function which can be redefined at will to perform whatever task is
desired. This is more fully explained in secticn VI-C.

Function and variable names used in muSTAR which might conflict
with user program names are terminated with a “$". In order to avoid
such conflicts it is advisable to avoid using such names in user
programs.

The general principle for using the muSTAR editor can be described
in two steps: first, move the cursor to where you want to edit; seccnd,
insert, delete, or change the text at that point. The best way to leamn
your way around the system is to experiment with some simple functicn
definitions. ,

1. Cursor Control

The cursor control commands are used to position the cursor at the
point where the desired change is to be made in the text. The cursor
(the block or line of light that shows where the next character will
appear when typed) is manipulated mainly by directions entered with the
left hand on the keyboard. On most terminals control characters are
entered by depressing the control key, usually marked CTRL, and typing
the desired letter while the control key is still depressed.

The basic cursor controls are oriented in the shape of a plus sign
so that cn standard keyboards the position of the key corresponcs to the
direction the cursor is to move., This is illustrated by the following
diagrams:

up 1 line
E
A s D -3
— « - —_—
left 1 word left 1 letter right 1 letter right 1 word
X
down 1 line

In the diagram above, the direction and length of the arrows
indicate the direction and relative magnitude of cursor motion caused by
the associated command. The best way to get the "feel" of the commands
is to experiment with actual text,

CIRL~D moves the cursor cne character to the right, CIRL~-S moves it
one character to the left, (Note that the latter command has the same
effect as typing a CIRL-H or backspace). Amplifying this left-right
movenment, CIRL~F moves the cursor cne word to the right, CTRL~A moves
it aone word to the left. Both of these commands will leave the cursor
at the beginning of a word.

In muSTAR a word is defined to be a muLISP name in the text or a
delinmiter such as a parenthesis or pecriod. Note that for these four
commands, the text on the screen should be thought of as ane long string
of text. Thus-the cursor is automatically advanced to the next line
when the end of the current line is reacned, Alternatively, after the
beginning of a line is reacked when backspacing, the cursor will move to
the end of the previous line.

Entering a CIRL~E will move the cursor up cne line. A CIRL~X will
move it down a line, After the cursor is moved to the new line by
either of these commands, it is automatically advanced to the next word
on the line. Typing a linefeed or CIRL~J will move the cursor to the
beginning of the next line.

To move to the begimning of a line, the command is CIRL~Q. To move
in the opposite direction, to the very end of a line (after the last
character), type CIRL~B.

A carriage retumn (i.e, a CTRL~M) typed when in the non-INSERT mode
(see section B~3 below) advances the cursor to the beginning of the next
line. A new line is added if at the bottom of the current text, See
section B~3 for the effect of carriage, returns when in the INSERT mode.

Using only the cursor control commands, the cursor can not be moved
to places on the screen that are not characters in the text. To move
the cursor past the end of the current line or past the last line of
text, use spaces and/or carriage returns to insert new text instead of
using the cursor control characters.

2. Display Control

When long or multiple definitions are displayed on the CRT screen,
only part of the text can be visible at any one time. The text can be
thought of as being "written® on a long scroll. The CRT screen is then
a "window” on the text, which shows only a portion of tbe scroll. Since
our window, the CRT, can not move, muSTAR scrolls the text up (toward
the end of the text) or down (toward the beginning of the text). Thus
moving the text up or down is called “"scrolling®.)

To see the next line of text, typing CTRL~Z moves the window DOWN a

line or, relatively speaking, scrolls the text UP a line. To see the
previous line of text, typing a CIRL~W moves the window UP cne line or,

VT-K

relatively speaking, scrolls the text DOWN one line. wk}en scrolling,
the cursor remains at the same position in the text, moving up or down
with the text. However, if the cursor reaches the top or bottom of the

screen, it remains there. The cursor never leaves the screen.

CTRL~C is used to move the window down a screenful (ie. to display
the next 18 lines on a 24 line screen). CIRL-R does the inverse
operation of moving the window up a full screen.

The display control commands are deactivated if there is no more
text in the direction of window motion.

3. PEntering ‘J:'ext

There are two modes for entering text, CIRL~V is a toggle "switch®
used to switch between modes. In either mode text is inserted by simply
typing it in.

itiall when the toggle switch is OFF, the editor is in the
non—I&lSEm! m%de. Amy existing text on a line will be overwritten by new
text being entered. This is the easiest way to enter text initially.
Mistakes can be corrected by simply typing over them with the
corrections. The space bar will "erase” characters.

a CTRL-V has been typed, muSTAR is in the INSERT mode.
CharacteWbe:s and spaces that are typed are actually inserted in front of
the remaining characters on the line, if any. The characters to the
right of the inserted charactecs will be g:.she'd over to the right. i\s S
step-by-step example, the text *(CONS BETA)" can be Tod:.fled to rea
=(CONS ALPHA BETA)" by inserting “ArPHA" before "BETA®. In the INSERT
mode, this insertion would appear on the console as follows, where the
underscore indicates the cursor position:

© (CONS EETA)
(CoxS ARETA)
(CONS ALBETA)
(CQNS ALPSETA)
(CONS ALPESETA)
(CONS ALPHARETA)
(CONS ALPSA BETA)

When muSTAR is in the insert text mode, carriage returns (i.e.
CTRL~M) cause new lines to be inserted. in the text, The cursor will a»:d
up immediately follewing the new line. See section B-l above for the
effect of carriage returns entered in the Non-INSERT mode., Entering a
CTRL~N will always insert a new blank line in the text; however, the
cursor will end up on the new line.

i delimiter
CTRL~-P is the escape control character used to make
characters be used as names instead of delimiters. To use sparies,
parentheses, periods, and brackets as names simply type a CIRL-P before
typing the delimiter character.

vI-1

T A——

4. Deleting Text

There are four ways to delete text:

1) In the Non~Insert mode, simply type spaces or new
characters over the text to be deleted;

2) To delete the character that the cursor is on, type
CRL~G;

3). To delete the word to the right of the cursor, type

4) The cyrrent line can be deleted by typing CTRL-Y.

A word of _caution: since the letter Y is so easy to hit by mistake
when reaching for a T, it is advisable to use extra care when deleting
words, since a long reach can eliminate an entire line. It is also a
good idea to use CIRL~Y with discretion since repeating the CIRL~T

command will "walk"® you down the line. This often allows the user to
“recycle® words into a new line,

S. Pinding Names

The ability to search for a muLISP name in text is
these commands, CTRL~O displays the following prompt on
_the screen:

FIND RAME?

The user can then enter a name, terminated by a carriage return.
The cursor will then move to the next occurrence of the name in the
text, Only the text actually on the screen is searched, and if the name
is not found the search will begin again at the top of the screen, If
the name is still not found, the cursor will end up advanced one word to
the right of its original positicn.)

To search for the next occurrence of the same name given the last
time CTRL-O was used, type CIRL~I.

6. Exiting Bditor

When the edit of a variable, function, or property is completed,
typing a CIRL-K will cause the following menu to be displayed on the

. console:

-

CPTICNS

E EVALUATE TEXT
C CONTINUE EDIT
ENTER CHOICE:

VI-R

()

Normally the "E® option is choosen since it evaluates the text
which has been edited. The "A" option abandons the text and does not
evaluate the text. In case CTRL-K was typed inadvertently, the "C*
option can be used to return to the edit,

" 7. Command Summary Table

Control
Character Runction

Move cursor left cne word
Move,cursor to end of current line
Scroll text up a screenful
-- Move cursor right one character
Move cursor up one line
Move cursor right one word
Delete current character
Move cursor left cne character
ONUSED
Move cursor down cne line following leading blanks (LINEFEETD)
Exit editor command
Repeat last search ccmmand .
Move cursor down one line to beginning of line (RETURN)
Insert a blank line
Find a name
Escape character used to enter delimiters as names
Move to beginning of current line
Scroll text down a screenful
Move cursor left one character
. Delete word to the right of cursor
UNOSED
Toggle insert mode switch
Scroll text édown cne line
Move cursor down cne line
Delete current line
scroll text up one line

NHN’:<GHM:UO’OOZZE‘NQHNGWIMUOCU)‘

C. Customizing muSTAR

1. Console Customization

A1l muSTAR users except those owning ADM-3A terminals will probably
have to write a simple muLISP library file containing functions for
moving the cursor up a line and for moving the cursor to the home
position (the upper left corner of the screen), The muSTAR function [P-
LINS is used to move the cursor to the beginning of the current line and
up a given number of lines, If no argument is given, it still moves the
cursor up one line. The function EQMES moves the cursor to the upper
left-hand corner of the screen without erasing the screen, It also
includes a TERPRI to reset the muLIS? cursor position counter. The
following are the default definitions of these functians:

(DEFUN UP-LINS (LAMEDA (NOM)
((ZERC? NCM))
(PRINL CR)
(Loop
- (PRINL UPLINE)
(SEIQ N (SUB1 NIM))
((NOT (PLUSP NM)))))

(DEFUN BECMES (LAMEDA () '
(PRI EOME) (TERPRI) (PRINI HOME))) ‘

(SETQQ PAG-LENS 24) .
(SETCQ LIN-LENS 78)

(SETQ ECME *77)
(SETQQ UPLINE "“K")
(SETQQ CR "™)
(ROS)

% Number of lines cn CRT' %
% Number of colums - 2 §

$ CIRL~" = 1E hex §
% CIRL~X = 0B hex %
% CIRL-4 = (D hex %

Note that the **® notation used in the last lines of the above

means that an actual control character is to be inserted in the

text file between the two double quote signs. It also may be necessary
to adjust for your console’s page and line lengths,

To customize muSTAR for your terminal, first use an external editor
to make a file of type LIB using the definiticns above as a model. Note
that the call to the function RDS at the end of the file must be
included to make the console the current input source, Immediately
after loading MUSTAR.SYS as described in section VI-A above, choose the
"R* option and read in your customization file. The customized version
of muSTAR should then be saved as a SYS file, using a new name to
distinguish it from the uncustomized version. To accomplish this,
select the eval-LISP "E" option and then make the following command:

(SAVE MYSTAR)
This will create a disk file named MYSTAR.SYS. Thereafter

initiating muSTAR is simply a matter of lcading MYSTAR instead of MUSIAR
as described in the introcuction to section VI-A.

vI-10

)

2. The muSTAR Executive

The executive is a very simple loop which displays the main optiecn
menu and then calls a function to perform the requested option. On the
property of each option character, under the indicator EXSCUTIVE, is the
LAMBDA body evaluated when the respective option is chosen. The
function QUERYS is used to display a prompt and input the response, It
returns a list of expressions entered by the user.

