
. "\

"l-'
~lO

D

::'

Hannes Goldynia
St. Martlner Str.45
9500 Villach

mullSP/muSTAR-80 tm

Artificiallntellioence..,

Development System
Re1ercnce Manual

August 1980

•

Copyright (C) • l~O ~

Th~ Soit W .IrehClus~ tt(l
All RiKhts R~~nt.~~ \\'4lfldwide~) '../

R.'nri""·ft ~-f:~l , ••·,,,,i··..... ,

COpyright Notice

Copyright (0. 1980 by The Sok Warehouse. All Rights Reserved Worldwide. No pan of this m.anual rT

~p(oduced. transmined, transaibed, stored in ~ retrieval system. or translated into iny human or Corr

I.anguage. in any form or by any means, eleCtronic, mechanical, magnetic. optical. chemical man\..
otherwise. without the express wrinenpcrmission of The Soft Warehouse. P.O. Box "'74. Hon
Hawaii 96828. U.S.A.

Discbimer

The Soh Warehouse makes no representations or warranties with-respect to the contents hereof and specific
disd.ims any implied warranties of merchantability or fitness for any paniculv purpose. funner,
Soft Warehouse reserves the right to revise this publication and to make changes from time to time in
content hereof without obligation of The Soft Warehouse to notify any person or organization of SI

revis;on or changes.

muUSP/muSTAft-80 i~ distributed exclusively by
Miaosoft

10800N.£. Eighrh.S\J'tt~ 819.
Bellevue, \VA 98004

8701- :'00-02

A Brief History of muLISP

muLISP-80 represents the culmination of 4 years of effort into
designing a general purpose LISP system. It was developed almost
entirely on microcanputers for m.ic:rcx:ant:Uters. 1'he original interpret.er
was completed in 1977 by Albert O. Rich using LISP 1.5 as a guide. It
was int:.e.nCed solely for use in mec..~caltheorem PCCN"ing, s-pecifically
for the propositional and predicate calculus of formal logic. This
system, now called muLISP-77, worked quite well for this purpose,
althCl.lgh someJhat slcwly.

'Ibrough the foresight of David R. Stoutemyer, it became ap-~rent

that the potential uses for a microcanputer LISP were t:emendOJS. In
plrtiCJ.1a.r, the possibl i ty of imp!enent..i.D3 f or the first time a syrr.bol ic
mat."1enatics system on a microcanputer was set as a gcaL Influe..".ced by
t..'1e irrlaluable suggestiQ'lS of Martin Griss and Peter Deutsch., joint work
by Rich and Stcutemyer yielded a greatly enhanced and robust LIS?
system. It included infinite precisim arithmetic, streamed ask file
I/O, ar..d a paJerful functioo bcdy e'laluatiOO mec.bani.sm. '.!his ptod1c~

vas released in June of 1979 as JDuLISP-79 by'l'he 50ft Warehouse, a
par+"-..nership set up by StOJtemye.r and Rich to facilitate the widespread
distrituticn of the sofblare.

The success of muLISP-79 and its companion product the
IUlSDlP/mu..M.1aB-79CD Symbolic Math system encouraged further work on
1m'proving the systems.. The need for greater code densi ty and faster
leading capabllit:::l resulted in the addition of a pseudo-code canpiler
and interpreter for the auLISP-80 system. A major effort went into
making the documention for muLISP-80 of the same high caliber as the
software. '!be clarit¥ arxi completeness of this m.aDJal is we in large
part to the persistence of ~ can B. Rich.

CUrrently work is being done to make muLISP available for other
popular micro and minicomputers.. The advent of the 16 bit micro­
prccessors will make possible the greatly impr01ed perfcrmanceand data
space sizes r«iuired to satisfy the needs of ever larger AI research
efforts. We i.ntended to fulfill those needs.

August 2, lSSO

•

iv

L \ :.-~ I s,T ..~ 11_

Preface

The LISP computer language is based on a paper by John McCart.by
[1960] entitled ~.J.Csive Functicns of Symbolic Expressioos and ~eir

Computation by Machine-. Since its first implementation at
the Massacl"lusetts Institute of Tec."malO3Y in the early 1960's, LLSP b..:lS
remained the ~machine languaseft of ~~e AI (Artificial Intellisence)
CCl't.Qunity. 'n1e language and its marrt derivatives ccnti..~e to monq;.cl.i=e
all serious work in such diverse fields as robotics, nat.Utal langl:ase
translation, theorem proving, medical diagnosis, game playing, and
pro;ram verificatiO'l. LISP is the language of choice for such a~...emptS

at mec.~cal intelligence for the fallON ing reasatS:

1. LISP is an applicative, recursive language which
makes it an ideal formalism for describing complex
mathematical cooceptS..

2. The principal data structures in LISP are binary
trees. SUch abstract cbject.s can be made isancrphic to (Le­
a one-to-one model of) the actual data in mos~ AI problems.
Once this is accomplished, the properties of ~~e original
prcblem can be investigated by t=erlcrmiD] transfermatiQ'1S on
the LISP data struet1lres.

3~ When a computer is programmed to simulate
intelligence, it must be able to respond to queries of
arbi t.I a.r:y difficul t::y. The static storage allccatioo sc...~emes

of ca'rJ'entioo.al programming languages makes it very diffiOJlt
to dea.: with such~ ended prcblems. 'lbese diffioJ.lties are
allevi.41ted in LIS? by dynamic allocatioo and recycling of data
storage re.soo.rces by means of autanatic garbage collecticn.

4. A highly interactive environment is essential for
intelligent human-machine canmunicatim. '!he ease with which
LISP functicn definitioos can be regarded as data enccurages
incren\ental system development and makes LISP an ideal
interactive language.

'!be Cevelc:pnent aOO distrituticn of muLISP-79 by !be SCF1' WAR.EE:OSE
helped to make LISP available to th.e rapidly grOJing communit:'J of
micrcx:c:np.lter users. '!his was the first efficientr -Ptcd1etioo· versicn
of LISP for such computers and is bein~ used in a wide variety of

. ~icaticns. ,

The challenge to meet the ever increasing memory and speed
requirenents of most AI software systems inspired the development of
muLISP-80. An increase in code densit::y by a factor of three and a 20\
increase in exeOJticn speed has been achieved by means of a pseudo-cooe
compiler and interpreter. Since compilation and de-compilaticn occ..:r
automatically, the process is invisible to the user. Thus, t.~e

interactive r.ature of muLISP, so essential fer mast AI aWlicati~.s, is
not sacrificed in t..'1e interest of efficiency. Finally, t:.'"le addi. tion of
the mUS'r.J\R-80 AI Development System to muLISP ra.mded out the package
vit."'l a resident display-oriented editor and deb..lgging facilities.

iii

...,..... --- ~ . "'"'lI!!'" _

--------'---_...

'fable of Contents

III. Kemoxy Management.
A. Initial Data Space Partiticn ••••••

. B. GaJ:bage COllection • • • • • • • • • •
C. Reallocation of Data Space Boundaries
D. Insufficient Me:nory Trap •••••••••••

I. .AD Int.rcrlJct.ia1 to D.1LISP-8O
A. Major Features • • • • •
B. '!he ~.aster Diskette
C. The Basic Interac+"-lQ'1 Cycle
D. '!he Exec..1tive Driver Loop
E. U11L.ISP Ptogran:m.i.ng • • • • • • •
F. Interrupting Program Execution • •
G. Error oiat;nostics •••••••
B. Eav'ironment SYS Files

o

VI-2
VI-3
VI-4

V-2.1
V-25
V-31
V-32

A-l
A-2
A-4
A-5
A-6
A-9

VI-5
VI-6
VI-7
VI-a
VI-a
VI-a
VI-9

VI-IO
VI-ll
VI-ll
VI-12

...

.

. ...

.

.

. . . .

. . .

.....

. . . .

. . . .

. . .

.

. . .
.

. . .

. . . .

. . . .

. . . .

.

Printer Functions and Control Variables•••••••••
Evaluation Functions • • • • • • • • • • • • • • • • • •
Me:Dory Management Functions ••••••••••••••
Environment Functions _ • • •

Backl..:S-Naur Fom • • • • • • • • • • • • •
Bow to Copy the Master Diskette •• • • • •
ImpleDffiting Machine Language SUbroutines •••
LISP Bibliography • • • • • • • • • • • • •
Function Index • • • • • • • • • • • • •
Concept: I.rxiex _ _ • • •

N.
o.
P.
Q.

Appendices

~ DIJSrAR AIDS
A. Main Menu Coaxnands

1. e:titor Facilities ••
2. Debugging Facilities •••••••
3. Disk ~O Facilities ••••••••••••••••B. Text Editing
1. CUrsor Control •
2. Display Control
3. Entering Text
4. Deleting Text
5. Firrling Names
6 • Ex.iting Editor • • • • •
7 • CClIma.OO SUntnary Tablec. Custanizing II11STJ\R
1. Console CJ.stomi.zation
2. The lIIJSTAR Executive • • • • • • •
3. Text Data Structure .
... Text Primitivies • • • • • • • • • • .. _ • • • • • •

A.
B.
c.
D.
E.

-F.

VI.
i

1i
iii
iv

v

1-1
I-2
1-3
I-3
I-4
I-6
I-7
1-7

II-l
II-2
II-3

• III-l
llI-l
III-2
III-2

.

. .. .
IL Primitive Data St:xuctw:es

.A.. Names

.B. N.mCers
c. ~

Title Paoe •••
Copyright Notice
Preface • • • •
A Brief ei.story of muL.I.SP
Table of COntents

IV. 'rbe JIU-LI.SP Meta-]~e
A. Heta-syntax •••••
B. ·Me~tics ••••

IV-l
IV-l

o

~)vi

V-l
V-3
V-4
V-5
V-o
v-a
V-9
V-ll
V-12
V-D
V-14
V-16
V-l7

• • ..,e •

5el~~r Functioos ••
COnstructor Functions
Modifier Functicns •
Recognizer Functions
~ator Func-~cns

Log"ieal Functions .
Assignment Functions
Prope.rt:/ ~..J.ons •
Flag Func+'--icns • • •
Definition Functions
SUb-atemic Functions • • • • • • • •
~erical Functions •••••••••• e •••

Reader Funct:icns and Control Variables

Prlmitively Defined FUrx:tioos
A..
B.
c.
D.
E.
F.
G.
B.
I.
J.
It.
L.
K.

v.

v

'")
Section I: An Int~oduction to muLISP-80

Congratulations on your purchase of the muLISP-80 Artificial
Intelligence Development Syste.t1 (mu.LlSP-80 AIDS). This system is a
revolutiof'..ary and sophisticated soft-flare package for m.icrocomFu~ers. It
has been designed to ce capable of S'l..~rting a 'Wide range of serious AI
research efforts. Some degree of study and patience is required to
properly use muLISP-80 as a development tool for the 'large soft·"'are
systems required for such aA?lications.

This section of the muLISP-60 AIDS Reference Manual provides the
m.ini.~um infocnation necessarJ to load and use the syste...'l\,. The re.'Uair..c~

of the mar.ual provides a detailed explanation of muL.ISP di:lta str~....ure.s,

memory management, and primitively defined functions. ~~ery at~~pt. r..as
been made to make the manual as clear and precise as l=Ossible: howeve:-,
it is Dot a tutorial en t.he LISP programming language. The best way to
learn cuLISP is by exploratory use of the system in parallel with so.:dy
of this manual. If this reveals an insufficient knowledge of LISP on
the part of the user, several good references are given in tb.e
bibliography at the end of this mat"IJal.

A. Kajor Features

1. A total of 83 LISP ftmctions are defined in machine
l.anguage for maximum, efficiency. These functions provide an
array of data st.rueture primitives incl~ a full complement
of selectors, constructors, modifiers, re<:09ni%ers and
canparators. (see secticn V-A,B,C,D,E)

2. Infinite precision integer arithmetic, expressed in
any desired radix base from 2 through 36, is supported by· a
c:cmplete set of numerical primitives- (see section V-L)

3. A two-pass compacting garbage collector performs
automatic, dynamic memory management on aJ.l data spaces.
A garbage collection typically requires less than half a
secood to canplete. (see section III-B) ,

4. Dynamic reallocati<n of data space boundaries occurs
automatically to most efficiently use all available memory
resources. (see sectim III-C)

s. Program control constructs incJ.JJde an exte.OOed CCNJ,
a multiple exit IDJP, ar.d a powerful function body evaluation
mec..'1anism. 'lbese features [:er:nit programs to be written in an
elegant, p.1re LISP style while still allowing the efficiency
of iteration when it is awlicable. (see section V-{])

6. I.AMEOA defined functions can be made either call-by­
value (CBV) or call-by-name (CBN). In aeXtition func-~ons can
be defined as being either spread or no-spread. (See ~..ion

IV-B)

7. In addition to muLISP's interactive environment,
program debugging is facilitated by a resident display
oriented editor and a trace package. (see section VII)

8. muLISP is fully integrated into Digital Research's
cp/Mtm Oisk operating system and such upward comp~tible
successors as Cromemco's ax:stm, and IMSt\I's l:MIX)Stm.

9. muLISP requires only 9K bytes of machine code
storage, leaving the remainder of the compute;'s memory
available for &ta. stt:uctures. A m..ini.mum system will run in
as little as 20K bytes of comp.lte.r memory.

10. Extremely fast program execution speeds have been
achieved through the use of such techniques as shallow
variable bi..r¥iin3, address typed data sttuetures, arx1 a closed
pointe.t universe. (see section II)

1.1. E\1IlCtioo definiticns are automatically compiled intO
distilled code or D-COde when they are defined. The inverse
process of de-<:ompiling occurs automatically when a definitien
is retrieved. This compilation results in a threefold
increase in code density over storage as a linked list and
about a 20\ impl:ClVement in execution speed. (See section v-J)

12. N.lmercus I/O control variables have been in:luded to
handle such issues as upper/lower case conversion, console
edit mode, and the printin<; of quoted strings. (See section

v-H,N)

13. A means is provided to conveniently link to user­
defined machine language subrcuti.neS. (see section v-\J)

B. ~he KaSter Diskette

'l1le muLISi?-80 system is distributed for mi.crocomPJters as a set of
djsk files en CP/K focnatted floppy di.skettes. 'The exeoJtable~
file MULLSP.C)M is an object code version of the rnuLISP interpret.er and
compiler. Also included on the diskette are the following muLISP

sys ani library files:

MDSmR. SYS 'ttle tIUSrl\R AI Development System
tJTll,IT"i.LIB An assortment of utility funCtions
TRAC£,.LIB A funetioo-ttace debugging package
M£r1\.'1~.Lm A sample program for the MasterMind game
l\NI.M.AL..LIB A sample program for t.~e Animal game
IX::CTOR.LIB An impl~entation of t..~ DoCtor program

As soon as possible after receipt of your muLISP-BO diskette,
make a copy of ~~e ~ASter on a blank diskette for use as a Yorking copy.
An a~ to ~'Us roanual provides more informaticn on how this an be
accomplished. Once copied, the master diskette should be kept in a
safe, cool place to be used only in emergencies.

;~

)

~

:; C. The Basic Interaction Cycle

~. the master d.iskette is safely backed up, it is a simple matter
to initi.!te execution of muLISP. First bring up the computer's disk
operating system in the normal manner. Next, if necessary, switch to
the drive with the copy of the muLISP-SO diskette. Then enter t.he
followi.ng operati.ng system. command, te.c::ninated by a carriage retum:

A>MtJLISP

After a few seconds of load .time, the system should respond with
a lcgca me.ssage of the following focn:

Dl.IL.ISP-80 (8080 Versioo Itm/OiJ!yy)
Copyright (c) 1.980 tthe s::FT WAREHaJSE
S

where aR?rcpriate numbers~ for the verSiCX1 mooth, day, and year.
This version date should be included in all inquiries concerning the
system. t-latu:ea.lly, the ZOO ve.rsicn of mur..I..SP-BO. will have ·Zoo- instead
of -8080· in the logon message.

m.uLISP prompts the user witb a dollaJ:: sign to indicate re.ad.iness to
. accept chataeter i.npJt from the console. After a complete expression

followed by a ea.triage return is typed by the user, muLI.SP evaluates the
expression, and prints the resulting value beginning on a new line.
'nti.s interaction cycle is repeated indefinitelyunt:il a c.mr.rc is typed,
retw:ning control to tbe disk opera.tin.c; system.

Since m.uLISP uses the l..iDe editi.ng rootines of the host ccmpJter's
operating system, all the appliCable features of that system are
inherited by muLISP. _ is usually accomplished by typing a
~ a mlBout., or a DELete. some·~ ecbo t:be deleted character:
others erase the charact:er from the screen and backspace the cursor.
Entire lines can be deleted or flusbed by typing a. CT.RL-o or a CT.RL-X.
By typing a CT.RL-P, all subsequent muLISP console output will also be
sent to the system's pri.rtte;.r.

In general aUy the current line can be edited. There is no wa:f to
codify a lir..e of i.npJt once a carriage retw:n has been typed. However a
nmaway program can be interrupted. as described in the next secticn.

D. The Executive Driver Loop

The defa:Jlt muLISP driver loop is an eval-LISP executive. First
the prompt string, .$ 11;, is displayed, indicat:.i.ng the system is waiting
for console i.np.lt.. 'lbe user can then ent.er an expression ter:ninated by
a carriage return. Multi-line expressions can be entered since an
expression is not considered complete until all parentheses are
balar;:ed. CD:e entered, an expression is read usi.ng the func'ticn RE.t\O,
evaluated using t.~e function FYAI..# ard then t."1e result is print.ed using
the function PRINT. The' following is a sample muLISP dialogue
demoostrating the basic driver loop:

I-)

~

$ IXX;

tx:G

$ (PLUS S -2)
3

$ (10OAL I:X:X; CA1')
NIL

$ (MEMBm rxx; (Q tx:1.IE (CAT <nl IXX.i PIG»)
T

Often it is advantageous to define an executive driver loop
especially suited for a particUlar application. This can be
accanplished simply by redefining the funeticn CRlVER. For example, an
eval-quote-LISP driver is given in t..'1e library file O'I'ILITY.LIB. If an
error or interrupt occurs, program ,control will return to the user
defined driver rather than the perhaps inappropriate default driverlocp.

E. muLISP P~ogrammin9

The follaling muLISP dialogue illustrates how a'LAMBDA defined
functial can be defined and then used:

. $ (rom (OtXm: F~) (QtXm: (LA'-!8OA n~
(CCND

((ZfR)p N) 1)

(T (TlMES N (F~ (DIFmtm::E N 1»») »)
F1Cl.'tlUN..

$ (F1ClIJR.I}.L 5)
120 "-

'nUs definitiQ'1 of the factorial functi<X1 is defined in the style
of the original LISP as described in MCCarthy's Ll.S.E. L5. P:oorammer'~
~ [1.962]. Altboogh it does not fully utilize the catabilities of
muL.IS?, it is a perfectly acceptable definitioo.