If an editor option was chosen, this list is passed to the
S-expression-to~-text translator. Here the expression is converted to
the internal text data structure as described in the next sub~secticn.
The editor is then called to pretty-print and permit editing of the
text. When the edit is complete and the user desires to evaluate the
text, the text-to-S—expression translator is called to translate the
text and evaluate the result. If parentheses are unbalanced or the

continue option is chosen, the editor is called again so the edit can
continue.

The trace and untrace cpticns pass the list of names entered by the
user to TRACE and ONTRACE functians respectively. A function is traced
by redefining it to call the function EVTRACE. Thus when a traced
function is called, it calls EVIRACE which prints its arguments,
evaluates the original functian, and then prints the resulting value.

The write file option opens a file for output on drive *DRIVE*.
First it prints the basic functions needed to read-in the remainder of
the file (i.e. DEFUN, SETQQ, PUTQQ, and FLAGQQ). Then a list of
functions and variables in the file are printed. FPinally the pretty-~
printed function definitions, name values, and property values are
printed. If a function which is being saved has been traced, the
original definition and not the traced version is saved.

3. Text Data Structure

It is a relatively simple matter for an experienced muLISP
programmer to add features to the editor to suit his/her tastes.
Changes which can be made include modifying the effect of centrol keys
and taking advantage of special CRT features. The first step is to
become thcroughly familar with how the text is stored and modified.
Then the already existing building blocks in the system for manipulating
the text can be combined to achieve the desired effect.

The text currently on the screen at any given time is stored as a
list bound to the global variable *TEXT*, Except for the first element
of *TEXT* which is always NIL, each element of this list represents a
line of text. The global variable PAG-LEMNS is set to the maximum
allowable number of lines on the CRT screen. Its default value is 24.
Thus the length of the list *TEXT* can never be greater than PAG-LENS.

Each line or row of text (i.e. element of *TEXT*) is a list
specifying the text on that row, The first element of a row is always a
non~negative integer which gives the number of leading blanks, or

ISR

E————

initial spaces, on the line. The remaining elements of the list are
called tokens, Tckens represent either the muLISP delimiters or names

making up the text being expressed. The four possible delimiters are
shown here enclosed in double quotes:

‘.(. ﬂ)l - = l’.
These four delimiters are stored as names on the list, In
contrast, tokens which represent names appear as sublists on the row
list, Generally the sublist is a single-element list whose element is
the name in question., Only if the cursor is "inside” a name (i.e. the
cursor is positicned after the first character) will a rame be unpacked
or "exploded” into the characters making up the name using the function
INPACIS, When the cursor leaves the name, the characters are repacked
cr "compressed® into a new name using the function PACXS,

At any given time, the value of the global variable *ROW* is
a sublist of *TEXT*, The second element (iLe. the CADR) of this sublist
is the row of text which the cursor is currently on. This is the reason
the first element of *TEXT* is the cummy row NIL. Among other things,
being one row above, or ahead, of the current row is convenient for
deleting the current row from *TEXT* using RPLACD.

The current position of the cursor in the current row is determined
by the global variable *CCL*, It is always a sublist of the current row
of text, For the same sort of reasons as for *ROW*, the sublist
. begins one token to the left, or ahead, of the current tcken, Note that

the cursor is never to the left of a line's leading blanks. Thus *COL*
can alwvays be ahead of the current token.

Lines of text which have been scrolled off the top or bottom of the
screen are stored as lists under the variables *PRE-TEXT* and *POST-
TEXT* respectively. These two lists are best thought of as stacks, The
‘line of text which is immediately adjacent to the current "window® is
the top element of the stack, Thus the rows making up *PRE-TEXT* are in
reverse order. A row can be pushed onto *PRE-TEXT* or *POST-IEXT* only
if there is insufficient room on the screen to store the row.

4. Text Primitives

When the text editor is nunning, console input is in the raw imput
mode as described in the reader control variable portion of secticn V=M.
An input character can either be a delimiter, a normal printable
character, or a control character., A delimiter or printable character
is made part of the current row of text in accordance with the structure
defined above for storing text. If the control variable *INSERT* is

non~NIL, the character is added to the text instead of overwriting old
text.

Each control character has as its value an alias name, For
example, the value of control A is CIRI~A, The otber control charactecs
bave analogous aliases. The definition of the respective alias is
evaluated when a control character is entered. Thus the function CIRL=3

moves the cursor and text pointers one token to the left.. Each of these
functions is documented by the description given in section VI-B above.
Altering the definition of these functions 1s the easiest way to
customize muSTAR. There is a very complete set of existing primitives
in the muSTAR source. The purpose of each should be apparent frem the
function name,

———g

T

Appendix A: Backus-Naur Porm

Backus-Naur Form (ENF) equations provide a standard ¢ i used

to formally dgfmg the syntax of a language. Within a Bo;ge;t::zion a

character string .unmed:'gately Preceded by a "<" and followed by a ">"

_denotes t.hg c}.ass of objects named by the string. A character stzing
not so delimited stands for the string itself., Note the cont;as:

between this and the conventicnal practice of quoting strings which
stand for themselves and not quoting strings which are names of cbjects,

A BNF equation defines the set of syntatic objects belond;
particular category of the language's syntax, 'mejsym.bol .::p’_glfsgs:eg
as an abbreviation for the phrase *is a” and the vertical bar *|~ is

:X;&:Gt'sf:o: "or®. A BNF definition of numerals may be specified as

= <Qigit> | <digit> <wmeral>
= 0111213141516171819

As in this example, recursive definition is fr i

; < equently used in BNF

- equaticns, Also note bhow juxtaposition of category namay denctes the
corresponding concatenation of the chjects within these categeories,

' _Backus-Naur Form is defined in the "AIGOL 60 £ R Repact
on Algorithm Language ALGQL 60" A ’ Repac evised Repor
Jamary 1963. ’ of the ACM, Volunme 6,

\

copy of a diskette.

Appendix B: How to Copy the Master Diskette

As soon as possible after receipt of the master diskette supplied

by The Soft Warehouse, make a working copy of the diskette.
fallosing information is provided as a quide for those who are not yet
familar enough with their computer's disk operating system to make a
Since there are many different operating systems
and computer configurations, this discussion can only be a general
guide.

1. Study the documentation supplied with the computer's.

disk operating ‘system, Most cases of accidental erfasure of the
master diskette cr other irrecoverable errcrs are committed in
the first few mcments by overly anxious and inexperienced
users,

2. Obtain an appropriate number of blank high-quality
diskettes suitable for your drive,

3. Become thoroughly familiar with the terminal,
computer, disk drives, and operating system,

4. Practice initializing a diskette, then transferring a
disk operating system to the initialized diskette. Generate
the largest version of the operating system that your computer
is capahle of supperting.

S. Practice transferring to the new diskatte files fram a
spare, write-protected diskette,

6. Por operating systems with a diskcopy utility, use
this method to copy the master diskette since it is definitely
the easiest and fastest way to do so, Make absalutely sure the
drive with the master is the socurce and NOT the destinaticn for
the copy command!

7. Por multiple drive systems, the fallowing C®/M PIP
(Peripheral Interchange Program) command will copy all files
fram drive A to drive B:

PIP Bi=A:*.*
The equivalent camand for Cramemco CDOS users is:
XFER Bi=Az*, *

8. Copying diskettes is much more laborious on systems
baving only one drive. Generally, it involves repetitively
reading a portion into RAM memory frcm the source disk,
switching disks, then writing the portion onto the destinaticn
disk. This is repeated until the entire source disk has been
copied. The process generally involves using the CP/M DDT
utility program or a resident menitor in read-only memory.

The

9. If the above methods are unsuccessf
disk drive is unable to read the mas
multiple drive system,
drives. The master is recorded cn a
precisely adjusted drive. Hawever,
mechanical and electrical differenc
and diskettes,

ul because your
ter diskette and you have a
try reading the master on different

high quality diskette by a
there are inevitably slight
es between various drives

10. If your system is still unable to read
diskette, then: ead the master

’

Check to See whether the proper type of diskette
was specified when ycu placed your crder,

a)

b) Get help fram an experienced professicnal.

€) Make sure your drives are correctly aligned, and
! if.not, have them professicnally aligned.

{d) Contact directly the supplier from whan the system
; was purchased, .

A3

Appendix C: Implementing Machine Language Subroutines

Some specialized nuLIS? applications may require the writing of
machine language routines. For instance a user may wish to enhance
muLISP with graphics capability, or perhaps it is necessary to hand
compile a particularly critical functien for efficiency reasons.

Address typing is used by muLISP to determine a function's type.
This necessitates the beginning of all machine language subroutines in
low memory. A dumpy jump table, beginning at location 01038 (hexa-
decimal), has been set aside for jumps from low memory to user defined
routines. There is sufficient room for four (4) JMP instructions (i.e.
opcode C3H). These jump instructions can be altered to jump to the
address of the user defined routine wherever they are located.
Depending on your system, additiocnal room for jumps might be found in
unused areas in page zero of memory.

Since muLISP uses all available memory below the DOS (disk
operating system), the best place to locate user defined routines is in
the “"protected" memory above the DOS. Of course this mandates
generating a DOS slightly smaller than what your computer is normally
capable of supporting., Another alternative is to change the JMF
instruction at location 00Q5H to an address less than its current
address thereby "fooling® muLISP into believing it is operating under a
smaller DOS. Of course another JMP instruction will have to be placed

at the new address to jump to the DCS. This will free some memory just
below the DCS.

All user defined subroutines will be CBV, spread functions of at
most three arquments (see section V=0). If more than three arcuments
are required, they can be passed in as a list. The addresses of
arguments are passed to machine language routines in the register pairs.
The first arqurent is in the HL register, the second in the DE register,
and the third in the BC register.

To return control to muLISP simply terminate all routines with a
RET instructioa. The returned value of the function will be the data
structured pointed to by the EL register pair, It must be the address
of a bcna fide muLISP data object (see section II). Even if no special
value is desirad to be returned, HL shauld still ba set to some value
such as NIL. The value of NIL can be determined by disassembling the
machine language definiticn of the function NULL.

Linkage to machine language routines is done through the use of the
muLIS? function PUTD. For instance, evaluation of the following

expression will define the function FOO to be a routine which begins ac
location 0103H:

(PUTD (QUOTE FOO) 2S9)

The function GETD can be used to find the starting address of
primitively defined muLISP subroutines (see secticn V-J). Xnowing these
addresses, user defined subroutines can call the primitive sSubroutines
direczly.

st b A

g
3
v
£
}.
1

Appendix D: LISP Bibliography

Allen, J. R., Apnatany of LIS,
McGraw—-Bill Book Campany, New York, NY, 1978.)

wke};ﬁi’ E. C., and Bobrav, D. G., (eds),
Programing

Jacquage LISP: Its Qperation Applications,
The M.I.T. Press, Cambridge, MA, 1964. aod

BYTE: The Small Systems Jourpal, LISP Issue, Val 4, No 8,
BYTE Publications Inc., Peterborough, NE, August 1979.

Benderson, P., Runction Proorammingz Apolication and Implementation,
Prentice-Hall, Englevood Cliffs, NJ, 1980.

Friedman, D. P., The Little LISPer,
Science Research Associates Inc., . !
* Londen, England, 1974.
McCarthy, J., Recursive functions of Svibalic Fxpressions
and Their Carputation by Machine,
Cam, XM, pages 184-195, April 1960.

McCarthy, J., et al., LISR 1.5 Programmec's
The M.I.T. Press, Cambridge, Ma, 1963.

Maurer, W, o. A Programmer's Introduction o LISR,
R;:e: 'Elsev:.er, New York, NY, 1973.

siklossy, L., Letls Talk LISR,
Prentice-gall, Englewood CLiffs, NJ, 1976.

de, C., LIS 1.5 Primec,
Dickenson Publishing Co., Belment, CA, 1968.

Winston, P. H., Artificial Intelligence,
Addisonr-Wesley Publishing Co., Reading, MA, 1977.

Appendix E:

Type Neme
CBV APPLY
BV ASSOC

BV ATOM
sV CoxR

CBN PRCGL

Category Group Rage
Logical F-2 8
Evaluator 0o-3 27
Propercty B-1 1n
Recognizer D-3 5
Selector A 1,2
Evaluator o4 29
Constructor ~ B-1l 3
Nurerical -3 16
Numerical ~7 16
Evaluation o7 30
Cooparator E-1 6
Ccoparator E-2 6
Evaluator o2 7
Recognizer D-8 5
Flag I-2 12
Plag I-1 12
Property B2 1
Definition J-1 3
Camparator E-4 6
Sub—-atcmic K-3 15
Cooparator E-5 7
Printer N6 23
Constructor B2 3
Systen -2 32
Evaluator o5 29
Comparator E-3 6
Nmerical -1 16
Recognizer D6 5
Definition J-3 B
Recognizer D~1 S
Modifier c-3 4
Logical -1 8
Recognizer D4 5
Recognizer D~-2 5
Constructor B~4 3
Logical F=-3 8
Comparator E-6 7
Stb-atomic R-1 14
Numerical -2 16
Recognizer D~5 5
Assignment G-3 10
Printer N2 24
Printer N3 22
Evaluator o6 30
Assigrment G4 10
Property -3 1
Definitien J-2 13
A6

Punction Index

Category Group Rage

Evaluator o1
Numerical ~5
Printer/Reader N~7
Reader M=2
Reader M-1
Reader M-3
Reader M4
Storage P-1
NMumerical L~6
Flag I-3
Propecty B4
Constructor B3
Modifier c-1
Modifier Cc-2
System -1
Assigrment G-1
Assigrment G-2
[Printec N5
Envircrment Q-3
Printer N-4
Numerical 1~
Sub-atomic K-2
Printer N-1
Recognizer D=7

7
16
23
17
17
18

WREEREBRowBaawkERREE

Appendix P: Concept Index

AIDS ‘ I-1
ALL Spaces Exhausted III-2
argument stack v-29
assigrment functicns V-9
association list v-11
atom space IIT-1
anto-quoting I, II-1
auxiliary functions V-1
Backus-Naur Form) A=l
binary trees , II-3
break characters v-17
call by name (CBN) V=25
call by value (CBV) V=25
car cell IT-1
cdr cell II-1
closed pointer universe II-1
coaments V=19
carpaction III-1
carparator functions V-6
carpiling v-13
canstructor functions v-3
Continue option I-6

current input source v-17

current output sink v-21

D~code v-13
data cbjects II-1
data space boundaries III-2
data space partition IIX~-1

data structures -1
decapiling v-13
definition functions V=13
distilled code V=13
dot notation II-3
dotted pairs -3
driver locp I-3
echo v~-20, V-24
end-of-file (ECF) v-19
enviranment I-7
envirorment functions V=32
error diagnostics I-7
error traps I-7, I1I-2
eval-LISP I-3, V=30
eval-quote~-L.ISP I-4, V=30

evaluation functicns V=25
executive driver loop I-3
Executive cpticn I-6
extended COND I-5, V=29
extermal editor VI-l

features -1
file backup v-21
flag functions v-12
flags IT-1
formal argquments v-25
function body V=25
function cell II-2
garbage collection III-1,V-3
generic ordering v-7
implied CXO I-5
insert mode VI-7
interacticn cycle I-3
interrupt I-6
iterative v-26
LAMBOA definition V=25
leading blanks vIi-11
library files I-2
line edit mode v-20
line editing I-3
linelength .=
linked list II-3
local variable I-5, V-9
logical functions v-8
logen message I-3

lower case conversion V=24

machine lanquage subr A—4

master diskette I-2, A-2
memory management III-1,V-31
menory trap II1I-2
meta-lanquage Iv-1
meta~semantics Iv-1
meta-syntax Iv-1
modifier functions V-4
name list V-3
names . II-1
No Disk Space v-23
no—-spread function v-25
nodes =3
non-recursive loops I-5
number vector II-2
number vector cell I1-2
numbers II-2
numerical functions v-16
ocbject list V-3
output pause I-7

@)

J—————

pointer cells II-1
pointer space III-1
predicate v-25
pretty-print vIi-2
primitive functicns V-1
print name cell Ir-2
print name string II-2
printer control
. variables V=24
printer functions - V=21
properties ! II-1
property functions v-11
property list v-11
preperty list cell II-1

quoted strings v-19, V=24

upper case conversion V=20

value cell II-1
vector space IIT-1
warning messages I-7
word VIi-6

ZERO Divicde Error v-16

radix base v-23
raw input mode V=20
_reader control

variables v-20
reader functions =17
real time systems III-2
reallocaticn III-2
recognizer functions v-5
resident editor vi-l
‘Restart option -6
selector functions V-1
separator characters v-17
side—effects V-4, V-9
sign cell - II-2
spread function V=25
stack space ITI-1
suh—atcmic functions v-14
super—parentheses v-18
SYS file I-7, V=32
System option . I-6
tasks 25
thrashing IIT-2
token 17, VI-12
tracing facilities VI-1
translator vIi-11
truth values V-8

tFile: MUSTAR.LIB 08/12/80

(PROG1 ** .
(LOOP ((EQ (EVAL (READ)) STOP)))
(DRIVER)))

gowkadkwanwwedr T ILITY ROUTINES

(PUTD DEFUN (QUOTE (NLAMBDA (FUNC EXP)
((EQUAL (GETD FUNC) EXP))
(((NULL (GETD FUNC)))
{(PRIN1 "*** REDEFINING ")
(PRINT FUNC))
(PUTD FUNC EXP)
FCNC })))

(DEFUN SETQQ (NLAMBDA (NAME EXP)
(SET NAME EXP)
NAME))

(DEFUN PUTQQ (NLAMBDA (NAME ATM EXP)
(POT NAME ATM EXP)
NAME))

(DEFUN FLAGQQ (NLAMBDA (NAME Afi‘ﬁ)
(FLAG NAME ATM)
NAME))

(DEFUN PACXS (LAMBDA (TOKEN)
((NULL (CDR TOKEN))
TOKEN)
(CONS (PACK TOKEN))))

(DEFUN UNPACKS (LAMBDA (TOKEN)
((OR (CDR TOKEN) (EQ (LENGTE (CAR TOKEN)) 1))
TOKEN)

(ONPACK (CAR TOREN))))
(DEFUN RDC$ (LAMBDA (LST TAIL)

(LOOP
((EQ (CDR LST) TAIL)
LST)

(PQP LST))))

(DEFUN CHOPS (LAMBDA (LST)
(Loop
{(NULL (CDDR LST))
(PROG1 (CADR LST) (RPLACD LST NIL)))
(POP LST))))

(DEFUN SPLITS (LAMBDA (LST NUM)
(LooP
((ATOM LST) NIL)
(SETQ NUM (SUR1 NrIMON

et

FEUR—

REXARA R RN NN NG

i st

The Soft Warehouse .

((ZEROP NUM)

(PROGL (CDR LST) (RPLACD LST NIL))) - (SPACES NUM)
(POP LST)))) C

(BCK-SPACES NUM)))

' (DEFUN BCR~SPACES (LAMBDA (NUM)
IFUN MENUS (LAMBDA (LST (Loop
READCH) . . - ((NOT (PLUSP NUM)))
'SPACES 11) (PRIN1 BACK)
'PRIN1 "OPTIONS: ") . . (SETQ NUM (SUBLl NUM)))))
MAPC LST (QUOTE (LAMBDA (LINE)
(PRIN1 (CAR LINE)) (SPACES 2) : (DEFUN HOMES (LAMBDA ()
(MAPC (CDR LINE) (QUOTE (LAMBDA (WORD) L (PRINT HOME)
(PRIN1 WORD) : (PRIN1 HOME)))
(SPACES 1))))) . ‘
(TERPRI) . . (DEFUN SPACES$ (LAMBDA (CHARS)
(SPACES 20)))) .