StIJdy of this manual and the muLISP library files will reveal that
muLIS?-80 incorporates numerous upward compatible extensions of LISP
1.5. For the most part these extensions consist of defining useful,
well-defir::edresults for which t..~e original LISP is noocanmittaL They
significantly increase readability and execution speed, while
substantially decreasing the storage requirements for function
definitims. The falla.r ing are a few of the significant e.xtensicns:

1. As a name is read or generated by muLISP, its value is
automatically set to itself. This self-referencing of nef.
naI:1es is called auto-quoting. It reduces t:.~e need fort using
the Qt.:OrE functi CX'1 when the f)JAL-f.,ISP e.xeo..ttive d: i ver locp is
being used for i.n{;ut.

!-4

(
'

o

o

to.

)
2. The CONO function has been generalized so' all t.'1e

expressions fallow ing t.'le predicate are evaluated in turn.
The value returned by this extended COND is the value of the
last expression.

3. The evaluation algorit.t.un for a ~unction body or
lambda e.xpressicn includes an implied cam. 'I:U.s obviates t.'1e
need for explicit use of COND within function definitions.
For example, compare the follO.-ling definition of FACTORIAL
vitb that given abo.re:

(PlTlD FK::!OR.IJ'L (QtX:m: (IAJtBOA (N)
, «ZEroP N) 1)

(T'lMFS N (FPC'1UR..IAL (D~ N 1») »)

Wit."l the principal exception of the PRCG prbgram control coostruc~,
the original LISP was an exemplary at=9licative and structured l~gua<;e

lCX19 before these adjectiv~ became pcpJlar. muLISP has t:Jo feat:.lres
which dispose of Mrf need for sucn unst.rUC't11ted ca1trol features:

1. 'rhe pGlerful multiple-exit LCOP funeticn permits the
pro;ramming of non-recw:sive loops. 'lbis is ac."lieved witbOJt
the use of the totally unstroeturecl GO feature.

2. Arguments in a function's formal argument list that
are in excess of the actUal num.ber of arguments used in a call
to the function are simply bound to NIL. 'ttlese excess
arguments are available for use as loc:.al variables wit..'ti.n the
function: hence PROG is not needed to estaDlish such. loc:a.l
variables•

For these rea.saJ.S muLISP-80 has no primitively defined ppa:;, CO, or
RE:I.Um CalStruets. Instead of havin<j sucb explicit control ccr..struets,
pro;ram CQltral within a muLXSP funeticn body is guided primarily by the
structure of t.be linked list representing the function's detinition.
Implicit program control results in function definitions whose
appearances are uncluttered and whose meanings are more transpa:ent..
See section v-a for a detailed explanation of me muLIS:i? evaluat.ion
mechanism.

As an example of hew to avoid the use of these constructs and
thereby write more struct.ured LISP programs, consider t..."le follOtfl1ing
OefinitialS of the FPClDRIAL functicn:

(mID FiCIORI.AL {QrorE (LAMBDA (N)
(P~ (Ml

(SE'lQ M 1)
A (CXlD

({ZERJP N) (R.E'lURN M»)
(SE'.IQ M (TIl1fS M N)
(SE'.IQ N (OIFFER.D.'CE N 1»
(GJ A)) »))

{rom FlC1'CRL'L (Qt'.X:YIE (LAl-18OA (N M)
(SE'lQ M 1)

. (LOOP
«Zm:>P N) M)
(SE'lQ M (TIMES M N»
(SE'lQ N (DIFFE:RnJCE N 1») »)

'!be f i.est is a caNentianal non-reo.u:sive definition. 'the seccn1
is the 8:luivalent muLISP-SQ definiti~ also non-reoJ.rsive.. '!be reader
can decide for him/her self which definition is m.ore elegant and
structured. It is interesting to note that the muLISl? definition
r8:1Uires onliP 29 nodes1 whereas, the CQ1\Tenticna.l version r£quires 38.
'!his is not an insignificant ratio for a LISP system running in a very
limited ac3dress space.

F. Interrupting Program Execution

At any time during the execution of a program, a user initiated
software interrupt will halt pco;ram exeQltiCXl. '!his may be necessary
to st~ a "runawaY' ex nal-te.r:minating program and return control t.o the
ca'lSale. M interrupt is initiated by depressing either the ~pe ke:-j
ex AL'Dnode key. '!he follO.ting optiCXlS available m.essage will. then be
d.isplayed on the coosole:

*** nm:xt<LU?1': TO Conti.Iue tYPe: RET:
Executive: ES:, H.:rJ Rest:art::R[Il, DEL; Syst:eD: cmIrC?

'lhe user may then choose ale of ·tbe follOtling optioos by typing the
a;:propriate optioo character:

1. ~e Continue option causes I program e.xeC1.:1tion to
continue from the point of the interrupt.. This option is
selected by depressing the R.E1\lrn key.

2. The executive option returns control to the current
executive driver loop. All variable bindings, function
definitioos, ex prq:aert:{ values are preserv'"ed. '!his option is
selected by depressing either the ESCape oc PL'Dnode key. For
terminals 'W i t...'1 nei ther of these keys, typing a CTRL-((i.e.
typing a left bracket while halding dain the cootrol k.ey) is
EqUivalent to ESCape.

3. '!he Resta.r:t option restarts muLISP fran scratch arrl
destroys all variable bindings, ncn-primitive functions, and
pr~t.y values. '!his optioo is selected by depressing either
the DELete or ROBout key. Typing a CTRL-a is equivalent to
depressing th,e DELete key.

4. The System option ter-:ninates muLISP and ret.urns
cootral to the disk q:aerating system. '.this option is selected
by typing cmL-<:'

I~

."
J

(.J

.~

)
muLLSP out;ut to t.."'le console can be interrupted and t...~en res-~t.ed

using CTRL-S as a toggle. This output pause is useful to petmit reading
of t.'ie text prior to its bein9 scrolled off the screen.

G. Error Diagnostics

There is only one 'situation in muLISP-80 for which there is no
satisfactor:.y recovery other than program te.cnination and an error trap.
~he exhaustion of all available storage in the four da'ca spaces will
result in an error trap. See section III-D for a discussion of the trap
and the options then available to the user.

A less serious problem will cause" a wa.rn.ing message to be displayed
(Xl the ccnsole.' The primitive function in which the error OCOJrs will
return a, value of NIL. It is then,' the responsibility of t...1.e user
program to recognize the error and take the appropriat.e action. The
following are the t.."1ree possible wa.cning messages. Their causes are
fully described in t.~ indicated sec:tia1S of this manual:

A SYS fil.e can be useful in a variety of ways. For instance, an
interactive session can be continued at a later time, intermediate
resul ts of a session can be backed up as insurance against computer
failure, or a set of function definitiCXlS devel~ interactively can be
preserved. Finally, program development is usually done by creating
mliLISP scuree files and reading them in using the RDS canmand. B~etler,
alee the program has been perfected, reading it in each time can be
tedious especially for an end-user. If a SYS file has been generated
containing the source, the application program can be loaded bot."l
qUickly and CaNeniently by the end;-user•.

(

ZEro Divide Error
En:3.-of-File Read
No Disk Space

B. Environment SYS Piles

Section V-L
SectiCX1 V-M
Section v-N

The muLISP function SAVE is used to save the current environment
for retrieval at a later time. Tbe environment consists of all the
currently active muLISP data structures,~ atom values, propercy
values, and function definitions. The environment is saved as a~disk.

file of type SiS. For.instance, the followiD:J command wUl gene.rate a
SYS file named WBALE.SiS on the a:Ltrent drive:

$ (SAVE (~ WHM..E)

This environment can be restored at: any later time by using the
LOAD function. If the fUe WBALE.SYS is now on drive a, the following
muLI.SP commatXi wll! load t:he SYS file saved above:

$ (LOAD (~W1!ALE) (~B»

Alternatively, the followiD:J operating system command can be used
to load the SYS file WBALE.SYS from drive B after loading muLISP:

A>f1I.ILISP B:WBALE.SIS

Eit."ler of the above methods for loading a SiS file will restore the
environment exactly as it was at the time of the save.. When a SiS file
is loaded, the various data spaces are re-allocated according to the
comp,lter's current memory si%e.. This means that tr..e current. me-mory size
does llQ..t. necessarily have to be the same as when the SYS file was
created.

!-7

1-8

/

\..

4. A name's print name cell contains a pointer to the
string of ASCII characters used to print the name. Access to
this cell is restricted to t.~e I/O and sub-atcmic functicns.
When a print'name string is read in or generated by the
system, a check is first made to see if a name already exists
with t:...~t print name. If so, .~e existing name is used. If
not, another 'name is created using the new- print name. Once
created, .a name's print name string cannot be modified.

3. A name's function cell contains a pointer to the
o.trrent definitioo of t!1e name. '!his function definiticn can
either be a machine coded ra.ttine or the IM:ode representaticn
of a' LAMBDA expressioo. When a function at=Plication is to be
made, the function cell is used by the muLISP evaluation
mechani..sm to locate the name's definition. h::cess to the cell
1s limited to the function definition primitives, which are
used to retrieve and modify functioo definitions. When a name
is created, its funeticn cell points to .m undefined functioo.
trap.

) SectioQ II: Primitive Data Structures

muLISP has three distinct ~s of primitive building blocks,
collectively called data objects. A data object is either a muLIS?
name, number, oc node. Osinqt:be recc;sni..zer functions, the t.yI:e of aIrf
data object can be determined. All the data cbjects of a given type
eatSist of a fixed number of pointer cells. A pointer cell can point 0=
refer to other data cbjects or to special l:UI1?OSe data structures. Thus
the set of data cbjects can be envisioned as an interconnected net:Ncrk
of pointers called a pointer universe.

It is impc;rtant to note that all t.."1ree types of Cata cbjects bave a
car eel.l and a cdr cell. More01er, in muLISP the car and cdr cells are
rest:.rictt.."d to fJOint ally to ot:.l-ter d:>jects wit.~ the point& uni"Je.rse.
1bus by follo.ling a'lly car and cdr cell pointers, there is no danger of
wandering outside this closed universe. The advantage of this closed
pointer universe is a simpler and more logical muLISP evaluati~

mecbanism. For instance, it eliulinates the time required for Ca1.St:ant
~ checking on t:.be part of the primitive LISP functicns. B. :bItlers

• i I
Nt.mber I Sign I vector

I I I •

r
\-

o

A name is a recognizable data object consistinq of four pointer
c:e.Us. Names are uniquely stored in the sense that no two names in t.~e

system can have identical print-names. 'l11e use made of each of the four
c:e.Us is as follcws: .

1. '!'be car or value cel~ contains a pointer to the
current value of the name as recognized by the evaluation
functions. When a name is created, its value cell is
initialized to point back to the name itself. 'lbis autanatic
self-referencing of ~ name, called auto-quoting, often
eliminates the need for explicitly usi..ng the QOOTE function in
functicn aefinitions. The assignment functions are used to
change' the value cell of a name. The value cells of a
function's formal arguments are tem~rarily reassigned whe.rt
the function is ·called, and then restored to their original
value when the funeticn is exited.

2. A name's o:1r or property list cell cootains a tx>inter
to the property list of the name. This list is used and
modified primarily by the property list and flag functions.
Flags on a property list can be distinguished by t.'1eir being
atomic elements of the list (i.e. na~es or nUI:1bers). In
contrast, prope.rties are non-atomic elements of the list.
(i.e. nodes). The car of a prop.erty element points to t.he
property's indicator and t.'1e cd: points to the propert.y's .
val~e. When a name is creat.ed, its property list is set to
NIL,' indicating that no flags or 'Properties are present:.

A. NaDes
I I t I I

I Value I Property I FUncticn 1 Pname
• I I I t·

A number is a recogni:zable data ct>ject coosisting of three pointer
cells. Numbers are ..D.Qt uniquely stored in the sense that equiValent

. number veCl:ors can occur in the system.. The use made of each of the
three cells is as follGls: .

1. ~e car or value cell of a number contains a.pointer
to the number itself. 'Ihus numbers do not have to be qu~
since they evaluate to themselves. Naturally the cootents of
this cell can be changed by using an assignment function;
however, there is no reason to do so and it is not a
reccmmended t.hi..ng to' do. ,-

2. '!be cdr cr sign cell of a rJJmber points to NlL if the
number is non-negative: otherwise, it points to 'nUJE. The
value of this cell is established when a~ is created.

3. The number vector cell contains a pointer to the
bir.ary number vector which establishes the number's numerical
value. The number vector itself consists of a single-byte
byte counter follOtied by the requisite number of bytes
required to express the number in binary. The size of the
byte COJrlter limits the magnitude of numbe.rs to 256"'254-1 or
at=Proximately lOA611.

1I-2

o

')

I
Section III: Kemory Management

(Xl • (X2 • CX) • (.. • • (xn • NIL) •••»».

Bi.nary trees are the primary data cejects in muLISP. Internally a
binary tree is implemented as a network of cell pairs called nodes.
Each node consist of a car cell and a cdr cell. A:5 mentioned earlier,
the node's· cells may a'1ly point to other txnafide muLISP data cbjec--s:
a name, a numbe£, or a ncde..

t

'lraditicnllly nodes have been called dotted pairs in deference to
the dot notation used to represent them in print. The expression
(X • Y) represents a node whose car cell points to the object X, and
whose cdr cell points to the object Y. The dot notation is perfectly
eatable ~ expressin; arrJ LISP data structure..

It is often more convenient to think of data as a linked list of
elements, rather than as a deeply nested binary tree structure. The
structure represented by the list (Xl X2 X3 ••• Xn) can be expressed
us.i.n; dot notaticn as

I I I
Dynamic, invisible memory 'management gives LISP much of its

inherent power. This frees the programmer from concerns about.
allocating sufficient memory for a given problem. Such allocation
before run-time is difficult, if not impossible, for most A!
applications since the problems are generally not of a predete.cmined
size. Memory management is accanplished in three ~s by muLISP-80.

CCJ1tents

Name and nt.mber pointer cells
Print-name strings and nuni;:)er vectors
D-code and ncxies
System cootrol/value stac:X

At:an space
Vector space
Pointer space
Stack space

~

4:32
3:32

23:32
2:32

~

A. I.nitia.l Data Space Partition

turing the initialization phase of muLISP, the amOWlt of memory
available to the system is canputed. The memory is then parti tioned
into four distinct data spaces based on the ratios given in the
follcwing table:

CdrcarC. NOOes

'rhus a list consists of ~ ~.aain of nodes linked through their cdr
cells. 'lhe name NIL is used in the last cdr cell to terminate tP.e list:.
NIL is also used to denote the null or empty list.· 'IhuS the expression
() -'II ill be read as NIL by the function READ and printed as NIL by the
functiQ'lS PRINl. and~

'rbe function READ will accept both the dot notation and the list
notatiCX1 fer: expre.ssing data structures. EGle'ler,· the functialS PRINl
arxi PRINT will use the list notati<n to the max;mum extent possible when
printin<; struCtures.

To create data objects required for a running program, space is
taken from one of the above spaces'. Space for a new namels or a. new

. number's pointer cells is taken fran the atom space. At. the same time
space for the associated print-name string or number vector is taken
fra:1 the vector space. 'the pointer spa.c~ which. is by far the la.rges~

prO/ides storage for both D-c00e and nodes. 'nle canbined CCX'ltral staCk
and value stack is located in the stack space. The above ratios
approximate the relative use made of the spaces by most application
prograns.

B. Garbage Collection
\

'!be nature of stack operati<X1S makes management of the stack S""'~ce

auta:atic and continuous. fiG/ever, management of the re:naini..ng three
spaces r~.res explicit rec"fcli.ng of data cbjects \{hic.~ are no'lcnger
neeCed.. New data cbjects are ccr.stantly c::eated during t.'1e e.xecJticn of
a LISP pro;ra:n, while others are implicitly discarded when they are no
100ger referenced 't:Jy active structures. . When the creaticn process uses
up all available resources 'W ithin a space, a garbage collection is
performed. The storage space vacated by discarded data structures is
then reclaimed, so the process may centime.

In muLISP-80 the exhaustion of resources in either the atom,
vector, or noee spaces will cause a callecticn to cccur. The fiIst pass
of the collectioo coosists of marking those data structures accessible
fran t.'e value and prc:;;:'Ert"1 list cells of all syste!Il r.ames and frO':\ t..~e

variable stack. During the second pass, the marked or active data
objects are ccm.pacted into one end of t."leir respective data spaces.
This leaves the remainder of the spa.ces available far new d:>jects.

\
I

\
I,
,
j

TT-"t

IV. Tbe muLISP Meta-language

Although garbage collection is automatic, it is not entirely
invisible to the user since it periodically causes a pause in the
execution of a program. Less than half a second is required for the
collection process in a 4SIt byte muLISP-80 system using a 4HH% clock..
The time varies linearly with the computer's memory size and clock
speed. Normally this is of no concern to the applicati,on level
programmer: hc:wever, it sh01ld be coosidered in the design of real time
systems.

c. Reallocation of Data Space BOQDdaries

If after a 9arb~ge collection there is insufficient free storage
within a data space to continue a process, the partitions of all the
$faces are r~ocated to give more memor;y "to the exhausted space.. 'nlus
muLISP can respond to changing demands placed on the various data
S'p'.ces by differing at:¢icaticn programs.

The applicative nature of the language makes LISP an ideal
formalism or meta-lanquage for the precise spec.ificaticn of both natural
and computer languages. In fact LISP can be used as its own meca­
langua<;e! The use of LISP in this way dates back to John MCCarthy's
original investigations into the language, and the practice has
continued t.o the present. When LISP is used as a meta-language, it is
custanarily written in a more natltCal, high-level syntax called meta­
LISP. While borrOJ inq heavily from the concepts discussed in Allen's
AAatorny ~ L.IS2. [19781, the muLISP meta-language has been syntactically
enhanced to more clearly reflect the extended evaluaticn capabilities of
the underlying muLISP.

A. Meta-syntax

'!be follQiing table defines the syntax of the muLISP meta-language
using BaCKus-Naur Form (BNF) first described in the .ALGOL .n.o.~
[19631 and summarized in ana~ to this manual.

B. Keta-se=antics

This syntax will be used in Section V in the description of the
primitive muLISP functions. Ho.'ever, the formal syntax rules will
occasiooally be supplemented in the interest of imprcving reaCabili t:j.
For instance, the logical operators -AND- and ·OR", and the numerical
operators -+", -..., etc. will be written in their conyentional infix
foens.

1. '!be meta-LISP coostant HIL denotes the corresponding
muLIS? name signifying both the empty list, (), and the truth
value false. The constant TRUE denotes the muLISP name .I
signifying the truth v~ue true..

2. The function type, <ftype>, indicates t.he 'argument
evaluation scheme used in calls on t.~e function. If a
function is typed as call by value (CBV) I t..'1en the arguments

D. Insufficient Kemory ~ap

Normally, automatically invoked garbage ecUecticns and dynamic
reall~tion of data spaces wUl provide ~uffic1ent storage in each
space to cCX1tinuo.JSly satisfy the de.mands of user pro;rams. HGlfNe::, if
the me:nory r8:iui rel:1ents for storing data objects finally exhaust all
available resources, an insuffi.cient memory trap will occur. Since
every other prcClem that arises in muLISP has a sati.sfaetory rec:o.rerj,
this is the cn1.y sibJatia'l that causes an error trap. '.tt1e trap displlrfS
the follOJing messa~e on the ccnsale:

1U. S[:aceS Exhausted
Ezeoxtive: ~ JILT; Best:art: 103., IE%'.; Systs: Ct:d-c1

'!'he user may then choose the desired option by typing the
respective cpticn character. '!he txsz;utive cpticn is the least drastic
since it merely causes control to return to the LISP executive driver
lc:x::p, withoot c:banqi~ functim definiticns, pr~rty values, etc. 'Ihis
is the most common response to the e.cror trap. The Re:st~rt option
Cest:'cys all ncn-primitive muLISP func+"'-.iros, prq;erty values, etc. and
restarts muLISP from scratch. Finally, the Svstem. option terminates
muLISP and reb.1rnS central to the parent cpe.rat.in; system. .

A phenanencn kncwn as t:b.rashinq occurs when tbe system is forced to
spero an inordirate amomt of time ga.r:bage collectin; a.OO reallcx:at:in;
data spaces for a very small net return. The symptom of thrashing is
greatly increased execution time for a 9iv-en task. 'Ihis can only be
resolved by increasing the computer's memory size or decreasing the
amaJnt of pro;ra;n and data storage rEquirements.. ,

::'

o

~)

<defini ticn>
<ftype>
<var-list>
<body>
<clause>
<coodi.ticna.l>
<for::m>

<assignnent>
<at;:pl iea.tien>
<variable>
<coostant>
<identifier>
<.nJ.:IIi:er>

::- <ftype> <identifier> [crar-list>l :- <1XXtt>,
::- ON 1 caN
::~ <variable>, ••• , <variable>
: : - <clause> , ••• I <clause>
::- <fom> I <ca1ditiooal>
::- <focn> -> <b:xi'i>:
::- <c:oostant> I <:!/ariable> I ~catioo>

<assignm.ent.>
: : =- <variable> <- <faon>
: :. <identifier> [<foz::m.>, ••• , <fcxm>1
::- <identifier>
: :. NlL t 'mOE I. L..Hr1BDA I NrJMBOA I~>
is ant muLISP name (s~ sect.ioo II.A.)
is aIr;! nuLISP ntJlICer (see Secticn II.B.)

III-2
).

N-l .

in the function cul are evalu4ted prior to passing them to
the functim. On the other hand, call by name (CBN) func--..iQ'lS
receive. their arguments fran the call withoot evaluation.

3. Form evaluaticn is predicated on the partiOllar type
of form involved. The value of a constant is that constant..
The value of a variable is the contents of the value cell of
the v'ariaole's name. 'the form associated with the right hand
side of an assignment is first evaluated and then the value of
the variable is set to the result:. Function applications
proceed as fallOlls:

a. If the function is ON, the arguments are
successively evaluated from left to right.,

b~ The value of the function's formal
arguments are replaced by the act.ual arguments,
evaluated or unevaluated as a~icablet and t.~e old
values are saved. Extra formal arguments which have
no correspondi.ng actual arguments are set to .NIL.

c. The function is then applied as described
belGl, and the result saved.

d. .'!he values of formal arguments are restored
to their original value.

e. '!he result of the applicatim is returned.

4. 'l1le body of a functioo definitioo or of a cO'ldi,ticna.l
statement coosists of zero or more clauses se~ated by canmas
and terminated-by a semi-eolon. In the application of a
funetial, its clauses are successively evaluated as follQls;

a. If a clause 1s a form it is erlaluated as '
described a.bal'e.

b. If a clause is a cooditicnal, the predicate
foem is evaluated. If it evaluates to NIL,
evaluatioo proceeds as normal to the next clause in
the a.trrent clause list. OthetWise, the body within
the conditional replaces the original body as the
current clause list and the successive clause
evaluatim ccntinues.

'!his process continues until the end of a clause list is reached,
at which point the value of the last clause is returned as the value of
the applicatioo.

N-2

)

(
'-

()

.~)

Section V: PrimitiVely Defined Functions

This section describes in detail all of the functions which have
~ implemented as machine language subrcutines. In aCdi tion to the
functions actually accessible to the user, several a.ux.iliaz;y functions
are also defined. These -helper- functions are introduced solely to
simplify and clarify the definitions of tb.e functions directly
accessible to the user. Only the accessible funetialS are numbered in
~ defini ticns belOti and indexed in t.'1e a~dix.

1he muLISP meta-language described in Secticn N is used as muc."1 as
possible to define, the effects and value of each function. Digressicr.s
to Engl~~ language text are made a1.ly when an irred.lcible, primitive
CCI'1Cept must be intrex:uced. '!be interpretation which fallOJs many at
the definitions is an attempt to give an informal description of what
the functim does and Oa.l it is typically used.

A. Selectoe FUnctions

Selector functions are used to select a desired sub-tree from a
given binary tree. This gives a methcrl for extracting information frau
the primary LISP eata structure. OSi.n3 the functioos of this gra.If?, aIr:i
desired sub-tree or terminal node of a given tree can be reached. The
functions CAR and CDR return the car and cdr branch of a tree
respectively. Successive applications· of these two functions is
sufficient to traverse any tree. As indicated below, the remaining
functicns are merely ca:lt;X)Siticns of CAR and <:DP.. '!hey are defined in
machine language pri.marily for efficiency and cawenience.

1. CBl CJ\R [Xl :- ,
the structure pointed to by the car cell of X;

Interpretatiat: 'Itle correct interpretatioo of the CAR of
an expressiQ'l depe.OC.s on whether that expressioo is an
atom or not, and if not whether it is thought of as a
list or a binary tree. If X is an atom, then CAR (Xl
teturns the current value of X. If X' is a list, then
CAR [Xl returns the first element of that list.
Finally if X is a bina.ry tree, then CAR [Xl returns
the left or car branch of the tree.

2. C8l aJR [Xl :=
the structure pointed to by the cdr cell of x;

Interpretatim: . Rena.t1<s similar to these aboJ'e apply to
the interpretaticn of the Q.1R of an e.xpressioo.. 'nu.1S
if X is an atom, then CDR (Xl returns the property
list of x.. If X is a lis,t, then CDR (Xl returns the
tail or eve.ryt.."'li.ng but the first elenent of t:.~t: list..
If X is a binary tree, t.~en CDR (Xl ret.urns the right.
ex cdr branch of the tree.

"

y-l

11. ON CDAAR (Xl :_

CDR [CAR (CAR (Xl 11;

3. 0Jl CAAR {Xl :_
CAR lCAR (Xl J;

4. CSl CAoR {Xl :_
CAR (ala eXll:

InterpretatiQl: ':his fune:t:ic:n returns the lSecond elementof a list.

s. ON CDAR (Xl :_
aa tCAR (Xl J;

6. c:sv CXlR [XI :_
Q)R {CDR (Xl J;

7. 03V CA.AAR (Xl :_
CM [CAR (CAR (Xl Jl;

8. CJ!N CAAcR {Xl :_
eM (CAR {CJR {Xl J1;

9 • aN CAO.AR ex1 : _
CAR {~ (OR {XIII;

10• ON c.AI:DR [Xl :.

CM (aJR [CDR [XJ 11 ;

Interpretation: This funetic:n returns the third element:Of a list.

4. ON CBLIST (} :=
a list of the o.lrrenUy active names in t.."le systen;

Interpretation: The cbje<:t list., or more properly for
muLIS?, name list is a list of all the names CJrre.'1tly
in t.~ system.. ~e names are listed accordL"'lg to t.~e

order in which they we:e read in or generated: the
most recent names are first and t.."1e primitive names
are last.

2. CBN LIST (Xl, X2, ••• , xn] :­
if n=O -> NIL:,
a:NS (E\lAL [XlI, LIST [X2, X3, ••• , Xnll;

Interpretation: When given a list x, this function
returns the elements of X in reverse oreer. Ncrmally
R~ERSE is called with only the one argument.
However, if a second argument Y is also given the
rerersed list is appenCed to the list Y.

3. CIN~ (X, 'II :-
KJI:M (Xl -> 'Ii, ,
RfllEPSE (CDR (Xl, o::NS (CAR [X], Y]];

V-3

B. Constructor Functions

Interpretation: This call-by-name function takes an
arbi trary number of arguments and returns a list of
the elaluated results.

Constructor functions are used to generate ~~e data structures
required for the solution of a particular problem. In LISP suc~

structures are realized as a tree or linked list. These can be designed
to closely reflect or mcdel the data structure of virtually aJ:rf prcolem.
The principal me:nber of t.."1is group, tbe CONS function, creates a new
node. The storage required for this node is taken from the area of
memory called t."lc Pointer Space. If previOJS CQ1Sing has exhausted the
Pointer Space, a garbage collection is automatically performed to
reclaim the space used by data structures which are no lc:nge.r re::;.uired.

t
1. ~ CONS (X, Yl :-

creates a node or cell-pair wh~ car cell points to X
and whose cdr cell points to Yi

Interpr~tations: The correct interpretation of CONS
depends on OC'fl the data structure being built is
conceived. When the structure is thought of as a
list, CONS [X.. Yl returns the list whose first element
is X and w hose tail is Y. If the structure is a
binary tree it returns the tree whose left or car
branch is X, and whose right or cdr branch is Y. Note
that this in no way al tars the stx:uetures X or y..

r
\..

o

)
V-2

CSCl (DAta (Xl : •
o:R [CAR [CDR [XII J;

12.

13. ON Q)OM {Xl :_

CJR lCJR (CAR eXJ J1;

14. ON <:I.l:DR (Xl :_

Q:1R [COR C<J:lR (XIII;

c. Modifier Functions

Modifier functions actually redirect pointers in LISP data
structures. '!bus modifier functioos are used primarily for their effect
rather than their returned value. '.they can be used very effectively to
modify already existing structures, thereby eliminating the need for the
costly ·coosiz'); to;ether of a whole n&I structure. Since they can easily
produce tn-Ianted side-effects such as circular lists, these functioos
shoo.ld only be used by the experienced LISP programmer. For a good
example of their use, see the scurce listing for the m\JSTAA editor.

1. ON RR.M:A (X~ Yl :-
car cell of X <- Y,
X;

Interpretati01S:
a. Replace the first element of a list X by Y,
b. Replace the left element of a dotted-pa.ir X. by Y,
c. Replace the value of an atem X by Y.

2. C'!!J1~ {X, Yl :-
cdr cell of X (- Y,
X;

Interpretaticx\s:
a. Replace the tail of a list X by Y,
b. Replace the right element of a dotte.d-pair X by Y,
c. Replace the pr~ty list of an atem X by Y.

3. CSl OCQC [X, Yl :­
~ [Xl -> Y;,
Jla.'a1 [CDR [XlI -> RPtJlO) (X, Y];,
OCCN: taR [Xl, Yl,
X:

tnterpretatiat: Concatenat;e, withcut CQ'lSiz');, the list Y
onto the end of the list X. 'I11e resul ting list is the
same as woold have been prcdlced by APreID. HGiever,
OCCNC actually mooifies the fLcst list by redi.recting
the final cdr cell of that list to Point to the secood
list:. '!bus, if X and Y point to the same list, a
circular list will result:. If an attempt is then made
to print this list, the printout will continue

. indefinitely.

)
(~

-'

0"

.J

D. Recognizer Functions

Recogn.izer functiQ'1S ue used to identify data structures. 'n1ej all
take exactly one argument and return a value of either T or NI:L.

1. aN NN1E (Xl :-
if X is a name -) '.lEJE;,
NIL;

Interpretaticn: This funetioo recogni%es names.

2. CSl NJMBmP [Xl ::1
if X is an integer -> mJE;,
N!L;

Interpretatioo: This functiQ'l recogni:zes nuci:ers.

3. CSl KIa{ [Xl :-
NN1E [Xl OR NOMBERP [Xl;

Interpretatioo.: This funeti<n reccqnizes' ataA1S'~ that is,
~. .

4. ON roLL [Xl :­
EO {X, NIL};

Interpretatia1: This funetial recogn1zes the DUll JiSt.

s. CB1 PLtlSP (X] :­
GaEAmU? (X, O};

Interpretaticn: This funetiQl recogn1zes positive runbers.

6. CSt MIN.lSP [X1 :.
USSP (X, ali

Inte.rpretatioo: 'Ihis funeticn recognize negative numbers.

7. ON ZER:>P (X] :­
. ~ (X, 01;

Interpretatioo: 'ttlis funeticn recogn1zes the zeta.
I

8. c:IN fJlrn [Xl :-
ZEPDl? [~ER (X, 211; .

Interpretatioo: '!his func:tioo reco;nizes even· numbet's.

E. Comparator Functions

CaDparator' funeticns are used to CODlplre data structures. '!hey all
require two arguments and return a value of either 'r or NIL:.

1. CIN EO [X, Y] :=
WMBmP (Xl AND NtJMBmP [Y] -> X-Yi,
if X and Y point to the same cbject -> ~;,

N:!Li

Inter?retation: Normally the B:J test is used for the
Equalit:;i canparison of. atans, i.e.. names and I1U111l::)ers.
For objects other than numbers, m tests to see if X
and Y. point to t..~e same location in memory. As
described in Secticn II, names are uniquely stored in
ml·LISP. Thus the EQ comparison is an efficient test
to determine the equality of names. However, since
numbers are not stored uniquely, lO actually cc.mpax:es
the number vectors of runeric:a.l argum.ents.

2. CSt £OOAL [X, Y] :-.
roI)M (Xl -) B:) [X, Yl i ,
A'ICK cY] -> NILi,
BJtW. [CAR [Xl, CJ\R (Y] 1 -)

EQUN:. [CDR {X], c:ra LYl];,
NIL;

Interpretation: The function mOAL is used for the
~ty canparisoo. of two objects, as distinct fran
the identity comtarison prCNiCed by the EO test. 'nle
structures X and '/. are considered equal if they have
isomorphic tree structures w"ith identical atomic
terminal nodes. Or put m.ore crudely, X and Y are
equal if their print-QJts are ;dentical.

3. 031 ~ER [X, Y] :­
J(l'Ct'! [Yl -) NIL;,
~OJ\L [X, eM. [Yll -) 'IRJE;,
MEM3ffi [X, OJR (Yl];

Interpretation: MEMBER (X, Y] will return T if the
expressioo X is EQUAL to anj member of the list I, NIL
otherwise.

4. CSl GREATERP [X, Y] :-
~ERP [Xl AND NtJMB~ (Y] -)

X > Yi,
NIL;

Interpretatial: A simple greater th.an canp3.risioo for the
numbers X and Y. Note t..."la t NIL is returned if ei. t.~er

)

nv

o

of the arguments is not an integer.

s. aN LESSP [X, Yl :-
WMBERP (Xl AND NOMBERP cY] -)

X < Yi,
NIL;

Interpretation: A simple less than comparison foc' the
numbers X and Y. Note that NIL is returned if either
of the a.x:guments is' not an integer.

6. C!!N ClIDERP [X, Y] :-
NJMBffiP (X] AND NUMBmP (Y] -) USSP (X, Y];,
if the address of the cbjectX is less than the

address of the cbject Y -> TRUE;,
~;

rnterpretatim: This func--icn prcviCes a generic ordering
fer system names based ·00 their crder of introduction.
'!bus if the name X ...,ere introduced before the name '{

.. (i.e. X occurs to the right of Y on the object list)
. then ORDERP (X, Yl .will return '!ROE; ot..~eNise it
: returns NII.. When "sPd with na1-atcmic arguments, the
result of this funeticn is essentially meani.ngless.

V-7

P. Logica..l FunctioQS

'.the logiCal funetia1S permit Boolean ccmbinatia\S of truth values
like these returned by the rec:cqnizer and cauparator functions. Here as
elsewhere in muLISP, any non-NIL value is considered to be logically
true. .

1. ON N:Tr [Xl :.
EO [X, NIL};

Interpretatial: 'tt1e lo;ical N:JT funeticn returns T if and
. only if its argument is NIL. 'Ibus it is entirely

EqUivalent to the funetiQl NOLL.

2. CBN}NO [Xl, :a, ... , XIl] :­
if n=O -> 'mOE; I

WI' [NA[, [Xlll -> NIL;,
IrND [X2, X3, ••• , xn];

Interpretati00: 'the logical }NO funeticn returns T if am
only if each of its arguments evaluate to a non-NIL
value. Note that AND is a CBN functicn and that its
arguments are sequentially evaluated until one
evaluates to NlL or until: all have er,raluated to a non­
NIL value. Hence not necessarily all the arguments
wUl be evaluated.

3. CBN CR [Xl, X2, ••• , J(1) :­
if n-o -> NIL;,

'DIN:.. [XlI -> 'IRJE;,
CR [X2, 0, ••• , Xnl;

Interpretatiau 'the lcgical CR funeticn returns T if art:i
one of its arguments evaluates to a non-NIL value.
The arguments are successively evaluated and if any
evaluates to a non-NIL value, T is r.eeurned and none
of the remaini.n; arguments are ev-aluat:ed.

c

(J

,-...

../

t

./

G. AssignJ1lent Functions

Assignment funetialS are nomally used to assign values to prcqra..ll
variables.. For instance, they permit the values of a function's focnal
arguments to be mcdified w ithwt the neea for a rec.trsive func+"....icn call.
'rhus in some situations they can significantly improve a program's
exeoJtioo speed. If t.'le variable bei.n; assigned is not a local variable
(i.e. not a formal argument of the currently executing function), t..'e
assignment will remain in effect even after the fWlction is exi ted.
As 'Ii i th the modifier functions described above, this phenomenon is
called a side-effect of the functicn.

Use of the function SE'!Q should be familar to programmers of more
conventional languages such as B:..5IC and PASCAL where the assignment:.
statement is used pervasively. 'Ihoogh po.Ierful, irrliscriminate use of
the assignment fW1ctions will resul t in unstructured programs and
detrimental side-ef£ec-~ which are exceedi.rx;ly diffio.llt to Cetug. To
prevent developing bad habits, the nov-ice LI-q> prcgramme.r shcc.ld avoid
use of these funetia1S as they c::i:)soJ.re the elegant, as;ll. icative nat:ure
of the la.nguage..

1. CfN SET [X r Y] :­
RPLl£:A. [X, Yl,
Y;

Interpretation: Set the value of the name X to "I, and
return Y. Note that the function is also def.ined '"hen
X is not a name: nGlever, its use in that situatioo is
strmgly discoo.raged.

2. Ci3N SE:.IQ (X, YI :­
sar [X, fJl~ [Y]];

Interpretaticn: Set the value of X itself to the value of
. Y, and return that value. ~ functioo is used mct'e

often than SET because usually it is desired to assign
a value to a variable rather than to the value of a
variable.

'Ihe distinction between the effect of SET and SE:lQ on t."'leir
arguments is demonstrated by the folla« ing. If the value of DCG is
BARK.. then

SE'JQ [I:X:X;, • (A B C)!

v ill change the value of ocx; from BARK to (A B C). In' contrast, if the
value of tCG is BARK, then

SE:r [IX:C, '(A B C) 1

v ill change the value of BARK to CA' B C) I and the value of OCC 'J ill
remain BARK.

v-g

3. CBN roP [Xl :=
PO~l [X, ~AL (Xl);

CSl :EOPl [X, Y] :.
SET [X, CDR (Yl];,
CJ\R [y];

Interpretation: If X is the name of a list, then POl? {Xl
returns the car of that list while setting X t.o the
cdr of the list. 'Ibis operatiQ'l is the LISP analcg of
the famllar pc7J? stack operation. widely used in macbine
languages.