TERPRI) (SPACES 6)

(EQ CEARS " *)))
PRIN1 "ENTER CHOICE: ")

Loop S : . ‘ - (DEFUN PRIN2 (LAMBDA (EXP PRIN1)
((ASSOC (READCH) LST) L (PRIN1 EXP)))
(PRINT RATOM)))))) C .
' : (DEFUN APPEND (LAMBDA (LST TAIL)
FUN QUERYS (LAMBDA (TEXT) : ((NULL LST) TAIL)
TERPRI) : (CONS (CAR LST) (APPEND (CDR LST) TAIL))))
SPACES (DIFFERENCE 18 (LENGTH TEXT))) . .
PRIN1 TEXT) (PRIN1 :) (SPACES 1) ‘ (DEFUN ADD1l (LAMBDA (NUM)
RD-LINS))) _ Do (PLUS NUM 1)))
FUN RD-LINS (LAMBDA ((DEFUN SUBl (LAMBDA (NUM)
nggn LINE) . : . (DIFFERENCE NUM 1)))
(SETQ WORD (RD-WRDS)) UN MAPC (LAMBDA (LST FUNC)
(((NULL WORD)) , ‘ 4 (D%ioop (
(((PUSB womc):R?INE))) ((NULL LST) NIL)
EQ RATOM , .
(REVERSE LINE))))) . 3 o | (FONC (ROP LST})) 1)
FUN RD-WRDS (LAMBDA (. : %
WORD) _ . '
LooP . G
((OR (FLAGP (READCH) (QUOTE DEL~CHAR)) (EQ RATOM CR))

((NULL WORD) NIL)
(PACK (REVERSE WORD)))
(PUSH RATOM WORD))))

ON UP-LIN$ (LAMBDA (NUM)
'ZEROP NUM)) -

)RIN1 CR)

.00P

(PRIN1 UPLINE)

(SETQ NUM (SUBL NUM))
((NOT (PLUS? NUM))))))

'UN BACXUPS (LAMBDA (NUM)
ICK-SPACES NUM)

(2282222222222) E D I T 0 R 8 x B c U T I v E
(DEFUN DRIVER (LAMBDA ()

(SETQ RDS)

(SETQ WRS)

(SETQ ECHO)

(SETQ *DRIVEY¥)
(SETQ PRIN1 (QUOTE PRIN1))
(TERPRI 4)

(SETQ READCE)
(((EQ CTRL-2Z (QUOTE CTRL~2)) .
(Loop .
((EQ (READCH) CR)))
(PRIN1 "TYPE CTRL-Z: ")
(SETQ CTRL-Z (READCH))
(SET CTRL-Z (QUOTE CTRL-Z))))
(SETQ READCH T)
(SPACES 12)
(PRIN1 "*** The muSTAR AIDS *rw)
{LOOP
(LINELENGTHE (ADD1l LIN-LENS))
(TERPRI 3)
(SETQ CHARS (MENUS MENUS))
(APPLY (GET CHARS$ (QUOTE EXECUTIVE))))))

(SETQQ LIN-LENS 78)
(SETQQ PAG-LENS 24)

(SETQQ MENUS (
(P EDIT FUNCTION)
(V EDIT VARIABLE)
(P EDIT PROPERTY)
(E EVAL LISP)
(Q EVAL-QUOTE LISP)
(T TRACE FUNCTION)
(U UNTRACE FUNCTION)
(R READ FILE)
(W WRITE FILE)
(D SELECT DRIVE)))

PUTQQ F EXECUTIVE (LAMBDA (
LST)

(SETQ LST (QUERYS °"FUNCTION NAME(S) "))
((NULL LST))
(EDIT-TXT (DEF-TO-TXT LST))))

PUTQQ V EXECUTIVE (LAMBDA (
LST)
(SETQ LST (QUERYS$ "VARIABLE NAME(S) "))
((NULL LST)) .
(EDIT-TXT (SET-TO-TXT LST)))})

'ﬁ'*i'it"*'tttti§

C

(PUTQQ P EXECUTIVE (LAMBDA (
NAME INDICATOR)
(SETQ NAME (QUERYS (QUOTE NAME)))
((NULL NAME))
(SETQ INDICATOR (QUERYS (QUOTE INDICATOR)))
((NULL INDICATOR))

(EDIT-TXT (PUT-TO-TXT (CAR NAME) (CAR INDICATOR)))))

(PUTQQ E EXECUTIVE (LAMBDA ()
(Loop
(TERPRI)
(PRIN1 "* %)
((EQ (PRINT (EVAL (READ))) EXIT)))))

(POTQQ Q EXECUTIVE (LAMBDA O
(LooP

(TERPRI)
(PRINL "% ")
((EQ (PRINT (APPLY (READ) (READ))) EXIT)))))

(DEFUN EXIT (LAMBDA ()
EXIT))

(PUTQQ T EXECUTIVE (LAMBDA ()
(TRACE (QUERYS$ “FUNCTION NAME(S)"))))

(PUTQQ U EXECUTIVE (LAMBDA ()
(ONTRACE (QUERYS “"FUNCTION NAME(S)®))))

(PUTQQ R EXECUTIVE (LAMBDA (
NAME ECHO)
(LOOP
(SETQ NAME (QUERYS$ “FILE NAME"))
((NULL NAME))
(SETQ NAME (CAR NAME))
((RDS NAME (QUOTE LIB) *DRIVE®*))
(TERPRI)
(PRINT "FILE NOT FOUND"))
((NULL NAME))
(LOOP
(EVAL (READ))
((NULL RDS)))))

(PUTQQ W EXECUTIVE (LAMBDA ()

(W-EXEC)))

(DEFUN W-EXEC (LAMBDA (

NAME ECEHO)

(SETQ NAME (QUERYS "FILE NAME"))

{ (NULL NAME))

(SETQ NAME (CAR NAME))

(WRS NAME (QUOTE LIB) *DRIVE®)

(PRIN2 (LIST (QUOTE PUTD) (QUOTE DEFUN)

(LIST
-(QUOTE QUOTE) (GETD DEFUN))))

({TERPRI)

PRIN2
fTERPRI)“‘IST (QUOTE DEFUN) (QUOTE SETQQ) (GETD SETQQ)))

PRIN2 (L
é'rsxmn(IST (QUOTE .DEFUN) (QUOTE PUTQQ) (GETD PUTQQ))

(TERPRI 3)

(PRT-TXT (PUT-TO-TXT NAME o]
(TEZRERY) {QUOTE FONCTIONS)))

(PRT=TXT (PUT-TO-TXT NAME
{TeRDas) (QuoTE VARIABLES)))

(MAPC (GET NAME (QUOTE
(TERPRI) (Q FONCTIONS)) (QUOTE (LAMBDA (ATM)

((EQ (CAR (CADDR (GETD ATM X
(ONTRACE (LIST ATM)))]} (Qoors EvIRacE))
(PRT-TXT (DEF-TO-TXT (LIST ATM)))
(Pz({'m%ga gLIST ATM)))
T~TXT (DEF-TO-TXT
L, TXT (LIST ATM))))))
\MAPC (GET NAME
(TSRESD) (QUOTE VARIABLES)) (QUOTE (LAMBDA (ATNM)
(((EQ ATM (EVAL ATM)))
(PRT-TXT (SET-TO~TXT (LIST ATM))))

(MAPC (CDR ATM) (QUOTE
(TERPRIT) Q (LAMBDA (EXP)

((?'rox EXP)

PRIN2 (LIST (QUOTE PLA

(P(Tmm)) GQQ) ATM EXP))
RT-TXT (PUT-TO-

TERIES] (TO-TXT ATM (CAR EXP)))))))))

PRINT *(RDS)*)

WRS))) .

TQQ D EXECUTIVE (LAMBDA (
CHARS)
LOOP
(SETQ CHARS (QUERYS "DRIVE LETTER"))
((NULL CHARS))
(SETQ CHARS (CAR CHARS))
((EQ (LENGTE CEARS) 1)))
(NGLL CHARS))
SETQ *DRIVE* CHARS)))

(PRIN2 (LIST (QUOTE DEFON) (QUOTE FLAGQQ) (GETD FLAGQQ)))

AR S R EEZERR 2 R 2 TEXT EDITING FUNCTIONS tt*tittt*.!tti-ttttt*t

IFON EDIT-TXT (LAMBDA (*TEXT*

PRE-TEXT *POST-TEXT* *ROW* *COL* *INSERT* *STRING* CHARS READCH)

(SETQ *PRE-TEXT*)
[SETQ *POST-TEXT* (SPLITS *TEXT* PAG-LENS))
(LOOP
(SETQ *ROW* *TEXT¥*)
(SETQ *COL* (CADR *ROW*))
(DISP-TXT *TEXT* *ROW* *COLY*)
(LOoOP
(SETQ CHARS (READCH))
((EQ (EVAL CHARS) (QUCTE CTRL-K)))
(((FLAGP CHARS (QUOTE DEL-CHAR))
(DEL-CHAR CHARS)) o
((OR (FLAGP CHARS (QUOTE PRT-CHAR)) (NUMBERP CEARS))
(PRT-CHAR CEARS)) "
(APPLY (EVAL CHARS) (LIST *INSERT*))))
(CTRL-F)
(TERPRI (LENGTH *ROW*))
(SETQ CEARS (MENUS (QUOTE (
(E EVALUATE TEXT)
(A ABANDON TEXT)
(C CONTINUE EDIT)))))
((EQ CEARS (QUOTE A)))
((AND
(EQ CHARS (QUOTE E))
(EVAL-TEXT (CONS NIL (APPEND
(REVERSZ *PRE-TEXT¥)
(APPEND (CDR *TEXT*) *PQST-TEXT*) }))))))))

IFUN PRT-CHAR (LAMBDA (CHARS
TOKEN)