4. CBN roSH [X, 'Yl :-
~ [Y I cx::NS {EVN. {Xl, alN... {Y] I] ;

Interpretation: If Y is the name of a list and X is an
e.xpressi~ then posa (X, Yl will coos X onto the list
Y and update. Yto point to this enlarged list. This
operation is the LISP equivalent of pushinq infor-
maticn CI'lto a stade..

V-lO

~

./

()

()

3

B. Property Functions

Pr~ty functiQ'lS prc.vide an excellent means of associating glcbal
properties with names. A name's property list is used to store these
properties along with indicator tags. The property value associated
\lith an indicator can be retrieved at any later time using the GET
funetioo. Used in coojuncticn \II ith t:."le flag functicns described in t.~e

next section, extremely flexible and efficient data bases can be
established in a very natural and coovenient manner.

1. CS1 ASS:t:. (X, Y] :.
ATOM (Y] -> Y; I

A'D:M. (OR (Y]] -> NSSX. [X, OJR (YJ 1; ,
IOUJ;.L [CAAR [YJ, Xl -> CAR [Y];,
ASSfX. (X, CDR (Yl J i

Interpretatim: This funeti<n performs a linear searc..~ of
the association list Y, looking for a non-atomic
element whcse car is EQtJ}L to X. If f~ the ent:Lte
element is returned; otherwise NIL is retUrned.

2. cz.J GE:r [X, Y] ::a
X <- P:SS!X. [Y, CDR [X]],
MI:M [X] -) NIL;,
CDR [Xl i

Interpretation: GET [X, Yl returns the property value
associated with the name X under the indicator Y. U
the indicator is not found, tb.en NIL is returned.

3. ~ POT [X, Y, Z] :-
NJLL [GE:l' [X, Yl] ->

RPLJa) [X, cntS (cx::NS [Y, z1, Q)R [Xl]],
Zi,

RPLJa) [ASS:<: [Y, aJR [Xl}, %1,
Zi

Interpretaticn: roT [X, Y, Z} places en the pr~ty list
of the name X under t.~e indicator Y the pr~ty value
z, destrOfing arrj prtNiOJS value.

4. CSJ REMProP [X, Yl :-
MOM [am. (X]] -> CDR [X];,
~UAL [CAACR [Xl I Y] ->

Y <- a:wJR [Xl,
RPLKD (X, CDR (XI], Y;,

~p [CDR [Xl, Yl i

Inte.rpretatiat: REMProP (X, Y] remcwes fran the pr~ty
list of the name X the property value asscciated wi t.b
the indicator Y. It. returns the prq;E..rt:.y value.

V-ll

I. Plag Pu~ctions

Like the property functions the flag functions also use a name's
property ,list to stQCe information. HGieve.r,tbe name is only flagged
as either having a pa.rtiOJlar attri.l:ute or not.

1. CIJ1 FL1GP [X, Y} :­
MEMBER [Y, CDR (Xl];

Int:.e.rpretaticn: This predicate wUl return T if and only
if the attribute Y is an element of the property list .
of X; and NIL otherwise. Note that if Y is an
indicator put on the property list by using the POT
function, it: will only be recognized by the function
GE'r and not by FL1GP.

2. ON FI../A.G [X, Y] :­
FL1GP [X, Y] -> y;
RPL1£D [X, <XNS [Y, c:::oa [Xl)],
Y;

Interpretaticn: FI.1G [X, Yl wUl flb; the name X with the
attribute Y by making Y t:b.e first element of the
property list of X.

3. CiJI~ [X, Y] :-
Mai [CDR (Xl) --> NILJ, .
~ox. [Y, CADR [X] 1 ->

. RPL1£D {X, CIJCR {XlI,
, Y;,

REMFL1G [CDR (Xl, Yl;

Interpretation: This function remOV'e5 the attribute Y
frantbe property list cf the name ~ returnin9 NlL if
the attriblte is not: fcx.md.

:'

)

"

o

Q

J. Definition Functions
. .

'Ihe funeticn definiticn funetioos are the auymeans of access to a
name's functioo definiticn cell. When a function is defined using Pt1ID,
the definitioo is pseudo-compUed into an extremely dense fern called
D-Code or Distilled Code. This compilation results in about a 3 fold
increase in code density and approximately a 20\ improvement in
execution speed over muLISP-79. The compilation of S-expressions
containing cdr cells which. point to non-NIL atoms results in t..~e

replacement of the atom by NIL. In 9~neral it is recommended that.
QUOTEd non-atomic constants HO'l be included in function definitions
directly. Instead, the constant can be assigned to a name· whic..~ can be
used in the definitial in place of the constant. 'lhe irNerse precess of
de-compil.ing D-code back into a linked list also cccurs. autanatically
wben GE'!'D is used to retrieve a definition. '!bus the use of o-code is
invisible to the user and the interactive nature of LISP is not
canpranised in the interest of efficierv:;y a.OO. can~

1. CSl GEm (Xl :-
N:1l' [WME [Xl] OR ONOEFImD [X] -) NIL;,
SCBR [Xl at FSOBR [Xl -)

mema:y address of machi.ne lan;uage subrcuti.ne;,
the 5-expression EqUivalent of the D-caie defini.ng ·the

funetim X;

Interpretaticn: '!his functicn is used to get a functioo's
definition for further processing. If the functioo is
a machine language subroutine, the physical memory
address of the function is returned. Othe.rw ise the

.. linked list SIUivalent of the O-Co:1e is returned. see
sectioo V-O foe the definiticns of~ and FSCBR.

2. CSl PtrlD [X, Yl :.
!Dr [NAME [Xl 1 -) NIL;,
~ [Y]-)

functim cell of X (- address given by Y;,
functioo cell of X (- D-cc:de tqUivaleot of Y,
Y;

Interpretation: If Y is a number, PO'ID [X, YI sets the
functim cell of X to the memory address EqUal to tl1e
rumbe.r Y (mcdulo 64K). Otherwise the definitim cell
is set to the D-code equivalent of Y. The procedure
fcx using PO'lD to link to machine lan;uage subroot.ire.s
is described in~ C of this mam1a.l.

3. ON MJlD (X, Yl :- .
tOr [WME (Xl] OR N:1r [WME (yl} -) NlL;,
functicn cell of Y (- funct1oo' cell of X,
GElD lYl i

Interpretation: Set the function cell of Y to point to
the same memory location as that of t.~e functioo cell
of X. In cases where a MeND is sufficient it should
be used instead of a. GETD and POTD.

E. Sub-atomic Functions

'!'he sub-atanic funetia1S al:e so named because they prO/ide access to
a name's print name string or a number's number vector. This makes it
possible to temporarily unpack. an atom's print name, operate on the
resulting list of characters, and ulti:ma.tely repack the list to form a
rvN name. In additiat to its sub-atcmic capability the Lm:i'm ftmeticn
determines the top-lfNel length of an. 5-e.xpression.

1. aN Pia [Xl :.
MIli (Xl -> .W;,
NH1E [CAR (Xl] -)

coqcatenate the print name of CAR [Xl with
PN::K [CDR {Xl J and return the result:inq name:,

tl:1MBmP (CAR [Xll ->
concatenate the print name string of the number
CAR (X] with PACK [CDa [XII and return the

,! resulting name;,
PPa [aR [X]];

Iilteri'retation: This fune:tion, called COMPRESS in some
dialects of LISP, returns a name whose print name is a
pacXed versioo of the print names of the atans in tbe
list X. '.the curren\:. Ici\DIX base is used. to determine
the print name string of numbers.. Note that PACX
always returns a. name, e9'en if it only contains
digits. As shewn in the muLISP library file, PPa., can
be used to write a~ (generate symbol) functioo..

2. CIN CNP.ACX [X] :­
NAME (Xl -)

a list of names whose print: names correspond to
the characters in the print name of X;

!IlHBERP [Xl -)
a list of names whose print names are numerals
ccrrespaldi.ng to the digits of X expr::essed in the
OJrrent radix base;,

NIL;

Interpretation: This function, called EX!JLODE in some
dialects of LISP, returns a list of names whose one­
character print names correspond to the successive
characters in the print name of X. '!be current radix
is used fa: numbe.cs an:3 digits are cemrerted to names
with single numeral print names.

V-14

)

c

()

:)

3. CSl UN:;1'B (Xl :­
W'ME (Xl ->

the number of characters in the print name of x; I

WMBmP {Xl ->
the rum.ber of digits in the print name equivalent
of X;,

A'J.t:M [a:>R (Xl] -> 1;,
1 + r..m:;-m (CDR (Xll;

Interpretations: This function is effectively three
functions in one. The value returned follows
intuitively fran the data type of its argument:

a. U X is a name, the number o~ characters
act1Jally r6:iuired to print X is returned. '!be Clrrent
value of PRINl. is taken into acco.mt while canp.lting
this length. The effect of PRml is described under
the control variable subsection Wlde:: the Printer
FunctiCX1S•

b. If X is a number, the number of characters
actually rEqUired to print X is returned. The current
radix base and if applicable the leading ._- sign
and/or leading ·0· are properly taken into account
wbile canp.1tin; this length.

c:. If X is a non-atomic, the number of top level
nc:X!es in the list is returned. As always in muLIS2, a
a:!r which is atauic denotes the tecn;mtor of a list.

'IF' ,..

I.. Numerical Functions

'I1le numeriCal funeticns implement exact pred.sial integer arithmetic
foe numbers of magnil::1.lde up to 2-2032-1, or atxut fill decimal digits of
accuracy. If noo-numeric arguments are passed to any of the fun~-icns
or if an OIerflGl occurs, the function returns a value of NIL. Division
by zero by anyone of the functions OUOTIENT, REMAINDER, or DIVIDE
causes the follcwing warn.ing message to be displayed on the ccnsale:

ZERO Divide Error

and the functiat returns a value of NIL.

,
1. ON MlNJS [Xl :­

N:JMBmP [XI -) -X;
NlL;

2. C'Sl FLOS [X, Yl :-
NJMBmP [Xl AND 00HBmP (Y] ->

X + Y;
NIL;

3. CfND~ [X, Y] :_
~ [Xl I.ND mMB.ERP cY] ->

X - Y;
NIL;

4. C'JN~ [X, Y] :-
N:JMBmP [Xl JND NOMBmP cY] -)

X • Y;
,NIL;

s. aNO~ [X, Yl :-
N.H)ERP (Xl RID mMBEm' [Y] ->

X/Y (Truncated tGlard zero);
NIL;

Interpretatia1: 'l11e truncated integer quotient.

6. CSl RDOOlmm [X, Yl :-
D~ [X, 'rIMES [Y, OtX1rIEm' [X, Yll];

7. CI!N DNIDE [X, Y] :.
WMBERP [Xl AND Nt»-1BmP [Y] -)

cas [Qt:X:>T:tmr {X, Y], REMAINDm [X, Y] 1;
NIL;

v-'~

o

()

-....

K. Reader Punctions and Control Variables

'l11e reader' functiQ1S provide for character inpJt to muLISP programs.
'lhe functiO"1S read characters fran the current input source. 'Ibis i..n;:ut
source can be either the console or any text file on the disk or other
secondary storage device. The current input source can be controlled
through t."le use of the function RDS in conjunction with the control
variable RDS.

1. aN RDS (X, Y, Z] :- (ReaD Select)
WLL [Xl -)

, Res <- NIL;,
NAME [Xl AND tw1E cY] ->

WLL [Z] ->
a file named x.y exists on the currently

lcr;ged in disk drive ->
~ X.Y for ~t,
RDS <- X;,

RDS (- N1L;,'
N1lME (Z] ->

a. file named X.Y exists (Xl drive Z ->
open X.Y en Z for i.npJ.t,
RDS <- X.,

RDS <- NIL:,
RDS <- NIL;,

ROS <- NlL;

Interpretation: The read select function is used to
select an i.npJ.t scurce file. If the selected file is
found, the file is opened for input, and the value of
the variable RDS is set to the name of. the file. 'ImlS
this file becomes the new current input source. If
RDS is called with no arguments, invalid arguments, or
if the file is not found, the variable RDS is set to
NIL mak.ing the ccnsole the OJ..rrent i..nput soorce. '!be
defaul t DRIVER function sets RDS to NIL. This makes
the coosole the current input soorce a1 initial system
startup a.OO a.fter interrupts or error traps.

2. CBl RMr:M [] :- (Read MtM)
read one token from the current input source and
return the correspcnding name or number. A token is a
stri.n1 of characters de.limited b-f ei t.~e.r separator or
break characters. See the notes at the end of this
secticn for details on including camnents ard quoted
strings within a token. Unlike separators, break
characters are returned by RA1'OM. as single character
LISP names. The RAWM separator characters are:
space, carriage return, line-feed, and tab (CTRL-I).
The RATOM break characters are: ! $ & I () *
+, -. /@: i <. >? [\ 1 A ,

{ I } - \

3. CJN READ. [] : =- (READ Expressic:n)
REAOO (RAni [1 J;

~ READO [Xl :-
III [X, '(J -)

REAtLIST (MIM (J 1;,
10 [X, • [1 -)
~ {RFJ1ZX..IST [RAni (]], RA'IM []];,

EO [X, ') 1 OR EO {X, '. 1 at EC (X, 'J J _)
READ [1;,

X; .

CJN RF..AI:'8R1CKET [X, Y] : •
EO [Y, •)] OR BJ (Y, '] I -> X:,
<XNS [x"~ {RFJ1ZX..IST [Y], RA'IM (ll];

CSt RF...hJ:LIST [X1 : -
'mU-ilN.A'IOR (X1 -> NIL;,
1Q [X, '. 1 -)

RE.N::J:OT [READ [], RA'IM [] 1; ,
ens (REAOO [Xl, REAlLIST [RAni [ll];

QJI RF.N:COr [X, Y] : •
~ [Y] ->X;,
a:NS (X, RFJlLLrsr [yll;,

C'1!R~ [Xl :-
BJ (X, I) 1 -> 'mOE;,
!Q (X, .]] ->

. unread -]. character back into input: source for
the next &ml read,
'ImJ'E; ,

NIL;

aN &ml [] :-
read one token from the current input source and
return the corresponding name or' number. This
function is identical to RATa!'! except: the RATM
separator characters are: space, comma, carriage
return, line-feed,. and tab; and the RATM break
characters are: () • [J See the notes belOtl
fer details cooce.rning caxments and quoted strings.

Interpretation: The READ function reads one complete
symbolic expression from the current input source
while <:a1Structing the EqUiValent LISP data structure.
Well formed expressions using either the list
notation, dot notation, or a combination of both are
acceptable means of input. Brackets can be used as
super-parentheses. Thus the right bracket, -].,
closes all left parentheses back to either the
beginning of the expression or to a matching left
bracket:. Extra right parentheses, right brackets, and
dots cUe ignored.

V-1S

l

o

~J

.-~

4. 0fJ REAtCH (1 :- (READ <JiaracteJ:)
· read me c..'1araeter fran the current inp.:lt soorce and
return the correspondinq LISP atom. A number is
returned if the c..'1araeter is a decimal digit less than

, the current radix base.

Notes:

1. If a disk file is the current input source and an
attempt is made to read past the end-of-file (WF), the
foll~in; warning message is displayed en the coosole:

End-of-Plle R.ead

In additioo, the Caltral variable RDS is set to NII.. making tbe
coosale the e::utrent int;ut scurce.

2. Caa.ments can occur anywhere in the text of the input
soorce so loog as thej are delimited by mate.hi.ng percent sigr.s,
-,-. '.the text of comments is totally ignored by the functions

-- RAIDM and RE.Nl. acwever, the fcnctioo R.EArXlI reads and returns
percent signs just as any other character.

3. Special characters such as the percent sign, double
quote sign, separator characters, and break characters can be
read in as names or: parts of names by the use of quoted strings.
SUCh strin;s are de.l.im.ited by double quote marks. 'Ibe dccb!.e
quote can be included within the string by using two adjacent
double quotes foe each. desired double quote.

4. As an ad:3ed programm..i.ng et:nlenience, wben a nam.e is :ead
into the system by READ, RAmM, or RE.ADCB, the value of the
variable RAIDM is set to the net name.,

V-19

'I11e reader control variables extend the flexibility of the reader
functiCXlS by making' several i..npJt opt:ioos available to the user. They
operate as flags or toggles which are either off or on. Except for
ECBO, the reader control variables have the same names as the reader
funetialS. 'Ihis is dale primarily to <:a1Serve preciQJS memory space;
hewever, each variable is usually used in conjunctioo with the functicn
of the same name.

1. RDS: Normally control of the current input sou~rce is
done through the use of the function RDS as described above.
BOIIe/er, after a file bas been opened and made current, cootrol .
<:an be returned to the consale withcut closing the i..npJt file,
simply by sett.in; the value of ROS to NIL. A subsequent non-NIL
assignment to RDS wUl then return control to the previously
cpened disk. file at the point at which. readi..D; was suspended.

2. READ: 'nle variable READ coo.trols the IGle.r to u-pper case
coaversicn of letters upon inpJ.t:. Ncrmally READ is r:oo-NIL and
lower case letters are distinct from their upper case
CCUllterpu'ts. Hcwever if it is NlL" I all lGle.r case letters are

. converted to upper case as they are read in. In arr:l case, al.l
10tler case letters alread:i in the system remain in lGler case.

!be reader control variables extend the flexibilit::t of the reader
functioos by making several i..npJt optioos available to the user. They
operate as flags or toggles which are eit.~e.r off or on. Except for
ECHO, the reader control variables have the same names as the reader
functia1S. 'lhis is dooe primarily to ccnserve preciOJS memory S-t4ce;
bcwever, each variable is usually used in conjunctioo with the functioo
of the same name..

1. RDS: Normally control of the current input source is
done through the use of the function RDS as described above.
BGiever, after a file has been opened and made o.u;rent, cootral
can be returned to the ccnsole withc:ut closing the i..n;;:ut file,
simply by settdng the value of PnS to NIL. A subsequent non-NlL
assignment to RDS will then return control to the previously
~ disk. file at the point at which readi..D; ..,as suspended.

2. READ: 'l11e variable READ cootrols the IGier to u-pper case
coaversicn of letters upon inpJ.t. Ncrmally READ is r:m-NlL ar.d
lower case letters are distinct from their upper case
COJnterpu'ts. BOt/ever if it is NIL, all 10ller case letters are

. converted to uppe.c case as they are read in. In arry case, all
lGier case letters alreadj in the system remain in 10ller case.

3. R.EADOI: When the console is the current input source,
the console input mode is controlled by the variable REAOCB.
Nocnally the value of the variable .R.EAIX:B is non-NIL and coosole
i.np.lt is then in the line ·edit mode. In this mede, when all the
cbaracters have been read frem the current line, the operat.ing
system's line edit rwtine is called foe further i.rItUt:. until a

. carriage return is typed.. the system's normal editint; procedures
such as input echoing, backspacing, line deletion,. printer
output toggle using control-P, etc. are in force.. If the
variable R.EADCHis NIL, all buffering and input echoing is
eliminated. This raw input mode is useful for immediate
respoo.se to au! dJaracter canmands as demCDStrated in the LISP
STAR editor.

4. fX::lO: If a disk file is the current int:ut source and the
value of the control variable ECHO is non-NIL, the characters
be.i.ng read fran the file are echoed to the current cutpJt sink,
which is usually the coosole. Note that since ccmments are, also
echoed, English language text within a canment can cOCNeniently
be displayed withoot having to actually process the text. See
the printer cootrol variable sectial fa: other effects of a:sa.

V-20

(J

<~

3. R.EADCB: When the console is the current input source,
the console input mode is controlled by the variable REAOCB.
Nocnally the value of the variable .R.EAIX:B is non-NlL and console
i.rp.lt is then in the line edit mode. In this merle, when all the
characters have been read fran the current lln~ the operating
system's line edit rwtine is called foe further i.np.lt. Until a

. carriage return is typed.. the system's normal editint; procedures
such as input echoing, backspacing, line deletion, printer
output toggle using control-P, etc. are in force.. If the
variable R.EMX:B is NIL, all buffering and input echoing is
eliminated. 'this x:av input mode is useful for immediate
response to ale dJaracter cemmatXis as dem<nstrated in the LISP
STAR edi tor.

4. FX:BO: If a disk file is the aIrrent inr:ut source and the
value of the control variable ECHO is non-NIL, the characters
bein:3 read fran the file are echoed to the alrrent cutpJt sink,
which is usually the console. Note that since canments are also
echoed, English language text within a canment can ca:rJenie.ntly
be displayed withoot having to actually process the text. see
the pr:inte.r· cmtrol variable secticn for other effects of EX:Bo.

~,._"'\I\

~IJ

,,,.....

~
R. Printer Punctions and Control Variables

'lbe muLISP printer functioos direct character oot::put to the cw:rent
output sink. As determined by the function and variable WRS, the

sink can be either the console or a disk file.

1. aN was (X, Y, Z] :- (WRite Select)
roT N.lIL [WRS1 ->

write out the final record of the currently open
disk file and close the fUe,
WRS <- NIL, .
WRS [X, Y, Z];,

HJLL (X] -)
,WRS <- NIL;,

NAME [Xl }N) NJ\ME [Y] -)
HJLL [Zl -)

on the currently logged i.n disk drive, if a
file named x.y exists delete aIrf ex.is~ file
named LBAK, then rename the file LY to
~ and make a new directorJ entry for: x.y,
WRS <- X;,

NAME [Z] -)
on drive Z, if a file named LY exists delete
art:! existi.nq fUe named x..BAK, tbenrename the
file LY to LBAIt, and make a new directory
entry for LY,
WPS <- X;,

was <- NIL;,
WRS <- NIL;

Interpretatiat: '!'he write select: funetiQ1 is used both to
select and later to close output sink disk files.
U t:.b.e current output sink is a disk file and WRS is
call.ed, that file is closed. Next, if a file name,
type, and a drive (cptiooal) are su;;::plied as arguments
to WRS, an already existing file of that name is
renamed to a .BAK file of the same name. This
prarldes an autanatic one lfNel file backup feature.
Pinally a new fUe of the given name and type is
created for output on the appropriate drive, and the
variable WRS is set to the name of the file. Thus
this file becomes the new current output sink. The
default DRIVER function sets WBS to NIL making the
console the current output sink on initial system
st:a.ctup aId after interrupts or error traps.

2. CBJ mINT [Xl :­
E'R.INl [X1,
'I:ERPRI [1,
X;

Interpretation: Print t.."le expression X,. terminate t..~e

last line and return X.

V-21

3. CSJ mnn {Xl :=
.WME [Xl ->

. OJt:pJt to the Olrrent ootpJt sink the print name
representation of Xi,

NOMBERP [Xl -)
output to the current output sink the digits
expressing X in the current radix base and
preceeded by a --- if MINJ~ (Xl;,

PRINl {tl ("1,
PRINt.IST {XI ,
x;

ON PRINLIST [Xl :­
PRINl, [OR (XlI,
roLL (CDR [Xl] -> PR.INl [") "1;,

- PRINl (" -],
A'JIX~ (CDR (XlI -)

PRINl [". -1,
PRINl (CDR (Xl},
PRINl (")-1;,

PRlN[.,IS'I' [CDR [X11 ;

Interpretation: The function PRDn will output the
standard list notation of the object X to the
cw:rent outplt sink. X is the returned value.

4. CSl TfRPRI [Xl :-
ZEroP [Xl -> NIL;,
cutp.1t a carriage r~turn and lii1e feed to the current

cutl;Ut sink,
PLOSP {Xl }NO LESSP {X, 2561 ->

1'fm'RI .[X-ll ; ,
NIL;

Interpretaticn: If X is a ncn-negative n.nnber, 'mu:'RI (Xl
outputs X number of new lines to the cw:rent output
sink. Otherwise ale n&I line is cutplt to the sink.

s. CBI Sp]QS [Xl :-
PLOSl? [Xl AND LESSP (X, 2561 ->

m.nn. t- -1,
SP;v:ES (X-ll i , ..

the current OJrsor I,X)Si tioo:

Inte.rpretaticn: If X. is a noo-negative number, SPACES [Xl
OJtt:uts X number of spaces to t."'le o.trrent OJt;:ut: sir.k..
Otherw ise no spaces are output to the sink. In any
ease, the resulting cursor position is ret:u.rned.

V-22

(

.-,

U

I~)

~J
6. CBl LmELEXmi (Xl :-

GRF.A.TDtP [X, ill ;NO USSP [X, 2561 -)
set ma.x.imum ootpJt linelength to X,
return the previOlS linelength;,

return the current linelength;

Interpretation: If X is a number between 11 and 256,
LINELEN:;TB [Xl sets the ma.x.imUItl number of c.~acte.rs

output per line to X. The fWlction returns the
previous llnelenc;th. If X is not a number or cutside
the permissible range, the current linelength is
returned. '!be defaul t linelenqt:h is 72.

7. C!N RADIX' (Xl :-
GREAtmP [X, 1] AND ussP [X, 37] ->

set radix base to X,
return the old radix ~:,

return the current radix base:

InterpretatiCX1: If X is a IJJmber between 1 and ':rT I R}D!X
[Xl sets the radix base in which numbers are expressed
for both input and output, and the function returns
the previous base•. If X is not a number or outside
the permissible range, the current radix base is
returned. '!be default .radi,x base is decimal ten.

Notes:

1. If a disk file is the current output sink and there is
insufficient disk space, the following warning message is
displlr'Jed a\ the <:a1SOle:

_0 Disk Space

In additioo, the caltraL variable WRS is set to~ makinc; the
coosole the current cutpJ.t. s.ink.

2. If the host computer's operating system supports a
printer and muLISP is in the line edit mode (see note 3 under
reader control variables, section V-H), typing a C!RL-P v Ul
direct all muLISP cutput di.spl~ed en the system. coosole to the
printer as well.

V-23

!he printer cootrat variables a.re used a.na.lo:;ccsly to t.'1eir reade.r
cootrol ccunterparts. 'll1ey function as to3g1es to control the current
outp.tt sink, case conve.rion, printing of quot.ed strings, and output.
echoing of characters to the ccnsole.

1. WRS: Normally cootrol of the OJrrent cutplt sink. is dale
through the use of the function WRS as described above.
However, after a file bas been opened using WRS, output can be
directed to the coosole without closing the disk file '01 simply
setting the value of WRS to NIL. A subsequent non-NIL
assignment to WRS VI ill then redirect cutput to the disk file and
a.~ data alto the eOO of the' file.

2. PRINT:' The variable PRINT controls the upper to lo.rer
case conve.rsicn of letters be.in; ootp..1t. Normally I?R!NT is noo­
NIL and all letters are printed as stored. HC'Jever, if it is
N!L, all ua?& case letters are cawerted to lcwer case as they
are printed. This conversion in no way affects the internal
storage of arr:I name's character strin;.

3. P1UNl: If PRINl is NIL, names which contain separatot' or
break characters will be printed using double quotes as
necessary to permit the name to be S\.1bSEtIUently read back in as
the same name. Printing such names using quoted strings is
essential for such applications as LISP editors. Normally,
bOJever, PRINl is non-NIL and a name's print name string will

. simply be outt;ut as is.

~. .. '. 4. ECBO: If a disk file is the current output sink and the
value of the control variable ECHO is non-NIL, the characte.r:s
beir¥; ou.t;ut to the file are also echoed to the coo.sole.

V-24

o

()

(l

'!be follG/ ing auxiliary functiCX1S are recognizers used to define the
ernluatioo. and functioo definition functioos..

ON FSJBR [Xl :- (CBN· subrootine reccgni%er)
X is a CBN machine language rcutine -> -mJE;,
NIL;

o

r
''-..-

(CBN~A defined fun~...iCX1

reccqniz er)

(aN~ defined functicn
r eccqnizer)

(ea.u-o:r-na:me recogni.zer)

(call-by-value reco;n.i%er)

(~ined func+-..icn recognizer)

ON F'EXt'R (X1 :•
EO (CAR (Xl, '~l;

CSl EXPR [Xl :-
EO [eM (Xl, .~];

C1N CBNP [X] :-
FstER (Xl ~ FDl'R (Xl;

ON o:NP (X] :-
StBR. [Xl ca FXPR [Xl;

aN ONDEFINED [Xl :­
NtIIL (GF:lD (Xl];

4) OtheN ise the task. is reo.trsively evaluated ~ a funeticn
body itself before continuing with the evaluation of the top
level t:-unetim body. '!his permits conditiooal forks in funetim
bodies to later recanbine.

CEN SJBR (Xl :- (C'iN subrootine recognizer)
X is a CfN machine language rootine -) -mJE;,
NlL;

This e·laluation scheme is very powerful but it does not have any
provisicns for non-ceo.u:sive pro;ram control structures. SUch iterative
capability can be added to the algorithm above quite simply. A func+'~oo
body enclosed ·w ithin the LOOP control construct will be evaluated as
described above, except ffNaluatioo will start again at the begin."l.ing of
the body instead of returning after the last task has been performed.
'!his ccnt..irnJes until a predicate as defined in case 3) above is non-NIL.
'rhe value of the'loop construct is the value of the function body
follGl ing the noo-NIL predicate.. Note that any rnJin.ber of predicates can
0C0lr within a loop at arrJ desired locatioo. '.this implementation of a
LOOP preserves the basic evaluation met.'1od of muLISP while greatly
impra.Tinq the pe.rfoon.ance of the language. .

2) If the car of the task 1s an atom, the car is considered
to be the name of a function which is to be applied to the list
of arguments making up the cdr of the task:.. '!be azguments are
ervaluated before the at=Plication for CBl functioos.

'l1le second element of a function's definition should be either a
name or a list of names defining the function's formal arguments. If
the formal argument is a name which is not NIL, the function is
<:a1Sidered to ·be a no-spread functioo. A no-spread ftmcti<n receives
its arguments as one list baJnd to tbe name. 'I11US no-spread functicr.s
can have an arbitrary number of arguments. However, if the se<:ond
ele:nent is a list of atems, t:be arguments will be passed to this· spread
tunct:ia:l boJnd to each formal argument maki.D; up the list. Note that a
function's being spread or: no-spread is entirely independent of its
bei.rx3 CIN or CBN.

'I!1e remainin;; elements of the list make up the Cefinitiat's flmctioa
body. '!he functicn body is a list of tasks which are to be successively
performed when the function is called. 'nle returned value of the
functioo is the value of the last task perfooned. RGI a given task is
to be performed depeOOs en the structure of the task, as follGls:

1) If the task is an atom, the value of the task is the
value of the atan.

3) If the car of the car of the task is an atom, the car of
the tas!< is considered to be a predicate, which is then
evaluated as described in 2) abov-e. If the value of the
predicatF! is NlL, the value of the task is NIL. Hcwever, if tbe
predicat.e's value is non-NIL, the original function body is
abandooed an:i evaluatim prcx:eeds using the cdr of. the task as
the new functiQ'l body.

o. Evaluation Functiol1S

The ev~uation functions are used for expression evaluaticn and
program control. 'n1e algorithm for evaluating functim bodies in muLISP
has been enhanced to make pro;ram control implicit in the struet:ure of
the body itself. As discussed in section I-Ep this makes function
definiticns cleaner, sha:ter, and easier to interpret:.

A muLISP function definition is spe<:ified by a linked list
representing the desired definition. The first element of the list
determines the functioo's type. It shOJld be either the name· L.A:1BDA or
NL.AMBDA. LAMBDA indicates the function is a ca.l.l by value (CBV)
functioo. When a CSJ functioo is eal.l~ arguments are first evaluated
and only the resulting values are passed to the fW1ction. A function
defined using &LAMBDA (i.e. a Ho-eval LAMBDA) is a call by name (CBN)
function. A CBN function receives its arguments in unevaluated form~

just as they- were given in the call to the function. C3l functicns are
by far the most prevalent in LISP. 'Ihus the rlC"ice prcgrammer need not
be concerned with learning to use the CBN fW'lctions until the other
features of the language have been mastered.

)

V-2S

) 1. amQ~ [Xl :­
X;

Interpretation: This function suppresses evaluatioo of
its a.rgcment and r et:urns the object X i t:sel.f.

2. CIN FJl}L [X] :-
Ami {Xl -) O\R [Xl;,
NAME (CAR [Xll -)
~INm (CAR {X} J ->

EO (C1a [Xl, fJlM.. [C\R (XII] -)
elLIS (Xl;,

fll1-L (aNS [E\T~ loa (XII, CDR [Xl] 1;,
CBlP (GElD [OR [Xlll ->

N!PLY [CAR [Xl, EVLIS [C!:IR [Xll];,
03NP [G~ {~ [X}]} ->

MfPLY [CM [Xl, CIJR (Xl];,
DlLIS [Xl i,

EXPR [OR [XIl ->
IJ!I'f.;y [CAR (X1, DlLIS [CDR {XIll; ,

. FEXl?R [<:Nt [Xl] ->
IJ!I'f.;y {OR {Xl, QJR {Xl];,

DlLIS {X]; .

Interpretation: If X is an atom, 'EYM" [Xl returns the
contents of the value cell of X. OtbeNise, if the
car of X is a aN funeti~ each element of the cdr of
X is evaluated and the function is applied to the
results. If the car of X is a CBN function, tl1e
function is applied to the cdr of X directly.

. pinally, if the car of X is not a function,. each
element of X is evaluated in turn, and a list of the
results is returned.

CBl alLIS rx1 :.
A'l'a1 (X1 -> NlL;,
a:t'S [EV'N.. [CAR [XI], elLIS [CDR {XII];

Interpretaticn: 'lbis func+'...ioo evaluates each element of a
list and returns a list of the results.

3. CSl};WI.:! [X, Y] :-
NN1E {Xl ->

CNDEF~ {Xl ->
EO [X, f)J[4L {Xl] -) NlL;,
MfPLY (SIAL IX), Y];,

StJBR [GEm [XlI -)
MI:M (Y] -)

X (NlL, NIL, NIL];,
MI:M t~ [Yl] -)

X [CAR (Yl, NIL, NIL};,
MI:M (CIDR (Yll ->

x [CAR [Xl I CADR [Xl, NIL};,
X [CAR [Y], ChDR [Y], OJDR (Yll;,

FSUBR (GElD [Xll ->
x (:fl;,

!XPR [GElD {Xl] OR FExPR {GElD (Xl] ->
BnD [CADR {GElD [Xl], Yl,
Y <- FYAI.2JIf:l (NIL, CDOR {GElD (Xl]],
UNBIN:> (CADR (GF.:ID (Xlll,
Y; ,

NIL;,
aPR [Xl OR EtXPR [X) -)

BIro [CADR [Xl, Y],
Y' <- FYA'!..2I:rfI (NIL, CDOR (X] I ,
ONBIID (CADR [XII,
Y; ,

NIL;

Interpretation: APPLY {X~' YI applies the function X to
the list of arguments Y. If X is a machine language
routine, control passes to the routine. If X is a
I..AMIDA defined f~~on, the formal arguments of X are
temporarily bound to the actual arguments, the
function b<Xiy is evaluated, the origi.rlal values of the
formal arguments are restot:cd, and the value of the
fur¥:ticn b<Xiy evaluation is retu~

c:sv 'iYN:..2aJY [X I Yl :•
A'ltM [Yl -> X;,
A'ltM {Ct\R (Yll OR A'ltM [CAAR [Y]] ->

f:m2I:D'! (EVAL [CAR [Y] 1, Q).R [Yll;,
A'ltM (Ct\AAR [Y] J ->

X <- EVAL [CMR {Y]],
N.Jr [Xl ->

FYN..N:1J'f (NIL, CDR [Y}];,
~ [X, <:DAR [Y]];,

FYN..N:1J'f (EV'AI..'aCDY (X, CAR (Y] 1, CDR (Yll;

Interpretation: This function evaluates a fur.d:ion b<Xiy y
as described in the introduction to this section and
returns the value of the last expression which was
eva.l1Jated•

CIN BnD [X, Yl :-
ATCli (Yl ->

A10i {X] -> NIL;,
pUgJ (EVAt [CAR (Xl] I ~l,

SEr [(AR (Xl, NIL},
BIND (CDR (X], :fli,

Ami (Xl -) NIL;,
PO$ (EVAt {CAR (XII, AR:;STJ\CI(],
ser [CAR (Xl, CAR [Y11,
BIN) (CDR (Xl., CDR [YJ];

\
'-'

o

Interpretatioo: '!his func+"-..i.m successively fNaluates Xl,
X2, •••, xn and return the result of the evaluation of
Xl.

a

c(Eval IllJLISP driver)

Interpretatial: The LCOP construct evaluates its argument
in a manner identical to the evaluation of t.~e clauses
in a functicn body. Ho-tever, if all the arguments are
evaluated withC11t a conditional having been satisfied,
evaluaticn begins again witb the first argument.

ON I:JR..-vrn. {1 : • (Eval-quote muLI.SP driver)
Rt:S <- NIL,
WRS <- NlL,
EXm <- NlL,
REMXJI <- •RF..N::X:H,
'IDU'RI £},
PR.INl ['-) -]t
PRINT [~ [RF.J\D [], REN) [] 1] ;

In~e.rpretation: This is the default e'Tal-LISP driver
functicn as primitively defined in machine language..
'the function DRIVER is repeatedly evaluated by the
muLISP executive driver loc:p. 'lherefore IJt:UVm can be
redefined at will to suit the user's needs. por
instance the follQling is a sample ertaJ.-quote-LISP
driver:

6. CBN PBCGl [Xl, X2, ••• , xnl :-
alAL.PFO:il [F:JN.. [Xl1, LIST [X2, n, ... , xnI];

crN eJ'NJ'RCXil [X, Y] : •
rox::M [Y] -> X;,
FJl:P-L [CAR cY]],
ElT.N:..PBCXil [X, CDR [yll i

1. ClJ1 I:Rl.VER [] : •
RI:S <- NIL,
WFS <- NIL,
EXm <- NlL,
REMXJI <- I~,
'!ffiPRI [1,
ffi!Nl {'.$ -],
P.RINT (arM.. [RFJ\D []] 1;

5. CBN LOOP [Xl, X2, ••• , xnl :­
FJlN.LC1JP [LIST {Xl, X2, ••• , XnJ,

LIS!' [Xl, X2, ••• , xnl];

ON FJlN.liXJP [X, Y, Z] :- .
A:II:H (Yl -)

f:.lN..1..tXJP [X, Xli,
MCM [C/;R [Y11 m MI:M [e:.t\AR [yll -)

fYH.. [eM (Y}],'-
FJlN..l1:t:JP [X, CDR [Y]];,

Mai [CA.t\AR [yl] -)
Z (- E1lJ4L [CAt'R (Y] I ,
NJr [Z] -) EYm.J:t:Jp [X, COR [Y}];,
6lN..'2lJffl {Z, O)AR (Y] 1i,

FJlM.J3CDY [NIL, Ci'R cYll,
fYN.J.J:rJp [X, (1)R [Y1] ;

CiN ONBIND (Xl :-
A:II:H [Xl -> NlL;,
ONBIND [CDR [Xl],
SF:!' [CAR [Xl, FOP [~l];

Interpretation: This function restores the original
values of the atoms on the formal argument list X
stoced en J\RGS'.tP.CIt.