(PRIN1 (COND :
((GET CBARS (QUOTE ALIAS)))
(CHARS)))

[(NULL (CDR *COL*))
(INSERT-PRT CHARS))

{{NOT *INSERT®)

(SZTQ TCKEN (DELETE-CHAR))

(INSERT-PRT CHARS))
(INSERT-PRT CHARS)
[PRT-REST-LINE *ROW* *COL* Q))) |

A\PC (QUOTE (
\BCDEFGEHEIJKLMNOPQRSTUVWIXYSZ:Z
i1bcdefghijklmnopgqestuvwiIyz
L#se ' *+=-/:2;<¢cm>280\ " " { T mgm meme)
(QUOTE (LAMBDA (CEARS) (FLAG CHARS (QUOTE PRT-CHAR)))))

IFON DEL-CHAR (LAMBDA (CEARS
TOKEN) -
(PRIN1 CHARS)

$ PRINTABLE CHARS %

t DELIMITER CHARS %

% EXIT EDIT CHAR

((NULL (CDR *cOL*))
(INSERT-DEL CHARS))
(NOT *INSERTW)

(SETQ TOKEN (DELETE~CEAR)) ' L
(INSERT-DEL CHARS))
INSERT-DEL CHARS) '

PRT-REST-LINE *ROW* *COL* 0)))

PC(QUOTE("."-'(--.-‘---nn)
JUOTE (LAMBDA (CHARS) (FLAG CHARS (QUOTE DEL-CHAR)))))

'ON CTRL-P (LAMBDA (
CEARS)

JETQ CHARS (READCH))

t ESCAPE CHAR %
'RT~CHAR CHARS)))

QQ "(* ALIAS {)
QQ ") ALIAS })
2Q ® " ALIAS _)

IJN CTRL-V (LAMBDA () $ TOGGLE *INSERT* 3%

STQ *INSERT* (NOT *INSERT*))))

IN CTRL-D (LAMBDA (
"HARS TOKEN)

‘TQ TOKEN (NEXT-RIGHT-TOKEN))
TULL TOKEN)

% ADVANCE CHAR &

% IF AT END OF CURRENT LINE 1
(NULL (CDDR *ROW*))) " % AND NOT END OF TEXT, &
CTRL-M)) % THEN NEW LINE. %
TOM TOKEN) % IF TOKEN IS A DELIMITER %
PRIN1 TOKEN) $ PRINT TOREN AND Y
MOVE-RIGHET-TOREN))) % ADVANCE COL. %
TQ TOXKEN (UNPACKS TOKEN)) L
TQ CHARS (CONS (POP TOKEN))) .
T~TOR CEARS)
OM (CAR *COL*))
(NULL TOREN) - _
(POP *COL*)) ’ ()
WPLACD *COL* (CONS CEARS (CDR *COL*)))
'OF *COL*)

‘PLACA (CDR *COL*) TOKEN))

ACA *COL* (APPEND (CAR *COL*) CHARS))
LL TOREN)

PLACD *COL* (CDDR *COL*)))
ACA (CDR *COL*) TOKEN)))

CTRL-P (LAMBDA (
{EN)

)} TOKEN (MOVE-RIGHT-TOKEN))
.L TOKEN)
op

(NULL (CDDR *ROW*)))

% ADVANCE TOKEN %

.
(CTRL-J) :
((CDR -*COL*))))
(PRT-TOK TOKEN)
(Loop .
((NOT (SPACES (NEXT-RIGHT-TOKEN))))
(MOVE~-RIGHT-TOKEN)
.(SPACES 1))))

(DEFUN CTRL-B (LAMBDA (
TOREN)
(Loop
(SETQ TOKEN (MOVE-RIGHT-TOKEN))
((NULL TOKEN))
(PRT-TOK TOKEN))))

$ MOVE TO END LINE

(DEFUN CTRL-S (LAMBDA (
CHARS TOKEN)
(SETQ TOKEN (CAR *COL*))
((ATOM TOKEN)

{ (MOVE-LEFT-TOKEN)
(BCK-SPACES 1))
((NULL (CAR *ROW*)))

(CTRL-E)

(CTRL-B))
(BCK-SPACES 1)
(SETQ TOREN (UNPACKS TOKEN)) .
((NULL (CDR TOKEN))

((OR (NULL (CDR *COL*)) (ATOM (CADR *COL¥*)))

(SETQ *COL* (RDCS (CADR *ROW*) #*COL*))) .
(RPLACA (CDR *COL*) (PACKS (APPEND TOKEN (CADR *COL*))))
(SETQ *COL* (RDCS (CADR *ROW*) *COL*))

(RPLACD *COL* (CDDR *COL*)))
(SETQ CEARS (CONS (CEOP$ TOKEN)))
RPLACA *COL* TOKEN)
E(OR (NULL (CDR *COL*)) (ATOM (CADR *COL*)))
(RPLACD *COL* (CONS CEARS (CDR *COL*))))
(RPLACA (CDR *COL*) (NCONC CHARS (CADR *COL*)))))

(MOVD CTRL-S CTRL-E)

t RETREAT CHAR §

% RETREAT CHAR %

(DEFUN CTRL-A (LAMBDA (
TOKEN)
(Loop

(SETQ TOKEN (MOVE-LEFT-TOKEN))
((NOT (SPACES TOKEN)))
(PRIN1 BACK))

((NULL TOKEN)

% RETREAT TOKEN %

(Loop
((NULL (CAR *ROW*)))
(CTRL-E)

((CDR *COL¥*)
(CTRL-B))))
(BCRK~SPACES (TOR~PRT~-LEN TOREN)) })

IFUN CTRL-Q (LAMBDA ()
[PRIN1 CR) :

\SETQ *COL* (CADR *ROW*))
'SPACES (CAR *COL*))))

FOUN CTRL-E (LAMBDA (
NUM)
(NULL (CAR *ROW*))
((NULL *PRE-TEXT*))
(CTRL-W)
(CTRL-E))
SETQ NUM (SPACES))
UP~-LINS 1)
SPLICE-TOKEN *COL*)
SETQ *COL* (CAR *ROW*))
SETQ *ROW* (RDCS *TEXT* *ROW*))
SPACES (CAR *COL*))
LOOP
((NULL (CDR *COL*)))
((NOT (LESSP (SPACES) NUM)))
(CTRL-F))))

*ON CTRL-X (LAMBDA ('

NOM)

'NULL (CDDR *ROW*))

((NULL *POST-TEXT*)) ,
(CTRL~2)

(CTRL-X).)

JETQ NUM (SPACES))

'TRL-J)

Amp

((NULL (CDR *COL*)))
((NOT (LESSP (SPACES) NUM)))
(CTRL-F)) }))

UN CTRL-W (LAMBDA ()

NULL *PRE-TEXT*))

((NULL (CDDR *ROW*))
(CTRL-E)).)

$ MOVE TO BEGIN LINE %

3 MOVE UP LINE %

$ MOVE DOWN LINE %

§ SCROLL DCOWN §%

PLACD *TEXT* (CONS (POP *PRE-TEXT*) (CDR *TEXT*)))

0SB (CHOPS *TEXT*) *POST-TEXT*)
((NULL (CAR *ROW*))

(POP *ROW*)))
ISP-TXT *TEXT* *ROW* *COL*)))

UN CTRL-R (LAMBDA (
NOM)
NULL *2RE-TEXT¥*))

2TQ NUM (DIFFERENCE PAG~LENS 6))
0P

(PUSH (CHOPS$ *TEXT*) *POST-TEXT*)
{(RPLACD *TEXT* (CONS (POP *PRE-TEXTY)

10

$ SCROLL DOWN PAGE §

v

(CDR *TEXT*)))

~~

[

O

)

((NULL #*PRE-TEXT*))

(SETQ NUM (SUBl NUM))

((ZEROP NUM)))
(SETQ *ROW* *TEXT*)
(SETQ *COL* (CADR *ROW*)) _
(DISP-TXT *TEXT* *ROW* *COL*)))

(DEFUN CTRL-Z (LAMBDA ()

{ (NULL *POST-TEXT"))
(((NULL (CAR *ROW*))

(CTRL-X)))
(((EQ *ROW* (CDR *TEXT*))

(SETQ *ROW* *TEXT*)))
(BOMES)
(TERPRI (SUBl PAG-LENS))
(PRT-ROW (CAR *POST-TEXT*))
(TERPRI)
(PUSE (CADR *TEXT*) ¥*PRE-TEXT*)
(RPLACD *TEXT* (CDDR *TEXT*))
(NCONC *TEXT* (CONS (POP *POST-TEXT*)))
(MOVE-CUR *TEXT* *ROW* *COL*)))

(DEFUN CTRL~C (LAMBDA (
NUM)
((NOLL *POST-TEXTY¥))
(SETQ NUM (DIFFERENCE PAG-LENS 6))
(Loop
(PUSHE (CADR *TEXT*) *PRE~-TEXT*)
(RPLACD *T:iXT* (CDDR *TEXT*))
(NCONC *TEXT* (CONS (POP *POST-TEXT*)))
((NULL *POST-TEXT*))
(SETQ NUM (SUB1 NUM))
{((ZEROP NUM)))
(SETQ *ROW* *TEXT*)
(SETQ *COL* (CADR *ROW*))
(DISP-TXT *TEXT* *ROW* *COL*)))

(DEFUN CTRL-N (LAMBDA (
NUM)
((NUMBERP (CAR *COL*))
(SETQ *COL* (CONS 0))
(RPLACD *ROW* (CONS *COL* (CDR *ROW*)))
(((GREATERP (LENGTE *TEXT*) PAG-LENS)
(PUSE (CEOPS *TEXT*) *POST~-TEXTY*)

% SCROLL UP %

% SCROLL UP PAGE %

i

% INSERT NEW LINE %

(SETQ NUM (ROW-PRT-LEN (CAR *POST-TEXT*))))

(SETQ NUM 0))
(ROLL-DWN-ROW (CDR *ROW*) NUM))

(RPLACD (CDR *ROW*) (CONS (CONS 0) (CDDR *ROW*)))