Interpretation: This functioo saves the original values
. of the atoms making up the formal argument list X on

the argument stac.k: named~ Simul taneOJSly t..'1e
value of the formal ar9ument~ is set to the
corresponding elements of the actual arguments given
in the list Y.

4. 03N CCND [Xl, X2, ••• , Xn) :-
91XJ::r:N.) [LIST [Xl, X2, ••• , Xt1] 1;

CST FJlN.,CCNO [X, Y] : •
Am'l [Xl -) NIL;,
Y (- aiM., [e:.t\AR (XI I,
oor [Y] -> FJ1w::::r:N.) [CDR [X]];,
F!JN.I!IXJ'L [Yt <:DM. [Xl] i

Interpretatial: '!he a:ND funet:.icn successively ENaluates
the car of Xl, D, •••, Xn Until either a non-NIL
value is encountered or all have evaluated. to NIL. In
the former case the cdr of that argument is evaluated
as a function body (see the interpretation of APPLY
for detalls). In the latter case NIL is returned by
cam. ~is extended COW is a pa.ierful upw'ard
canpatible extensicn of the CCN:) functicn described in
original LISP l.S.

,
..J

V-30 (\)

V-29

I
i·

P. Memory Kanagement Functions

Tbe memory management function is used to force a garbage collection
and return the amount of currently available data space. Since memory
management is fully automatic in muLISP, normally there is no need to
explicitly use the function except for its value.. see section III for a
di.so.lSsion of the memory mana9ement system.

1. aN Rro:AIM {] :-
perfocn a qa.tbage collect.icn,
the amount of free space expressed in byteS;

Interprl!tation: This funetioo forces a ga1:bage collection
to OCOJr. The total amount of free space in the atom,
vector, and pointer spaces is returned, expressed in
bytes. Note that tva bytes are required for each
muLISl? pointer cell. Thus nodes require 4. bytes,
numbers. require 6 bytes, and names require 8 bytes.
In addition names and numbers require storage for
their respective print name st.rin9s and number
vectors.

V-31

Q. Environment Functions

The environment functions are used to save and load muLISP
environments. Prior to saving a system, all the data spaces are
automatically compacted into one area of memory so the resulting SYS
file will be of minimum size. The SYS file can be loaded into a
different size comp.1ter system than the one that prcduced the SiS file.
see section I-B for a detailed discussion on the use of SYS files.

1. CIN SAVE [X, Y] :-
N:Jr N:1IL (WRS] ->

write out .the final record of the current output
sink and close the file,

WRS <- NIL,
SAVE [X, Y] i ,
~ (Xl A.~ ~ [Yl ->

NOLL [Yl ->
<:aDpaCt all current data structures,
save a memory image of the current envirooment
~ as a SIS file named X on the o.u:rent drive,

TRiE; ,
ccmpact all current data. structures,
save a memory image of the o.u:rent envirooment as a

SiS file named X on drive Y,
'IroEi

NIL;

Interpretation: This function saves the current muLISP
environment on a disk file. Since the currently
l!d:ive data structures are cOtnpacted before the save,
the size of the SiS file is prCJIX)rtional to the a..tmber
of these structures in the system.

2. aN l'.-Q\D [X, Y] :-
Ni\ME [Xl AND ~ [Y] ->

NOLL [Y] -)
load the memory image SYS file named X from

the OJrrent disk, .
ros<- NIL,
retum dLtectly to the exeCutive driver loop;,

load the memory image S'!S file named X from drive I,
R)S <- NIL,
return directly to the exeaJtive driver loop;

NIL;

Interpretation: This function restores the muLIS?
environment present at the time of the SAVE. If the
SIS file is successfully loaded, l'.-Q\D does not re~u.m

a value tut jumps directly to the new exeoJtive driver
loop.

:J

()

Section VI: The muSTAR AIDS

\' 3. ON S'iSTEH (] :-
. car.paet all data structures into 1011 memory,
return to operating syste:n:

Interpretatim: When this function is e.xeoJted, all data
is compacted into. low memory and then control is
retw:ned to the operati.ng system. The comt,:aetion of
data allows for a re-entry into muLISl? with the same
environment that was present at t.."1e ti.Ine of' the call
to the function SiSI'E.~ The re-entry aCdress for O?/t-t
versioos of muLI.SP is lOOH (hexadecimal).

.., ~

~

)

muLISP source files can be generated in one of two ways: either an
external editor or a resident LISP editor can be used. The text editor
provided with your comPJter's disk operating system is an example of an
exte.rna.l editor. Program development using an external editor consists
of iteratively editing, load.ing, and testing scurce files..

The principal advantages of using an external editor are that
usually the user is familiar with it and that comments can easily be
included as part of the text. Although an external editor is a
perfectly satisfactoty method of program development, it is somewhat
slow a.rrl cumbersome, and not conducive to creative work. Repeated disk
accesses are required to make even minor changes to function
definitions •

These problems are conveniently resolved in muLISP-80 with t...~e

introCuction of the muSTAR Artificial Intelligence DevelOfmeOt Sys+'~

mustl'\R greatly reduces program" development time aOO fully utilizes t.he
interactive nature of LISP. Using' the resident editor and tracing
facilities provided by muSTAR, function definitions can be created,
teSted,' and througbly deb.1gged all within the system. This enccurages
the incremental a;;:proach·to program.mi.D; aro avoids the cumbersome edit.­
debug-reedit cycle.. Thus pr:ogram development moves much faster am is
definitely more enjoyable.

The remainder of this section will acquaint you with the use of
:. muSTAR AIDS: how to get into it, how to fully utilize the various

options available, arxi bow to use the text editing commands. Tr~ text
editing commands include cursor control, text display, and
insertion/deletion of text. The description in section VI-C of how
musrAR works will be of value to those users who wish to extend or
mcxli.fy it to suit their needs..

'!be muS'I'AR editor will work for virtually any mcdem CRI' te.t:ninal
running' at a high BAOD or data transfer rate. ~he only non-standard
features used by mUSI'AR are the characters which move the cursor up a
line and move the cursor to the oome position, or~ left-r.,and comer
of the scree..'1. The distributed version is customized for the ADM-3A
te.rmi.naL If some other teminal is being' used, OJSt:.Omi:zed functions
will have to be. written to perform these functions, as described in
section VI-C below.

VT-'

A. !lain Menu Coumaands

. ,
Ir1IJS'!AR is distributed as a muLISP S'iS fUe. Thus it can be loaded

by' either method described in section I-B of this manual. Probably tr.e
easiest way is to use the following CP/M level camsand:

A>fIJLISP KJSTAR

'l11is command will first load muLISP and display the logon prompt..
Next the muSrAR system will be loaded and its executive driver will be
called. The driver will display the mUSTAR menu of opt:ioos ava.ilable to
the user. This is ~ menu as displayed on the console:

OPrICNS: F mrr FON:TICN
V mrr VARL\BL.E
p mIT l?roP~

E 'EN:\L LISP
Q EV1\L-QOOl'E LISP
'r TP..ACE FtN:TICN
o~ FtN:TICN
R. RFJ\D FILE
W WRl"!E FILE
D SEI.a:r DRlVE

ENTER c:eolCE:

u

~.

t,..;

.
v EDrr VAR.IAm..E - This option is used to create and/or edit

a program variable's value. When activated. this option
displays the following prompt::

VJ\R.Ill.m:.E Nt\ME(S) :
As many variable names as will fit on one line can then
be typed. After a carriage retum is entered. the system
will display the variable(s) and pretty-printed value(s)
with the o..trsor at the beginni'1g of the text. The editor
can then be used to modify the. text and the Value(s) of
the variable(s) can be reassi~

P EDIT PROPER:rY - This option is used to create and/or edit
a name's property value. When activated. this oPtion
first displays the follOWing prompt::

Nt'\.."re:
Chly one name is pennitted for: property edits; adiitionaJ.
names will be ignored. After a carriage return is
entered. the system will display the follOWing prompt:

~ .
Again only one property indicator can be specified.

. After a carriage return is entered. the systeIll will
display the variable name. indicator. and current
property value. After the edit, the lIlOdi.f~ed expression
C2l1 be reevaluated.

'11le facUities available in~ fall into three eat.ag'ories, as
reflected in the list above. 'I'he first three opti<XlS call the display­
oriented editor. The next four are used for program. debugging. The
last three· fall into the categox.y of disk. flle storage.

When this menu is displayed, enterinq any of the valid option
cha.racters w1.U initiate the corresporx1i..nq facility as described below.
The system will only respond to valid option characters. An unwanted
cb:)ice can be aborted by simply typi.nq a carriage retum when t::le option
prompts the user for intUt.

1. Editor Facilities

P EDIT FmCTION - This opticn is used to create aOO/or edit .
a muLISP function's I.AMEDA definition. When activated,
this optioo displays the followin; prompt:

FQtCrIal NA.HE(S) :
As many function names as will fit on one line can then
be typed. After a carriage retum is entered, the system
will display the definition(s) in pretty-printed form,
using indentation to highlight ~e structure of the
function definition(s). The cursor is [X)Siticned at t."le
beginning of the text. The editor can then be used to
modify the text as described in VI-a below. Q1Ce editing
is completed and if tr..e use!' desires, t.be function (s) are
redefined usi.ng the modified definition(s).

V!-'

Q

;...

2. Debugging Pac~ities

B EVM. i:.J:sp - This option is used to initiate an eVal-USp
driver loop as described in se<:tion I-D. The prompt
string -* - distinguishes it from the default muLlS?
prompt string -$ -. This eVal-LISP loop will continue
until an expressicn evaluates to the name .f:UL

o .EVAL-Q00l'E LISP - This option is used to initiate an E!7a.l­
quote-LISP driver. also described in section I-o. This
eJCeo.ltive is" preferred for debugging by SOme. LISi? ~ers.
The prompt string is -~ -. This e"·al-quote-LIS? loop
will continue until the function EX.Xr () is eJCeo.lted.

T '!'RACE FUN::TION - This option is used to trace a LAMBDA
or NLA.'1BDA defined function for debugging purposes.
When activated, this option displays the follOWingpranpt:

~~(S):
As many function names as will fit on one line can then
be typed. follOWed by a carriage return., Whenever a
traced function is Called. the function name and aCt:lJal
arguments are diSPlayed. When Ithe funCtion returns,
both the function name and retumed value are displayed.

Function and' variable names used in muSTAR which might conflict:
with user program na:nes are terminated with a .$.... In order to avoid
such conflicts it is advisable to avoid using such names in user
programs.

The general principle for using the ItUJST.AR editor can be described
in two s-~ps: first, move tbe Olrsor to where YOJ. want to edit; second,
insert, delete, or cha.t:¥;e the text at that ~int. The best w"¥ to learn
yoo.r way around the system is. to experiment. with some simple fun::+-~cn

definitioos •

B. Text Editing

The muSI2\R editor bas been specifically designed to facilitate t..~e

editing of muLISP functions. It is a screen-oriented LISP editor, which
continuously displays a "window· or "picture" of the text making up a
function's definition. Thus the user can make changes and see the
resul ts instantly.

Because mu5TAR is written entirely in muLISP, the user can e.xterd
the system to his/her own taste. BasicaJ.!ly each ASCII control cha.raete.r
is a function which can be redefined at will to perform. wha~/er task is
desired. This ,is more fully explained in section VI-c.

1. Cursor Control

'!be cursor control commands are used to ~1tiCXl the OlrSOr at the
point where the desired change is to be made in the text. The cursor
(the block or line of light that shows where the next character will
~ when typed) is manit;ulated mainly by directions entered with the
left hand on the keyboard. On most terminals control characters are
entered by depressing the control key, usually marKed c:EIu ar:d typing
the desired lette.r while the control key ·is still depressed.

'!be basic cu.rsor contJ:ols are oriented in the shape of a plus sign
so that en standard keyboanis the l:X'Sitioo of the. key corresp:nis to t..~

direction the cursor is to move. This is illustrated by the following
d.iagram:

Indenting is used to highlight the nesting of function
~.

o OHTR...\CE PUNCrIOB - Tbis option is used to untrace or
restore the definition of a traced function to the
original definition. Tbe same prompt as for the TRACE
FUNCTION is displayed, calling for a sequence of
func..uoos to be entered by the user for untracing.

3'. Disk I/O Facilities

a R.!N) J?ILE ~ This option is used to read muLISP source
files. When activated, this option displays the
following prompt: .

F'ILE Nt'\KE.:
After a name ai:ld a carriage retum is entered, an attempt
is made to open the file with the given name of type LIS.
for input and read it into the system.. If the file is
not: fOWld the following message wlll be displayed and
then you will be re-prompted for a file name:

F'ILE lDr PaJro
Files generated by either musrAR or an external editor
can be loaded in this way. For files made externally,
the last statement of t:c.e file should' be a call to the
function ~ to return control to m~ Also the
function DRIVER sbould not be modified by the source
file.

• W'RITE PILE - This option is used t.o generate a muLISP
source file. When activated, this option displays the
follcwi.r:q pranpt:

PILB NNm:
After a name and a carriage retum is entered, a new disk
file with the. given name of type Lm is created.. A
sequence of ftlD:tion definitions and/or variable values
and properties is written to the file in pretty-pri..'"lted

. foen. The functions which are written are these en the
property list of the file name under the indicator
Em,C'IONS. The variables and/or property values which
get written to the file are those of the names on the
property list of the file name under the indicator
YJ;,..'QJABLES. These property values themselves are also
written to the file so they will automatically be read
back for future muSTAR edits. Note that when the
development phase is complete, files produced by muSTAR
can be read by the muLISP system alone.

iJ

\)

A
-E­

left 1 word

up 1 line

t
E

S
-E-

left 1 letter

D
~

right 1 letter

p
~

right 1 word

D SELECT DI5X. - This option is used to select the disk drive
to be used in subsequent disk file accesses. U'ltil t.lUs
option is used to change the drive, t...'"le current default

. drive is used.

VI-4 ':~~

x
~

down 1 line

In the diagram above, the direction and length of the arrows
indicate the direction and relative magnitude of cursor motion caused by
t:..~e associated 'command. The best way to get the "f~-l· of the c:ommarrls
is to experiment with actual t:ext.

o:RL-D moves the OJrsor one character to the right, CT.RL-S moves it
one character to the left. (Note that the latter command has the same
effect as typing a CT.RL-B or backspace). Amplifying this left-right
movement, cnu:rP mO'\1e5 the cursor one word to the right, CTRL-A moves
it one word to the left. Both of these commands will leave the OJrsor
at the beginning of a word.

In muSTAR a vord is defined to be a muLISP name in the text or a
delimiter such as a parenthesis or period. Note that for these four
commands, tbe text on the screen should be t...~ht of as one long string
of text. Thus- the cursor is automatically advanced to tbe next line
when t.'1e end of the current line is reac.oed. Alternatively, after the
begir.ning of a line is reached when backspacing, the cursor will move 'to
the erxl of the previous line.

Entering a crm:.-E will move t:be cursor up one line.. A C!'m"..-X will
move it down a line. After the cursor is moved to the new line by
either of these commands, it is automatically advanced to the next word
on the line. Typing a linefeed or c.rmrJ will move the cursor to the
begi.nni.rq of the next line.

To move to the begim.i.nc1 of· a line, the command is c::r.RL-Q. To move
in the opposite direction, to the very end of a line (after the last
cha.r~), type aIlL-B.

A carriage retum (i.e.. a ~K) typed when in the rxn-INSERr moo.e
(see section B-3 below) advances the cursor to the beginning of the next
line. A new line is added if at the bottom of the current text. See
sectioo. B-3 for the effect of catriage. returns when in the IN5E2r JtOde.

0siD; a'l1y the alrsor control co~, the alrsor can not ~ moved
to places on the screen that are not characters in the text.. -ro move
the cursor past the end of the current line or past:: the last line of
text, use spaces and/or carriage returns to inSert new text instead of
usiD; the Olrsor control cha.raet~s.

2. Display Control

When 100g or multiple definitioos are displayed on the Ott screen,
only part of the text can be visible at anyone time. Tbe text can be
t..'1ought of as being -Written" on a long SCtoll. The CRr scr~ is then
a -WiOOow· on the text, which shows only a J:X)rtion of the scroll. Since
our window, the CRT, can not move, muST.AR scrolls the text up (toward
the end of the text) or down (toward the beginning of the text). Thus
moving the text up or down is called -scrolling". .

To see the next line of text, typing~z moves the window tx:)WN ·a
line or, relatively speaking, scrolls the text OP a line. To see the .
previous line of text, typing a CTRL-W moves tbe wir.co'W UP one line or,

VT-f;.

oj

\)

relatively speaking, scrolls the text DOWN one line.. When scrolling,
the OJrsor re.mai..ns at the same pJsition in the text, moving up or dawn
with the text. However, if t.'1e cursor reaches t.~ top or bottom of the
scx:een, it remains there. The cursor never leaves the screen.

C1".RL-C is used to move the window down a screenful (i.e. to display
the next 18 lines on a 24 line screen). CTRL-a does the inverse
operation of moving the window up a full screen.

'!be display control commands are deactivated if there is no moce
text in the direction of wi.rx:low motion.

3. Enterin9 -;ext

The.re are two modes for entering text. ~v is a toggle ·switch"
used to switch between mo:ies. In either mode te:tt is inserted by simply
typing it in.

Initially, when the toggle switch is OFF, the editor is in t..'1e
non-~ mode. AIr:! existing text on a line ·tlill k:>e overwritten by new
text being entered. This is the easiest way to enter text initially.
Mistakes can be corrected by simply typing over them with the
corr:ectioos. The st,:aee bar will -erase- c.baracte.rs.

When a CTRL-V has been typed, mu~ is in the mSERT mode.
Qlaract.ers ani spaces that are typed are actually inserted in front of
the remaining characters on the line, if any. The characters to t..-""e
right of the i.nserted charaC""'~s will be p..1Shed aver to the right. As a
step-by-step example, the text -(CONS BETA.)" can be modified to read
-(CONS ALPHA BETA)· by inserting -ALPHA- before -a.E:rA". In the INSE:R:r
mode, this insertion would appear 00 the console as follows, where the
underscore indicates the cursor p:)Sitiat:

(alS s;:.TA)
(a:NS ~)
(cas Ataf.TA)
(a:NS~)

(a:NS~)

(CCNS~~)

(a:NS ALPSA s;:.TA)

When muST.AR is in the insert text mode, carriage returns (i.e.
CI'BL-K) cause new lines to be inserted in the text.. The OJrsor will end
up immediately following the new line. See section B-1 above foe t'-'1e
effect of carriage returns entered in the Ncn-INSmr mode.. Entering a
a.RL-N will always insert a new blank line in the text; however, the
OJI:sor will end up on t..'1e new line..