(CTRL-J)
(((GREATERP (LENGTH *TEXT*) PAG-LENS)
(PUSH (CHOPS$ *TEXT*) *POST-TEXT*)

(SETQ NUM (ROW~PRT-LEN (CAR *POST-TEXT*)))
(SETQ NUM 0))

)

(ROLL-DWN~ROW (CDR *ROWY¥) NUM)_)’

(DEFUN CTRL-J (LAMBDA ()
((NULL (CDDR *ROW*)))
(SPLICE-TOKEN *COL*)
(SETQ *ROW* (CDR *ROW*))
(TERPRI)

(SETQ *COL* (CADR *ROW*))
{(SPACES (CAR *COL™*))))

((EVAL *INSERT*)
(CTRL~N) .
(CTRL-F))
((NULL (CDDR *ROW*))
({NULL *POST-TEXT*)
@% (SPLICE-TOREN *COL*)
: (SETQ *ROW* (CDR *ROW*))
(TERPRI)
(SETQ *COL* (CONS 0))
(RPLACD *ROW* (CONS *COL*))

(DEFON CTRL-M (LAMBDA ('INSERI*)

((GREATERP (LENGTH *TEXT*) PAG-LENS)

(POSH (CADR *TEXT®) *PRE-TEXT*)
(RPLACD *TEXT* (CDDR *TEXT*))))
(CTRL-2)
(CTRL-M))
(SPLICE~TOKEN *COL%)
(TERPRI)
(SETQ *ROW* (CDR *ROW*))
(SETQ *COL* (CADR *ROW*))
{LOOP
((ZEROP (CAR *COL*)))
(RPLACA *COL* (SUBl (CAR *COL*)))

i

% NEWLINE TAB %

$ CARRIAGE RETURN %

(RPLACD *COL* (CONS (QUOTE " ") (CDR *COL*))))))

“EPON CTRL-G (LAMBDA (
TOKEN)
(SETQ TOKEN (DELETE-CHAR))
{ {NULL TOKEN))
(PRT-REST-LINE *ROW* *COL* 1)))

DEFON CTRL~T (LAMBDA (

TORKEN NUM)

(SETQ TOXEN (DELETE-TOREN))

((NOT TOKEN))

(SETQ NUM (TOK~PRT-LEN TOKEN))

(Loop
((NOT (SPACES (NEXT~RIGET-TOKEN))))
(SETQ NUM (ADD1 NUM))
(DELETE-CEAR))

(PRT-REST-LINE *ROW* *COL* NUM)))

JEFUN CTRL-Y (LAMBDA ()
((NULL (CDDR *ROW*))

12

§ DELETE CEAR %

t DELETE TOKEN §

$ DELETE LINE 3%

¢

(PRIN1 CR)
(SPACES (ROW-PRT-LEN (CADR *ROW*)))
(PRIN1 CR)
(SETQ *COL* (CONS 0))
(RPLACA (CDR *ROW*) *COL*))
((AND (NULL *POST-TEXT*) *PRE-TEXTY¥)

(RPLACD *TEXT* (CONS (POP *PRE-TEXT*) (CDR *TEXT*)))

(RPLACD *ROW* (CDDR *ROW*))
(SETQ *COL* (CADR *ROW*))
(DISP=TXT *TEXT* *ROW* *COL*))
{ ((NULL *POST-TEXT*))
(NCONC *TEXT* (CONS (POP *POST-TEXT*))))
(ROLL-UP-ROW (CDR *ROW*))
(RPLACD *ROW* (£DDR *ROW*))
(SETQ *COL* (CADR *ROW*))
(SPACES (CAR *COL*))))

(DEFUN CTRL-O (LAMBDA (

READCE)
(HOMES)
(SPACES (ROW-PRT-LEN (CADR *TEXT*)))
(PRIN1 CR)
(PRIN1 “"FIND NAME? ") ‘ ‘
(SETQ READCE T)
(SETQ *STRING* (CAR (RD-LINS)))
(HOMES)
(SPACES LIN-LENS)
(BOMES)
(PRT-ROW (CADR *TEXT*))
((NULL *STRING*)

(MOVE-CUR *TEXT* *ROW* *con*))
(CTRL-L)))

(DEFUN CTRL-L (LAMBDA ()

{ (NULL *STRING*))
(MOVE-RIGHT-TOKEN)
(SRCE~TXT *STRING* *ROW* *COL*)
(MOVE-CUR *TEXT* *ROW* *COL*)))

(DEFUN SRCH-TXT (LAMBDA (TOKEN ROW COL)

(Loop
{(SETQ COL (SRCH-ROW COL))
(SETQ *COL* COL)
(SETQ *ROW* ROW))
(POP ROW)
((NULL (CDR ROW))
(SETQ ROW *TEXT¥*)
(Loop
(SETQ COL (CADR ROW))
((SETQ COL (SRCE-ROW COL))
(SETQ *COL* COL)
(SETQ *ROW* ROW))
(POP ROW)))
(SETQ COL (CADR ROW}))))

13

% FIND TOKEN %

% SEARCH AGAIN %

NEFUN SRCH-ROW (LAMBDA (CQL)
(LoQP
((NULL (CDR COL)) 'NIL)
((EQ TOKEN (CAADR COL)) COL)
(POP COL)
((EQ COL *COL*) CoOL))))

14

et

P asesssesssesiives CURSOR CONTROL PRIMITIVES *¥ewsswsvssussssvasy
(_ (DEFUN INSERT-PRT (LAMBDA (CHARS)
((ATOM (CAR *COL*))
(RPLACD *COL* (CONS (CONS CHARS) (CDR *COL*)))
(POP *COL*))
(RPLACA *COL* (NCONC (UNPACKS (CAR *COL*)) (CONS CHARS)))))

(DEFUN INSERT-DEL (LAMBDA (CHARS)

" ((AND (NUMBERP (CAR *COL*)) (SPACE$ CHARS))
(RPLACA *COL* (ADD1l (CAR *COL*))))
(RPLACD *COL* (CONS CHARS (CDR *COL*)))
(SPLICE~TOKEN *COL™*)
(POP *COL*))) ‘

.

(DEFUN DELETE-CHAR (LAMBDA (
i . CHARS TOKEN)
" (SETQ TOKEN (NEXT-RIGHT-TOKEN))
((NULL TOREN) NIL)
C) ((ATOM TOKEN)
(RPLACD *COL* (CDDR *COL*))
TOXKEN)
(SETQ TOKEN (UNPACKS TOKEN))
(SETQ CHARS (CONS (POP TOKEN)))
((NULL TOKEN)
(RPLACD *COL* (CDDR *COL*))
CHARS)
(RPLACA (CDR *COL*) TOKEN)
CEARS))

(DEFUN DELETE-TOKEN (LAMBDA (
TOKEN) .
(SETQ TOKEN (NEXT-RIGHT-TOKEN))
((NULL TOKEN) NIL)
(RPLACD *COL* (CDDR *COL*))
TOXEN))

C) (DEFUN MOVE-RIGHT-TOKEN (LAMBDA (!
TORKEN) ’

(SETQ TOREN (NEXT-RIGHT-TOKEN))

((NULL TOKEN) NIL)

((AND (NUMBER® (CAR *COL*)) (SPACES$ TOKEN))
(RPLACA *COL* (ADD1 (CAR *COL¥*)))
(RPLACD *COL* (CDDR *COL*))
TOKEN) '

((SPLICE-TOKEN *COL*)
(POP *COL*)
TOKEN)

TOKEN))

(DEFUN NEXT-RIGHT-TOKEN (LAMBDA ()
((NULL (CDR *COL*)) NIL)
¢ (CADR *COL*)))

EFUN MOVE-LEFT-TOKEN (LAMBDA (
TOREN) -
(SETQ TOKEN (CAR *COL*))
((NUMBERP TOKEN)
((ZEROP TOKEN)
SLAC * (SUBl TOKEN))
RPLACA *COL
ERPLACD +GOL* (CONS * * (CDR *COL*)))
- wu
(SPLICE-TOKEN *COL*)

(SETQ *COL* (RDCS (CADR *ROW*) *COL*))
TOKEN))

‘

:FUN SPLICE-TOKEN (LAMBDA (CoLn
LST)

.(ATOM (CAR COL))
((NOT (NUMBERP (CAR cor))))
(POP LST)
(Loop

((OR (NULL LST) (NOT -(SPACES (POP LST)})))
(RPLACA COL égg?l)(?hﬂ CoL)))
RPLACD COL :
(OR((NULL (CDR COL)) (ATOM (CADR coL))
(RPLACA COL (PACKS (CAR coL)))
T)

RPLACA COL (PACKS (APPEND (CAR COL) (CADR coL))))

RPLACD COL (CDDR COL))
1L)

1R

O

)
}
}
)

;‘ttt'tf'ttt'it"ti
d

)Lg?

TEXT PRINTER

(DEFUN ROLL-UP-ROW (LAMBDA (LINE
NUM LENGTE) ‘
(SETQ LENGTE (SUBL (LENGTH LINE)))

(SETQ NUM (REPL-ROW (CAR LINE) 0))
(POP LINE)

)
)
)
)

) (LOOP

; ((NULL LINE)) :
N (SETQ NUM (REPL-ROW (POP LINE) NUM))
i (TERPRI))

' (SPACES NUM)

; (OP~LINS LENGTH)))

)

}

}

5

(DEFUN ROLL-DWN-ROW (LAMBDA (ROW NUM)
(TERPRI (SUBl (LENGTE ROW)))
(SETQ ROW (REVERSE ROW))

(Loce
¢ (SETQ NUM (RSPL-ROW (POP- ROW) NUM)) '
r ((NULL ROW)) .