CTRL-P is the escape control chara~ter used to make delimiter
characters be used as names instead of delimiters. To use spaces,
parent..'1e.se5, periods, arxi brackets as names simply type a CTRL-P before
typing the delimiter character.

VI-7

7 • Coamaand SUDDDary Table

Normally the "E- option is choosen since it evaluates the text
which has been edited. The -A- option abandons the text and does not.
evaluate the text. In case CTRL-K was typed inadvertently, the "e"
option can be ,used to return to the edit.

Function
Control

Q1aracter

\

•• Deleting Text

'!bet:e are .fou~ ways to delete text:

1) In the Non-Insert mode, simply type spaces or new
characters over. tQe text to be deleted;

2) To delete the character that the cursor is on, type
C%.1?L-G;

The user can then enter a name, terminated by a carriage return.
The cursor will then move to the next occurrence of the name in the
text. cnly the text actually on the screen is searched, and if the name
is not found the search will begin again at the top of the screen.. If
the name is still not found, the' cursor ww. erxi up advanced one word to
the right of its original ~iticn.! .

To search for the next occurrence of the same name given the last
time C'!mrO was used, type <:mI.t-L. ()

li:JVe cursor UD one line
Move cursor right one word
Delete o.u:re.nt character
Move cursor left one character
musm
~e OJrsor down one line following le.adi.D; blanks (LI:NEFEm)
Exit editor car.mand
Repeat last search cemmaOO .
~e OU"sor dcwn one line to begi.nni.ng of line (RE:roRN)
Insert a blank line
Find a name
Escape character used to enter delimiters as naxnes
~e to begi..nning of current line
SCroll text down a screenful
Move OJrsor left one character

. Delete word to the right of cursor
ONJSED
Toggle .insert mode switch
SCroll text down one line
~ Olrsor down one line
Delete Olrrent line
SCroll text up ooe line

A Move OJrsor left one word
B Move,cursor to em of Olrrent line
C SCroll text lID a screenful
o 0- ~ve Olrsor right one c.~aete!"
E
F
G
H
I
J
It
L
K
N
o
P
o
R
S
T
o
V
W
X
Y
Z

'-'

nm~

3) To delete the word to the right of the cursor, type
cr.RCr'r. .

4) The cvrrent line can be deleted by typing e.tmry.

A word ot:_cautioo: since the letter Y is so easy to hit by mistake
when reaching for a T, it is advisable to use extra care when deleting
words, since a long reach can eliminate an entire line. It is also a
good idea to use ~y with discretion since repeating the~
command will -walk- you down the line. This often al.lows the user to
-recycJ.e- words into a new line.

s. Finding Baaes

'the ability to sea.tch for a muLISP name in text is the functioo. of
these command$. ~ displays the following prompt on the top line of
the screen:

6. Exiting Editor

When the edit of a variable, function, or property is completed,
typin<; a Ct'.RL-« will cause the follow in9' menu to be displayed on the

. console:

OPl'ICNS: E~ TE:<.T
A ABAN:x:N nxr
C a:Nr1NJE mIT

~ O3OICE:

VI-9

:"~

VI-R

, N.mber of lines (Xl CRr ,
, N..m:ber of columns - 2 ,

, c.rm:..-A • lE hex ,
, CXRL-!t • OB hex ,
, crm:rM. • CD hex ,

c. Custom.izi.n9 lIluSTAll

1. Console CustomizatioD

All musrAR users except those own.ing ADM-3A te.cninals will probably
have to write a simple muLISP library file containing functions for
movinq the cursor up a line and for moving the cursor to the home
l,X)Sition (the uwer left corner of the screen). The muSTAR function .Ill:
~ is used to move the OJrsor to the begi.nning of the OJrrent line ar..d
up a given number of lines. If no argument is given, it still moves the
cursor up onejline. Tbe function .B.Q.t:1ll moves the cursor to the upper
left-hand corner of the screen without erasing the screen. It also
includes a 1'ERPRI to reset the muLISP cursor position counter. 'the
following are the d~ault definitions of these functions:

(DmJN OP-LINS (IJ\MBCA (NJM)
«Zmli' ~»
(PRINl CR)
(I£XJP
. (PRIm. tJPI..INE)

(SED:) tui (SUBl K:H»
«IDr (PWSP NJM»)) »

(DEFtlN BCM:S (I.AMB:lA ()
(PRINl HOME) (TERPRI) (PRINl BJME)))

(~P~24),

(SE!'CXl LIN-I.m$ 78)

(~ ec:ME .~.)

(sr:.tW OPLINE .~.)

(SE!'CXl CR •rie
)

(:r05)

Note that the wAw notation used in the last lines of the above
l.ist:in; means that an actual control character is to be inserted in the
text file between the two double quote signs. It also may be necessary
to adjust for your console's page and lice lengths.

To cust.omi.%e muSTAR for you.r tecninal, first use a;1 external editor
to make a file of type .L.m. using the definitions above as a mod.el. Note
that the call to the function ROS at the end of the file must be
included to make the console the current input source. Immediately
after loading MtJS'TARSlS as descriOOd in section VI-A above, c.bcx)s.e t."le
"R' option and read in yoor custom.i%ation file.. The c:ustorni%ed version
of muSTAR sbould then be saved as a SYS file, using a new name to
distinguish it from the uncustomized version. To accomplish this,
select the eval-LISP T' opticn and then tnake t:.~e following comma.nd: .

(SAVE MISTAR)

This will create a disk file named MYSTAR.SYS. Thereafter
initiating muST.AR is si..'tlply a matte!: of loading MYSTAR instead of MUsrJ\R
as described in the introeuction to sec-~a1 VI-A.

VI-10

\

o

o

.)

2. The muSTAR Executive

The e.xeoJtive is a ver;y simple loop which displays the main option
menu and then calls a function to perform the requested option. On the
property of each option character, under the indicator r:<;:etrrIy'E, is the
LAMBDA body evaluated when the respective option is chosen. The
function~ is used to display a prompt and i.npJ.t the response.. It
returns a list of expressions entered by ~ user.

If an editor option was chosen, this list is passed to the
5-expression-to-text translator. Here the expression is converted to
the internal text data structure as described in t..~ next ~icn..
The editor is then called to pretty-print and permit editing of t..~e

text. When the edit is complete and the user desires to evaluate t...~e

text, the text-to-S-expression translator is called to translate the
text and evaluate the result. If parentheses are Wlbalanced or t:..~e

continue option is chosen, the editor is called again so the edit can
continue.

'!'be trace aOO tmtrace options pass the list of names entered by tr.e
user to.~ and ONI?ACE func+-....ions respectively. A fpnction is traced
by redefining it to call the function f;VTEACZ. ThUs when a traced
function is called, it calls EVTRACE which prints its arguments,
~uates th~ or~~inal function, and then prints the' tesult.m; value..

The write file option opens a file for output on drive *DR.I\TE*.
First it prints the basic functions needed to read-in the remaird.er of
the file (i.e. OEFUN, SZTQQ, PO'I'OQ, and FLAGOO). Then a list of
functions and variables in the file are printed. Finally the pretty­
printed function definitions, name values, and property values are
printed. If a function which is being saved bas been traced, the
original definition and not the traced version is saved.

3. 'text Data Structure

It is a relatively simple matter for an experienced muLISP
programmer to add features to the editor to suit his/her tastes.
Qlan;es which can be made include mcdi.-oFying the effect of centrol keys
and taking advantage of special CRT features. The first step is to
becooe t...~crou9hly familar with how the text is stored and codified.
'l1len the aLready existing ooildin<; blocks in t:re system for manipulating
the text can be combined to achieve the desired effect.

The text currently on the screen at any given time is stored as a
list bound to the glooal variable~ Except for the first el~ent:

of *TEXT* which is alvays NIL, each element of this list represent.s a
line of text. The global variable PA<ctEtiS is set to the maximum
allowable number of lines on the CRT screen. Its default value is 24.
'!bus the length of the list '*TIXT'* can never be greater t.."'.an PAG-L.E:-:$.

Each line or row of text (i.e. element of *TEXT'*) is a list
specifying the text on t.'1at row. The fi.rst element of a row is always a
non-negative integer which gives the number of leading blanks, or

VI-ll

initial spaces, on the line. The remaining elements of the list. are
called tokens. Tokens represent either the muLISP delimiters or names
making up the text being expressed. The four possible delimiters are
shown here enclosed in .double quotes:

moves the cursor ar..d text pointers one token to the left.. Eac...'1 of these
func-~ons is dOC'JJ11ented by the description given in section VI-B above.
Altering the definition of these functions is the easiest way to
customize mus.J:AR. There is a very complete set of existing primitives
in the muSI1\R source. The p.1rpose of each should be ~e.nt from the
function name..

\.(. .). • • • •.
These four delimiters are stored as names on the list. In

contrast, tokens which represent names appear as sublists on the row
list. Generally the sublist is a single-element list wfx:)se element is
the name in question. Only if the cursor is -inside· a name (i.e. t:.he
cursor is p::>siticned after the fi.tst character) will a r..ame be unpack.ed
or -exploded" into the c.~ters making up the name using the fW'lCtion
ImPaas. When the Olrsor leaves the name, the cr~ac+--e.t:S are re:-...acked
cr ·compressed- into a new name using the function~

At any 9iven time,· the value of the global variable. *ROW* is
a sublist of *'I'EXT*. The second el~ent (i.e. the CADa) of this sublist
is the row of text which the cursor is currently on. ThiS is the reason
the first element of~ is the dummy row NIL. Amalq othel: t.h.i.ngs, 'J
being one row above, or ahead, of the current row is convenient for ..
deleting the OJ.rrent raw from~ usi.ng RPLACD.

'l'be current {X)SitiCX1 of the cursor in the current row is determ..ined
by the glcbal variable *CCI..*. It is always a sublist of the cun:ent tOW
of text.. For the saJ:1e sort of reasons' as for *RCW*, the sublist
begins one token to the left, or ahead, of the o.u:rent token. Note that
the cursor is never to the left of a line's leading blanks. ThUs *COL*
can~ be ahead of the OJrrent token. I

Lines of text which have~ scrolled off the top or bottom of the
screen are stored as lists under the variables *PRE-T.EXT* and *POST­
~ respectively. 'l1Jese two lists are best thought of as st:aeks. 'the
line of text which is immediately adjacent to the current ·window· is
the top element of the stadt. 'thus the rows makin;} up *PRE~ are in
reverse order. A raw can be pushed ·onto *PRE-TE:cr'* or*~ only
if there is insufficient room. <Xl the screen to store ~ row.

()
-I. 'text Prim).tives

When t."1e text editor is runni.nq, console i.npJt is in the raw i.npJ.t
mode as described in t.."le reader control variable P:>I:tioo of section V-M.,.
An input character can either be a delimiter, a normal printable
characte-r, or a control character. A delimiter: or printable character
is tn2!de part of the OJrrent row of text in accordance with the structure
defined above for storing text. If the control variable *rnSERT" is
non-NIL, the charaete.r is added to the text instead of overw'rit.ing old
text.

Each control character has as its value an ali~s name. Fer
example, t:..~e value of control A is C'!BIcA. The otber control cha.ract.&s
have analogous aliases. The definition of the respective alias is
evaluated when a control c.~acter is entered. '!bus the funct.ion~

Appendix A: Backus-Naur Form

- .BackUS-Naur Form (BNF) e:zuatiQ1S prOU'i.de a st:ar..da.rd corwentioo used
to formally define the syntax of a language. Within a 8NF equation a
character string immediately preceded by a -<.. and followed by a")"
denotes the class of objects named by the string•. A character st:ing

. not .so delimited stands for the string' itself. Note the contrast
betw'een this and the conventional practice of quoting strings whic.~
stand for themselves and not quotin<; strings which are names of ecjects.

A BNF equation defines the set of syntatic objects belonging to a
particular categ9f:y of the language's syntax. '!be symbol -::-- is used
as an abbreviation for the pbrase -is a- and the vertical bar -,- is
short for ~or·. A BNF definition of numerals may be specified as
fallGls:

<numeral> ::- <digit> I <digit> <numeral>
<digit> ::- 0 I 1 J 2 I 3 I 4 I 5 (6 I 7 I 8 I 9
,

As in tbi.s example, reoJ.rsive definitial is fr~uently used in BNF
. e:;:uaticns. Also note bOIl juxtaposit::i.cn of c:a.tegory names denotes the
ccO:~ cax::atena.t:icn of the c:bjects within these categories.

Backus-Naur Form. is defined in the -XJ.;OL 60 Report. Revised Report
<Xl Algorithm Lanquage ALGOL 60·, Communicatigns J2f~.!.Q1,Volume 0,
Jamary 1963.

.~,

JI_'

Appendix B: How to Copy the Kaster Diskette

As soon as possible after receipt of the master diskette sut=P1ied
by The Soft warehouse, make a working copy of the diskette. The
follOli.ng infocnation is prov-ided as a guide for those who are not yet
familac enough with their computer's disk operating system to make a
copy of a diskette. Since there are many different operating systems
and computer configurations, this discussion can only be a general
guide.

L Study the documentatioo SJt=Plied with the comp.lter·s,
disk operating 'system. Most cases of accidental erasure of the
masteJ: diskette or ot..""er irrecoverable errors are can.mitted in
the first few moments by overly anxious and inexperienced
users.

2. Obtain an appropriate number of blank higb-qua.lit::y
diskettes suitable for yoor drive.

3. Become thoroughly familiar witb. the terminal,
computer, disk drives, and operating system.

4. Practice initializin; a diskette, then transferrin; a
disk operating system. to the initialized diskette. Generate
the largest versi<n of the ~at:i.n; syste11 tbat yoor COtnP-lte.r
is ca.;;able of supportinq.

S. Practice transferring to the DellI diskette files fran a
spare, write-protected diskette.

6. For operating systems with a diskcopy utility, use
this method to copf the master diskette since it is de£initely
the easiest and fastest Wiq to do so. Make absolutely sure the
drive with the master is the soo.ree and lI:Zt the destinaticn for
the copf canmatXil

7. For multiple drive syste!DS, the follcwing CP/M PIP
(Peripheral Interchange Program) command l will copy all files
frem drive A to drive B:

PIP B:-A:*.*

~e 6iU1valent ccmna.nd for Craneoco ax:s users is:

XFER B:t:::A:*.*

8. Copying diskettes is much more laborious on systems
having only one drive. Generally, it involves repetitively
reading a portion into RAM memory frc:n' t.he source disk,
S\i itching disks, then writing t..'1e tx'rtim onto t...~e destinaticn
disk. This is repeated until t.he entire source disk has been
copied. The process generally involves using the CP/M DDT
utilit:J pro;ram ~ a resident monitor in read-only memoty.

o

()

10. If your system is still unable to read the master
diskette, then:

a) Cleek to see whether the Ptcp!r type of diskette
was specified when yOJ. placed ycm: order.

b) Get help fran an experienced professiaal.

.-1
-._.1

Appendix C: Xmplementing Machine Lan9uage Subroutines

Some specialized muLISP applications may require the writing of
machine language routines. For instance a user may wish to enhance
muLISP with graphics capability, or perhaps it is necessary to hand
compile a pa..r+"~cula.rly critical function for efficiency reasons..

. Address typing is used by muLISP to determine a function's ~lPe.
'this necessitates the beginnir¥:1 of all mach.ine language subroutines in
low memory. A dUMIilY jUI:lp table, beqinning at location 01038 (hexa­
deciI:1al), has been set aside for. jumps from low memory to user cefined
rout.L'1e5. There is sufficient room for four (4) JMP inst.roetions (Le.
opcode C3B). These jump instructions can be altered t.o jump to t~e

address of the user defined routine wherever they are located.
Depending on your system, additional room for jumps might be found in
unused areas in page zero of memory.

Since muLISP uses all available memory below the DOS (disk
operating system), the best place to locate user defined routines is in
the -protected- memory above the DOS. Of course this mandates
generating a DOS slightly smaller than what yt::X.1r CO%Irf;Ute.r: is nonnally
capable of supporting. Another alternative is to change the JM.F
instruction at location ooosa to an address less than its current.
a::Xiress thereby "fooling- muLISP into believing it is operating u.'1der a
smaller I:)()S. Of ccurse another JMP instruction will have to be placed
at the new ~ress to jump to the I:)()S. This will free some memory just
below t.he DOS.

Make sure your drives are correctly aligned, and
1£. not,. have them prafessicna.Uy aligned.

COntact directly the s~ie.r fran whaD. the system
was PJ.rcb.ased.

;c)

t d)

9. If the above met.~ods are unsuccessful because your
disk drive is unable to read the master diskette and ycu. have a
mul tiple drive system, try readinq the master on different
drives. '!be master is recorded on a high qUality diskette by a.
precisely adjusted drive.. BGiever, there are inevitably slight
mechanical and electrical differences between various drives
and diskettes.

All user defined subroutines will be CBV, spread functions of at
most three arguments (see section V-o). If more than three arguments
are required, they can be passed in as a list. The addresses of
arguments are passed to machine language routines in the register pai.rs.
'-be first argwrent is in the HL r~ister, the second in the DE registe:-,
mld the third in the OC register.

'l't> return control to muLISP simply ter:ninate all routines with a
RET instructio..,. The returned value of the function ~i11 be t.he cata .~
structured poi!1.ted to by the HI. register pair. It must be the address .J

of a ba1a fide muLISP data object '(see section II). Even if no special
value is desirad to be returned, EL should still b~ set to some value
such as NIL. The value of NIL can be determined by disassembling the
machine language definition of the funC+-~a1 WLL.

Linkage to,machine language routines is done thrcugh the use of t...~

muLISP function PUT!). For instance, evaluation of the folloW'ing
expression will define the function FCO to be a routine which begins at.
location Ol03H:

(PO'lD (QOJIE FCC) 259)

The function GETD can be used to find the starting address of
pri.:nitively defir.ed muLISP subrou.ti.nes (see secticn V-01. Kr.o'W ing t..1ese
addresses, user defined subrout.ines can call the primitive subrouti.~es

dir~-ly.

1':-3

Appendix D: LISP Bibliography

Allen, J. R., Anatqny!Jf. LI.S2.t
McX:irar-Bill Book Ca:n:pa.ny, NEw York, NY, 1978.

Berkeley, E. C., and BdJrGl, O. G., (eds),
~ p"'o;rarI'Qj.m !Qnguage LI.S.2:.. n.s. Cp:ratim ADd. P;&licaticns,
'nle M.I.T. Press, cambridge, ~ 1964.

~~ small SYstems \IQJrnal, LISP Issue, Vol 4, No 8,
BrIE Publicatioos Inc., Peterborcu9~ NS, August 1979.

BeDderscn, P., Fupctic;n Prcgranmjng; pPQ1icatiro.mxl Imp1e:rentatiCD,
Prentice-Ball, Enc;l&locxi Cliffs, N1, 1.980.

rtiEdnan, D. P., ~ L.i..ttJJ:. r,TSPf:r,
SCience Research Associates Inc."

. L~a1, Enc;land, 1974.