L (UP-LINS))
. (PRIN1 CR)))

(DEFgg RfPL-ROW (LAMBDA (COL LENGTH
M

b

+ (PRIN1 CR)

} (PRT=ROW COL)

, (SETQ NUM (SPACES))
, (SPACES (DIFFERENCE LENGTH NUM))
, NUM)

b

(DEFUN DISP-TXT (LAMBDA (TEXT ROW COL)
(TERPRI 47)

(BOMES)

i (PRT-TXT TEXT)

i (MOVE-CUR TEXT ROW COL)))
E(gL¢s*UN PRT-TXT (LAMBDA (TEXT)

.~ (MAPC (CDR TEXT) (QUOTE (LAMBDA (COL)
; (PRT-ROW COL)

' {TERPRI)))))
‘(DEFUN PRT-ROW (LAMBDA (COL)

¢ (SPACES (CAR COL)})
¥ (MAPC (CDR COL) PRT-TOK))})

v

{DEFUN MOVE~CUR (LAMBDA (TEXT ROW COL)
. (BOMES)

. (Loop
. ((EQ ROW TEXT))
(TERPRI)
(POP TEXT))
" (SETQ TEXT (CADR ROW))
. ‘SPACES (CAR TEXT))
~wO0P

17

tit**‘*t‘tt*t**tt'*'%

% DISPLAY TEXT %
% CLEAR SCREEN 3%
$ MOVE TO HOMES &
$ PRINT TEXT %

$ RESTORE CURSOR %

% PRINT TEXT %

$ PRINT A ROW OF TEXT 3

$ MOVE TO ROW 1

% MOVE TO COL %

i’ (A AR RSS2 R X1 s_mPRESSION lro TEXT TRANSLATOR .i"'t""#.'ttt

(P24

‘ ' . - -TO- BDA (VAR % TRANSLATE T
((EQ TEXT COL)) R (DEFggTDfF TO-TXT (LAMBDA (' DEFINITIO
(POP TEXT) : SETQ TXT (CONS))"
(PRT-TOK (CAR TEXT))))) o . gLoog (CONS))
: : - (NCONC TXT (CDR
'DEFUN PRT-REST-LINE (LAMBDA (ROW COL NUM (EXP-TO-TXT (GETD (CAR VAR)) (LIST (QUOTE DEFUN) (POP VAR)))))
(sgggouéuo (SPACES)) - ((NULL VAR) TXT)
- NC TXT (CONS NS 0
(MAPC (CDR COL) PRT-TOK) (NCONC TXT ((co)1))))
(SETQ NUM (DIFFERENCE (SPACES NUM) NUMQ)) : N SET-TO-TXT (LAMBDA (VAR . SLATE VALOE %
((LESSP NUM NUMO) (DBFgXTS)T TO-TXT ((TRAN
(BCK-SPACES NUM)) . (SEvQ TXT (CONS))
(PRIN1 CR)

(Loop
(NCONC TXT (CDR ' :
(EXP-TO-TXT (EVAL (CAR VAR)) (LIST (QUOTE SETQQ) (POP VAR)))))
((NULL VAR) TXT)
(NCONC TXT (CONS (CONS 0))))))

(SETQ ROW (CADR ROW))
(SPACES (CAR ROW)) ’
(LooP

((EQ ROW COL))

(SETQ ROW (CDR ROW))

/ (PRT-TOK (CAR ROW)))))) (DEFUN PUT-TO-TXT (LAMBDA (VAR ATM) % TRANSLATE PROPERTY %

. {(EXP-TO-TXT (GET VAR ATM) (LIST (QUOTE PUTQQ) VAR ATM))))
JEFUN PRT-TOK (LAMBDA (TOKEN) : ()
((ATOM TOKEN) : (DEFUN EXP-TO-TXT (LAMBDA (EXP LST
(PRIN1 TOKEN)) . . , *TEXT* *LINE* *LENGTHE* TAB INDENT)
((NULL (CDR TOKEN)) (SETQ TAB 0)

((NULL WRS)
(PRIN1 (COND
({GET (CAR TOKEN) (QUOTE A.LIAS)))
{ (CAR. TOKEN)))))
(PRIN2 (CAR TOKEN)))
((NULL WRS)

(SETQ INDENT 1)

(((LESSP LIN-LENS 60))
(SETQ INDENT 2))

(NEW-LIN TAB)

(PUSE " (" TLINEY*)

. LOOP
(MAPC TOKEN PRIN1)) . _ . B (((NOLL LST))
(MAPC TORKEN PRIN2) }) [. (EXP-TO-LIN (POP LST))
: o B (PUSH " " *LINE*)) ‘ B
JEFUN ROW-PRT-LEN (LAMBDA (COL . . , (TSK-TO-TXT EXP TAB) ‘
NOM) . (PUSH ") *LINE*)
(SETQ NUM (POP COL)) : . . i~ (NEW-LIN TAB) .
{LooP N (REVERSE *TEXT*)))
{ (NULL COL) NOUM)
(SETQ NUM (PLUS NUM (TOK-PRT-LEN (POP COL))))))) (DEFCN TSK-TO-TXT (LAMBDA (TSK TAB) $ TRANSLATE TASK %
C) (SETQ TAB (PLUS TAB INDENT))
EFUN TOR-PRT-LEN (LAMBDA (TOKEN) . ((ATOM TSK)
((ATOM TOKEN) 1) (EXP-TO-LIN TSK))
((NULL (CDR TOKEN)) ((ATOM (CAR TSK))
(LENGTE (CAR TOKEN))) ((MEMBER (CAR TSK) (QUOTE (LAMBDA NLAMBDA)))

(LENGTE TOKEN))) . (PUSE " (" *LINE¥*)

(EXP-TO-LIN (POP TSK))

(PUSE " * *LINEY*)

(EXP-TO-LIN (POP TSK))

(BDY-TO-TXT TSK TAB)

(PUSH ")" *LINE*))

((MEMBER (CAR TSK) (QUOTE (LOOP COND PROGN PROGl AND OR)))

(POSH " (" *LINE¥*)

(EXP-TO-LIN (POP TSK))

19

18

oy
i

(BDY-TO~TXT TSX TAB)
(PUSH *")" *LINE*))
{EXP-TO-LIN TSK))
((ATOM (CAAR TSK))
(PUSH " (" *LINE¥)
(TSK-TO-TXT (POP TSK) TAB)
((AND TSK (ATOM (CAR TSK)) (NULL (CDR rsx)))
(PUSH " * *LINE¥)
(EXP-TO-LIN (CAR TSK))
(PUSH ")" *LINE*))
(BDY-TO-TXT TSK TAB)
(PUSE *)* *LINE*))
(PUSH *(" *LINE¥))
(POSE * = *LINE*) |,
{BDY-TO-TXT1 TSK TAB)
(PUSH)" *LINE*)))

i?EFUV BDY-TO-TXT (LAMBDA (BDY TAB) § TRANSLATE BODY %

* { (NULL BDY))
(NEW-LIN TAB)
(BDY-TO-TXT1l BDY TAB)))

DEFUN BDY-TO-TXT1 (LAMBDA (BDY TAB)
{Loop
(TSK-TO-TXT (POP BDY) TAB)
{ (NULL BDY)
(PUSHE " " *LINE¥))
(NEW-LIN TAB))))

JEFUN EXP-TO-LIN (LAMBDA (EXP)
((ATOM EXP)
(PUSE (CONS EXP) *LINE*))
(PUSE " (" *LINE*)
(Loop
(EXP-TO-LIN (POP EXP))
((ATOM EXP)
((NULL EXP))
(PUSH " * *LINE®)
(PUSHE ".* *LINE¥)
(PUST * * *LINE¥)
(PUSH (CONS EXP) *LINE*))
(PUSE " * *LINE*))
(PUSH ")* *LINE*)))

IFUN NEW-LIN (LAMBDA (TAB)

\SETQ *LENGTH* TAB)

.SETQ *LINE* (REVERSE *LINEY*))

.SETQ TAB (PLUS (CAR *LINE*) (TIMES 2 INDENT)))
CUT-LIN *LINE* (CAR *LINE¥))

SETQ *LINE* (LIST *LENGTH*))))

FUON CUT-LIN (LAMBDA (LINE LENGTH)

20SH *LINE* *TEXT*)
(NULL *LINE*))

20

(SETQ LENGTH (PLUS LENGTH (UNIT-LEN (CDR LINE))))
LOOP
¢ ((NOT (LESSP LENGTH LIN-LENS))
(SETQ *LINE* (CONS TAB (CDDR LINE)))
(RPLACD LINE NIL)
(CUT-LIN *LINE* (CAR *LINE*)))
(SETQ LINE (NXT-UNIT (CDR LINE)))
" ((NULL LINE))
(SETQ LENGTH (PLUS LENGTH (ADDl (UNIT-LEN (CDDR LINE))))))))

(DEFUN UNIT-LEN (LAMBDA (LINE
PRIN1 R
((OR (NU%L LINE) (SPACES$ (CAR LINE))) 0)
{(ATOM (CAR LINE))
(ADD1 (UNIT-LEN (CDR LINE))))
(((NULL WRS)
(SETQ PRINI T)))
(PLUS (LENGTHE (CAAR LINE)) (UNIT-LEN (CDR LINE)))))

(DEFUN NXT-ONIT (LAMBDA (COL)
(Loop
((NULL (CDR COL)) NIL)
((SPACES (CADR COL)) COL)
(SETQ COL (CDR COL))) i)

i

ewsswsxwsasas TEXT TO S-EXPRESSION TRANSLATOR

ttiti't"*ii*it*t‘

DEFUN EVAL-TEXT (LAMBDA (TEXT

COL TXT ERROR)
(Loop
(SETQ TXT (NX?-TOK))
NULL TXT) T

Eézro TXT 1Tox—ro—sax TXT))
((NOT (NULL ERROR)) NIL)
(EVAL TXT))))

JEFUN TOK-TO-SEX (LAMBDA (TOKEN)
{ (ATOM TOKEN) :
((EQ TOXKEN *(") . .
(LST-TO-SEX))
(PRINL- "SYNTAX ERROR")
(SETQ ERROR T))
((NULL (CDR TOKEN))
(CAR TOKEN)) ‘ ‘
(PACX TOEKEN))) . :

EFUN LST-TO-SEX (LAMBDA (
TOKEN LST ')
(SETQ TOKEN (NXT-TOK))
(Loo?
((EQ TOKEN ") ")
(REVERSE LST))
(PUSH (TCK-TO-SEX TOKEN) LST)
((EVAL ERROR))
(SETQ TOKEN (N?T-TOK))
TOKEN *.") °
((%%sm TOKEN (TOK-TO-SEX (NXT-TOK)))
((EQ (MXT-TOK) ")")
(NCONC (REVERSE LST) TOKEN))
(PRIN1 "SYNTAX ERROR®)
(SETQ ERROR T)))))

FUN NXT-TOK (LAMBDA (. S
TOKEN) ,

LOC? '

((NULL COL)
(SETQ TEXT (CDR TEXT))
{ (NULL TEXT) NIL)

(SETQ COL (CAR TEXT)) -
e)pop coL)) °.
ﬁggg 'fggmfnéuggm TOKEN) (SPACES TOKEN) (EQ 'roxan. <))

TOKEN))))

LA SR XS 2T

=

[

TRACE DEBUGGING PACKAGE

(DEFUN TRACE (LAMBDA (LST)
(SETQ INDENT 0)

((MAPC LST (QUOTE (LAMBDA (FUN BODY FUN#$)

(SETQ BODY (GETD FUN))
(SETQ FUN# (PACX (LIST FUN §)))
(MOVD FUN FUN#)
((MEMBER (CAR BODY) (QUOTE (LAMBDA NLAMBDA)))
(PUTD FUN (LIST (CAR BODY) (CADR BODY)
(LIST EVTRACE FUN (CADR BODY) FUN#))))
(PRIN1 FUN)

(PRINT " is not a LAMBDA defined function®))))))

(DEFUN UNTRACE (LAMBDA (LST)

(MAPC LST (QUOTE (LAMBDA (FUN FUN#)
(SETQ FUN# (PACX (LIST FUN $)))
((GETD FUN$)

3 (MOVD FUN# FON)
(MOVD NIL FON$#)))))))

(DEFUN EVTRACE (NLAMBDA (FUN ARGS FUN#?)
(PRTARGS FUNMN ARGS)

(PRTRSLT FUN (APPLY FUN$# (MAKARGS ARGS))))}

(DEFON PRTARGS (LAMBDA (FUN ARGS)
(SPACES INDENT)
(SETQ INDENT (PLUS INDENT 1))
(PRIN1 FON) (PRIN1 * [*)
((NULL ARGS)
(PRINT “]1°7))
(Loop
((ATOM ARGS)
(SETQ ARGS (EVAL ARGS))
(Loop
(PRIN1 (POP ARGS))
((ATOM ARGS))
(PRINL *, ")))
(PRIN1 (EVAL (POP ARGS)))
((NULL ARGS))
(PRIN1 *, "))
(} (PRINT *}1*)))

(DEFUN PRTRSLT (LAMBDA (FUN RSLT)
(SETQ INDENT (DIFFERENCE INDENT 1))
(SPACES INDENT)

(PRIN1 FUN) (PRINL " = *) (PRINT RSLT)
RSLT))
(DEFUN MAXARGS (LAMBDA (ARGS)
((NULL ARGS) NIL)
((ATOM ARGS)
(EVAL ARGS))

(CONS (EVAL (POP ARGS)) (MAKARGS ARGS))))

A

KRR A AL ww

~a

{(ATOM (CAR LST1))
(SUPERREVERSE {(CDR LST1l) (CONS (CAR LSTl) LST2)))

sFile: UTILITY.LIB 08/11/80 The Soft Warehouse % (SUPERREVERSE (CDR LSTl) (CONS (SUPERREVERSE (CAR LST1)) LST2))))
" (PROGL ** ' :
t Function REMBER is a constructor returning a list in which all
(P?ggrgggggc(gggfs (NLAMBDA (FUNC DEF) occurrences of ATM has been removed from LST. %
FUNC))))

(DEFUN REMBER (LAMBDA (ATM LST)
((NULL LST) NIL)

% Function APPEND returns a list consisting of the elements of LST1 ((%gzgggR(igﬁ %ggg)nér)))

appended to LST2. % (CONS (CAR LST) (REMBER ATM (CDR LST)))))

(DEFUN APPEND (LAMBDA (LSTL LST2)

(Cons’ (San LST1) (aPPEND (COR LTL) LST2))) SRR T ST S RTR BRI ee

. s a copy of its arqument. % A EFUN SUBST (LAMBDA (OLD NEW EXPN)
E E‘unctxon» COPY return PY g s ((EQUAL OLD EXPN) NEW)
(DEFUN COPY (LAMBDA (EXPN) ((ATOM EXPN) EXPN)
((ATOM EXPN) EXPN) (CONS (SUBST OLD NEW (CAR EXPN)) (SUBST OLD NEW (CDR EXPN)))))

(CONS (COPY (CAR EXPN)) (COPY (CDR EXPN)))))

% Function NTH is a selector which returns the result of

% Function OUNION returns the union of LST1 and LST2. % ' removing the first NUM elements from the list LST. §
(DEFUN UNION (LAMBDA (LST1 LST2) ' : _ o (DEFUN NTE (LAMBDA (LST NUM)

({NULL LSTl) LST2) : ((NOT (PLUSP NUM)) .

((MEMBER (CAR LST1l) LST2) o . LST) :

(UNION (CDR LSTl) LST2)) (L?ggm LST (COR LST))
CAR LST UNION (CDR LST1l) LST2 o
(CONS (LST1) (UNION () N)N » (SETQ NOM (SUBL NOM))
"~ « - ((ZEROP NUM) ‘

% Function INTERSECTION returns the intersection of LST1 and LSTZ. s - LST)))

(DEFUN INTERSECTION (LAMBDA (LST1 LSTZ)

((NOLL LST1) NIL) ¢ Punction GENSYM is a constructor which returns a new name

((MEMBER (CAR LSTl) LST2) or the form Gxxxx where xxxx is a number incremented each
(CONS (CAR LST1) (INTERSECTION (CDR LST1) LST2))) . ' time GENSYM is called. %

(INTERSECTION (CDR LST1l) LST2)))

(SETQ GENSYM 0)

$ Punction SUBSET is a comparator returning T iff LST1 .is a subset (DEFUN GENSYM (LAMBDA (NUM LST)
of LST2. & . (SETQ NUM (DIFFERENCE 4 (LENGTHE GENSYNM)))
’ . (LooP ‘
(DEFUN SUBSET (LAMBDA (LSTl LST2) ((ZEROP NUM)))
({NULL LST1)) (PUSE 0 LST)
((MEMBER (CAR LST1) LST2) (SETQ NUM (SUBL NUM)))
(SUBSET (CDR LSTl) LST2))) (PROG1

(PACK (NCONC (CONS (QUOTE G) LST) (LIST GENSYM)))

. ‘. (SETQ GENSYM (ADD1 GENSYM)))))
% Function SUPERREVERSE returns a list of the elements of LST1

reversed at all levels. %

% function MAX returns the greater of two numbers. 3
(DEFUN SUPERREVERSE (LAMBDA (LST1 LST2) .
((NULL LSTl) LST2)

' (DEFUN MAX (LAMBDA (M N)
((GREATERP M N) M)
N))

(DEFUN ADD1 (LAMBDA (NUM)
(PLUS NUM 1)))

(DEFUN SUBl (LAMBDA (NUM)
(DIFFERENCE NUM 1)))

‘

$ Function DEPTH returns the maximum depth of an expression. %

(DEFUN DEPTH (LAMBDA (EXPN)
((ATOM EXPN) 0)
(ADD1 (MAX (DEPTH (CAR EXPN)) (DEPTE (CDR EXPN))))))

t Function ABS returns the absolute value of NUM. %

.(DEFUN ABS (LAMBDA (NUM)
((MINUSP NUM)
(MINUS NUM))
NUM))

s _Punction FACTORIAL returns NUM factorial. %

(DEFUN FACTORIAL (LAMBDA (NUM
. ANS)

*“((NOT (GREATERP NUM -1)) NIL
(SETQ ANS'1) : :
(Loop -

((EQ NUM 0) ANS
(SETQ ANS (TIMES NUM ANS))
(SETQ NUM (SUBlL NOM)))))

% Function POWER returns NUM1 raised to the NUM2 power.
is a local or temporary variable for the function PCWER. %

(DEFUN POWER (LAMBDA (NUM1l NUM2

NOM3)

(SETQ NUM3 1)

(LooP
(SETQ NUM2 (DIVIDE NUM2 2))

-{ ((EQ (CDR NUM2) 1)

(SETQ NUM3 (TIMES NUM1 NUM3))))

(SETQ NUM2 (CAR NUM2))
((ZEROP NUM2) NUM3)
(SETQ NUML (TIMES NUM1 NUM1))) 1))

NUM3

Eﬁ Function GCD returns the Greatest Common Divisor of NUMl and

NUM2. %

(DEFUN GCD (LAMBDA (NUM1 NUM2

NUM3)

(LOOP

((ZEROP NUM2) NUM1)

(SETQ
(SETQ
(SETQ

NUM3 NUM2)
NUM2 (REMAINDER NUM1 NUM2))
NUM1 NUM3))))

% The following are examples of Mapping Functions equivalent to
the definitions found in LISP tutorials. §&

(DEFCN MAPC (LAMBDA (LST FUN)

(Lcop

A\NULL LST) NIL)
(FUN (POP LST)))))

YVEFUN MAPCAR (LAMBDA (LST FOUN)
((NULL LST) NIL)

(CONS (FUN (CAR LST))

(MAPCAR (CDR LST) FUN))))

(DEFUN MAPLIST (LAMBDA (LST FUN)
((NULL LST) NIL)

(CONS (FUN LST) (MAPLIST (CDR LST) FUN))))

(RDS)

% DELETE TEIS LINE IF YOU WANT AN EVALQUOTE DRIVER %

% Function DRIVER is ‘'originally defined in machine language to be

an EVAL-LISP executive driver,

desired.

However, it may be redefined as
The following is an EVAL-QUOTE driver, which must be

K;}d to load the remainder of the functions in this file. %

{SEFUON DRIVER (LAMBDA (RDS WRS)

(LOQ?

(TERPRI)

AP

(QUCTE "> *))

(PRINT (APPLY (READ) (READ) (TERPRI))))))

(DRIVER)

PN