McCarthy, J., Recursive ~ops Z ~iC =r§sjoo:s
.mi~~QIPJtaticn .bY ~c:hioe,

CoIm. }Ot, pages 184-195, /4pril 1960.

McCarthy, J., et al., LI.SZ L.S. prcgrs:nrner l S l$!nrgl1,
1be M.I.T. Press, Cambridge, ~ 1963.

Maurer, W. D., A Prt;gtagmerls Tntr~~m.tQLJ:S2.,
;'.meric:an Elsevl.er, New York, Ni:, 1.973.

Siklossy, L.,~ xa.JJs. LI.S2.t
Prentice-Hall, t)')g.l&locd Cliffs, NJ', 1976.

Weissnan, C., .LIS:e l...S.. Primer,
Dickensoo Publi.sh.i.nq Co., Belma1t, CA. 1968.

Winsta1, P. H., Artificial Intel' igence ,
kXlisoo-Wesley Publishi.ng Co., Rea.di.n;, MAt 1977.

Appendix E: Punction Index

~~ <;ateoocr GmU2. ~

CBN AN:) Logical F-2 8
CfN APPLY FNaluator 0-3 21
erN AS:IX. Property B-1 11
aN A1tM Recognizer 0-3 5
CZV CXxxR selector A 1,2
CBN CCN> Evaluator 0-4 29

CIN CCNS Construc+--..or B-1 3
ON DIFF~ Numerical Ir3 16
ON DIVIDE N.m1e.rical Ir7 16
a:N DRIVER EYaluation 0-7 30

CiN m <:cmparator E-l 6

<:::iN a:uAL <:anpa.rator E-2 6

CiN FNM, Evaluator 0-2 1:1
aN ~ P.eco;nizer 0-8 5
CIN ~ Flag I-2 12

faN F'UsGP Flag I-l 12
c:::iN GET Pr~ H-2 11
c:z.J GEID Definition J-l 13
aN GRfA.'l"ERP eanparatox: E-4 6

ON ~ SUb-atanic K-3 15
C!N LESSl? Ccmpa.rator £-5 7
ON~ Printer N-6 23
CSN LIST eon.sttuetox: B-2 3

ON ~ System. 0-2 32
CBN LCXP Evaluator o-s 29

ON·~ Cocparator £-3 6

cz<l MINJS NJmerical L-l 16
CIN M.INJSP P.eco;nizer D-6 5
'ON" MOVD Definitioo J-3 13
aN NAME Recognizer 0-1 5
c:::iN N:CN: Modifier C-3 4

CIN NJI' . 1J:'gical F-l 8

erN WLL Recognizer 1>-4 5
c::IN~ Recognizer 0-2 5
CfN CBLIST ConstrJ,CtOr B-4 3
CBN OR U>gical F-3 8

CJN CJf\DERP Comparator £-6 7
ON PAC$. SUb-atomic K-1 14
ON PIDS NJme.rical L-2 16
ON PLOSP Becognizer D-5 5

CBN fOP Assignment G-3 10
ON PR!NI' printer N-2 21
aN PR!Nl Printer N-3 22

CBN p~ Evaluator 0-6 30

<::a"1 roSB .Assignment G-4 10
CJN ro.r Property B-3 11
C:iN rom De.finiticn J-2 13

h-6

o

()

'~)

Appendix P: Concept Index

Evaluator 0-1 Z1
Nume.t'ical L-5 16
Printer/Reader N-7 23
Reader . M-2 17
Reader 1+-1 17
Reader M-3 18
Reader K-4 19
Storage P-l 31
~"Umerical Ir6 16
Flag I-3 12
Property H-4 11
Constructor B-3 3
Mcxiifier C-l 4
MOdifier C-2 4
System 0-1 32
Assignment G-l 9
Assigrment G-2 9
,Printer N-5 22
Env'i.ror.1men~ Q-3 33
Printer N-4 22
~cal L-4 16
SUb-ataDic 1:-2 14
Printer N-l 21
Recognizer '0-7 5

AIDS I-1
AU. Spaces Ex.hausted. IU-2
argument stz\cK V-29
assignment functioos V-9
association list V-ll
atan space llI-l
auto-quoting I-4, II;-l
auxiliary funetioos V-l

Backus-Naur FOOD A-l
bi.na..'Cy trees , II-3
break characters V-17

eOo V-20, V-24
end-of-flle (EIF) V-19
envircnment I-7
enviror:ment functions V-32
error diagnostics I-7
error traps I-7, III-2
ev-al-LISP !-3, V-30
eval-quote-LISP I-4, '1-30
evaluation func-~cns V-25
e.xec:Jtive driver loop I-3
ExeoJtive option I-6
extended CCN:) I -5, V-29
external editor VI-l

call by name (CBN) v-25
call by value (CBV) V-25
car cell II-1
cdr cell II-1
closed t:oi.nt:at universe n-l
~ts V-19
~on III-l
canparator fuD:tioos V-6
ox:piling V-13
constructor fuD:tions V-3
Continue option I-6
OJrrent inpJ.t soo.rce V-17 .
current outp.1t sink V-21

Cl

r;
~

V-3
I-7

V-3
II-1
V-23
V-25
ll-3
I-5

II-2
II-2
II-2

I V- 16

V-25
VI-ll

1-2
V-20

1-3
V-23
1I-3

I-5, V-9
v-a
I-3

V-24

name list
names .
No Disk Space
no-spread function
nodes
non-recursive loops
ntmber vector
nuIIOer vector cell
rn.mt>ers
numerical functions

object list
outpJt pause

machine language subr A-4
master diskette !-2, A-2
rre:oory tlanagenent nI-1,V-31
men:>ry trap nI-2
meta-language r;-l
meta-semantics IV-l
meta-syntax 'N-l
modifier functioos V-4

implied CCN) I-5
insert mcde VI-7
interaction cycle I-3
interrupt: I-6
iterative V-26

I:.AMIDA definitim
leading blanks
library files
line edit IOOde
line editi.ng
linelength
linke:i list
local variable
logical functions
logon message
lower case coo.versial

features I-I
file backup V-21
flag functions V-12
flags II-l
focoal arguments V-25
function l:>ody V-2S
function cell II-2

qa.i:bage collection III-l,V-3
generic ordering V-7

V-13
II-l

In-2
III-l
II-l
V-13
V-13
V-13
II-3
II-3
1-3

D-<:o1e
data cbjects
data space boundaries
data space partitioo
data structures
d~iling

definition functions
dist.illed code
dot notation
dotted pairs
driver loop

~~categoey~~

am r;}.JOrE
ON Qt:JC7l'Im.r
csv PJ\DIX
CJN RATCM
ON PDS
aN READ
ON REAJ.X:H
C'!N R:.X:IAIM
CJ:N RE:'-'~ER

CIN ~
erN ~roP

CiN ~
ClN RPI,;;CA
ON PJ?LAO)

c::rN SA.VE
C3l SEr
C6N sr:ro
ON SPACES
CJN SY~.

ON ~
CIN TIMES
CIN ONPAClt
ON WPS
ON ~•

'File: MOSTAR.LIB 08/12/80 The Soft Warehouse

ua?& case conversion V-20'

selector functions V-l
separator characters V-17
side-effects V-4, V-9
sign cell . II-2
spread function V-25
stack space nI-l
sub-atcmic functions v-14
supe.r-parentheses V-18
S'YS file I-7, V-32
Syste:n optial I-6

tasks V-25
thrash.i.n; III-2
token V-17, VI-12
trac.i.n; facilities vr-l
translator VI-ll
truth values v-a

(DEFUN PACX$ (LA.'1BDA (TOKEN) .
((NULL (CDR 'tOKEN»

TOKEN }
(~ONS (PACK TOK~~»)}

(DEFON UNPACKS (LAMBDA (TOKEN)
<COR (CDR TOKEN) (EO (LENGTH (CAR TOKEN» 1»

TOKEN)
(UNPACK (CAR TOKEN» »

(DEFOO ROes {LAMBDA (LST TAIL)
(LOOP

«EQ (CDR LST) TAIL)
LST)

(POP LST)) »

{DEFON CHOPS (LAMBDA (LST)
(LOOP

({NULL (COOR LST»
(FROGl (CADR LST) (RPLACD LST NIL))

(POP LST)) »

(DEFUN SPLITS (LAMBDA (LST NOM)
{LOOP

«ATOM LST) NIL}
(SETQ NOM {SU'R 1 NT1M"

*••*********** 0 TIL I T Y ROO TIN E S ***************\

(PROGl ••
(LOOP «EO (EVAL (READ» STOP»)
(DRIVER))

(POTD DEFUN {QUOTE (NLAMBDA (rUNe EXP)
«EQUAL (GETD FONe) EXP»
(«NULL (GETD FUNe»)

(PRINI -*** REDEFINING .)
(PRINT FUNe))

(Pom FUNe EXP)
FCNC }))

(DEFUN SETQO (NLAMBOA (NAME EXP)
(SET NAME EXP)
NAME »

{DEFON PUTQQ (NLAMBDA (NAME ATM EXP)
(POT NAME ATM EXP)
NAME »

(DEFUN FLAGQO (NLAMBDA (NAME m)
(FLAG NAME ATM)
NAME »

II-l
III-l

I-7
VI-6
V-16

V-20
V-17

III-2
III-2

V-5
VI-l
I~

II-l
I11-1
V-25
VI-2
V-l

II-2
I1-2

V-24
V-21
II-l
V-ll
V-ll
II-l

V-19, V-24

V-23
V-20.

value cell
vector space

varn.ing messages
word
ZERO Divice Error

quoted strings

p)1nter cells
pointer space
predicate
pretty-print
primitive functions
print na:ne cell
print name string
printer control

variables
printer functions '
properties '
property functions
property list
property list cell

radix base
ra!tt1 i..nt:ut mode
reader control

variables
reader functions
real time Si~eI1S

reallocation
recognizer funetialS
resident editor

'Restart option

(WORD)

«ZEROP NOM)

(PROGl (CDR LST) (RPLACD LST NIL»
(POP LST)) » .

FUN RD-LIN$ (LAMBDA (
WORD LINE)

LOOP
(SETQ WORD (RD-WRD$»
(«NOLL WORD»

(POSH WORD LINE))
((EO RATOM. CR)

(REVERSE LINE») »

E"UN RD-WRD$ (LAMBDA (
WORD)

r.,OOP
«(OR (FLAGP (READeR) (QUOTE DEL-<:BAR» (EQ RATOM ell»)

«NULL WORD) NIL)
(PACX (REVERSE WORD»)

(POSH RATOM WORD)) »

:'ON UP-tINS (LA.\mDA (NOM).
:ZEROP NOM»
)RIN1 CR)
,ooP
(PRINI UPLINE)
{SETQ NOM (SOBl NOM»
((NOT (PLUSP NOM}») »

'O~ BACKUPS (LA.~BDA (NOM)
lCK-SPACE$ NOM)

~FUN MENUS (LAMBOA (LST
READCB)

:SPACES 11)
:PRINl ·OPTIONS: .)
,MAPC LST <QUOTE (LAMBDA (LINE)

(PRINl (CAR LINE» (SPACES 2)
(HAEC (CDR LINE) (QUOTE (LAMBOA

(PRINl WORD)
(SPACES 1) »)

(TE...~RI)

(SPACES 20) »)
TERPRI) (SPACES 6)
PRINl -ENTER CHOICE: .)
LOOP

«ASSOC (READCB) LST)
(PRINT RATOM))) »

FUN QOERY$ (LAMBDA (TEXT)
TERPRI)
SPACES (DIFFERENCE 18 (LENGTH TEXT»)
PRINl TEXT) (PRINl :) (SPACES 1)
RD-LIN$) »

I .

(

c

o

(SPACES NOM)
(BCK-SPACE$ NOM) »

(DEFUN BCK-SPACE$ (LAMBDA (NOM)
(LOOP

«NOT (PLUSP NUM»)
(PRINl BACK)
(SETQ NOM (SUB1 NOM») »

(DEFON aOME$ (LAMBDA ()
(PRINT HOME)
(PRINl HOME) »,

(DEFUN SPACES (LAMBDA (CHARS)
(EO CHARS • •) »

(DEFUN PRIN2 (LAMBDA (EXP PRIN1)
(PRINl EXP) »

(DEFUN APPEND (LAMBDA (LST TAIL)
«NULL LST) TAIL)
(CONS (CAR LST) (APPEND (CDR LST) TAIL» »

(DEFUN ADDl (LAMBDA (NOM)
(PLUS NOM 1) »

(DEFUN SOBl (LAMBDA (NOM)
(DIFFERENCE NOM 1) »

(DEFON MAPe (LAMBDA (LST FeNC)
(LOOP

((NOLL LST) NIL)
(PONe (POP LST») »,

2 -~

******.******** E 0 ITO REX E COT I V E

(DEFON DRIVER (LAMBDA ()
(SETQ RDS)
(SETQ WRS)
(SETQ ECHO)
(SETQ *DRIVE*)
(SETa PRINl (QUOTE PRIN1»
(TERPRI 4)

(SETQ READeR)
(«EO CTRL-Z (QUOTE CTRL-Z»

(LOOP
«EQ (READCB) CR»)

(PRINl -TYPE CTRL-Z: .)
(SETQ CTRL-Z (READCB»
(SET CTRL-Z (QUOTE CTRL-Z»)

(SETa READeR T)
(SPACES 12)
(PRINl -*** The muSTAR AIDS **.-)
(LOOP

(LINELENGTR (ADOl LIN-LENS»
(TERPRI 3)
(,SETQ CBAR$ (MENUS MENUS»
(APPLY (GET CHAR$ (OCOTE EXECtT.rIVE»)) »

(SETQQ LIN-LENS 78)
(SETQO PAG-LEN$ 24)

(SETOQ MENUS (
(F' EDIT FUNCTION)
(V EDIT VARIABLE)
(P EDIT PROPERTY)
(E EVAL LISP)
(0 EVAL-QOOTE LISP)
(T TRACE FUNCTION)
(0 UNTRACE FUNCTION)
(R READ FILE)
(W WRITE FILE)
(D SELECT DRIVE) »

POTQQ F EXECUTIVE (LAMBDA
LST)

(SETQ LST (QOERY$ -FUNCTION NAME(S)-»
({NOLL ~ST)

(EDIT-TXT (DEF-TO-TXT LST)) »

POTQQ V EXECUTIVE (LAMBDA (
LST)

(SETQ LST (QUERYS 8VARIABLE NAME(S)·»
«NULL LST» .
(EDIT-TXT (SET-TO-TXT LST» »

*****************\ ,--

L

o

o

(PUTQQ P ~XECUTIVE (LAMBDA (
N.A11E INn ICATOR)

(SETQ NAME (QUERYS (QUOTE NAME»)
((NULL NAME»
(SETQ INDICATOR (QOERY$ (OOOTE INDICA~OR»)

«NULL INDICATOR»
(EDIT-TXT (POT-TO-TXT (CAR NAME) (CAR INDICA'rOR») »

(POTQQ E EXECUTIVE (LAMBDA ()
(LOOP

(TERPRI)
(PRINl "* .)
«EQ (PRINT (EVAL (READ») EXIT») })

,
(POTQQ Q E-~ECOTIVE (LAMBDA ()

(LOOP
(TERPRI)
(PRINl - ••)
«EQ {PRINT (APPLY (READ) (READ») EXIT») »

(DEFUN EXIT (LAMBDA ()
EXIT »

(POTOQ T EXECUTIVE (LAMBDA ()
(TRACE (QOERY$ "FUNCTION NAHE(S)-» »

(POTOO tJ EXECUTIVE (LAMBDA ()
(ONTRACE (QUERY$ -FUNCTION NAME(S)·» »

(POTOQ R EXECUTIVE (LAMBDA (
NA."1E ECHO)

(LOOP
(SETa NAME (OOERYS "FILE NAME·»
«NULL NAME»
(SETO NAME (CAR NAME»
«RDS NAME (QCOTE LIB) ·ORIVE·»
(TERPRI)
(PRINT "FILE NOT FOUND-)

((NULL NAl1E»
(LOOP ,

(EVAL (READ»
((NULL RDS})) »

(POTQQ W EXECUTIVE (LAMBDA ()
(W-EXEC) »

(DEFUN W-EXEC (~~DA (
NA.~E ECHO)

(SETQ N&~E (QUERY$ -FILE NAME W»
((NULL NAME»
(SETQ Nk~E (CAR N~~E»

(WRS NAME (OOOTE LIB) *DRIVE*)
(PRIN2 (LIST (QUOTE PUTD) (~UOTE DEFON) (LIST

.(QUOTE QUOTE) (GETD DEFON) »)

k****** ••****** TEXT EDITING FUNCTIONS ****** ••************.,

, PRINTABLE C1lARS ,~ON PRT-CBAR (LAMBDA (CHARS
TOKEN)

(PRINl (COND
«(GET CHARS (QUOTE ALIAS»)
(CHARS) »

(NOLL (CDR *COL·»
(INSERT-PRT CHARS))

~ (NOT *INSERT·)
(SETQ TOKE~ (OELETE-CSAR»
(INSERT-PRT CHARS))

(INSERT-PRT CHARS)
(PRT-REST-LINE *ROW* *COL* 0) »

\PC (QUOTE (
\ BCD E F G H IOJ K L M N 0 P 0 R STU V W x y Z
1 bed e f 9 b i j k 1 m n 0 p q r stu v w x y %
t t $ '- • * + - / : i < • > ? @ \ A _ ,. { 1 } - -,. •••• »

(QUOTE (Lk~BDA (CHARS) (FLAG CHARS (QUOTE PRT-CHAR»»)

C ~FON EDIT-TXT (LAMBDA (-TEXT·
·PRE-TEXT* ·POST-TEXT* *ROW* ·COL* *INSERT* ·STRING* CHARS READeR

(SETQ ·PRE-TEXT*)
(SETQ ·POST-TEXT* (SPLIT$ *TEXT* PAG-LENS»
(LOOP

(SETQ *ROW* *TEXT·)
(SETQ *COL* (CADR *ROW*»
(DISP-TXT *TEXT· *ROW* ·COL·)
(LOOP

(SETQ CHARS (READCB»
«EQ (EVAL CHARS) (QUOTE CTRL-K») , EXIT EDIT CHAR
(«FLAGP CHARS (QUOTE DEL-CHAR»

(DEL-CHAR C~ARS))
«OR {FLAG2 CHARS (QCOTE PRT-CHAR» (NUMBERP CHARS»

(PRT-CHAR CHARS) }
(APPLY (£VAL CHARS) (LIST *INSERT*»))

(CTRL-F)
(TE.~RI (LENGTH -ROW·»

O· (SETQ CHARS (MENUS (QCOTE
(E EVALOATE TEXT)
(A ABANDON TEXT)
(C CONTINUE EDIT) »»

«EQ CHARS (QQOTE A»)
((AND

(EQ CHARS (QUOTE E)
(£VAL-TEXT (CONS NIL (APPEND.

(REVERSe ·PRE-TEXT·)
(APPEND (CDR *~EXT·) -POST-TEXT·) ») ») »

o

(TERPRI)

(PRIN2 (LIST (QOqrE DEFUN) (QOOTE SETQQ) (GETD SETQQ»)
(TERPRI)

(PRIN2 (LIST (COOTE,DEFUN) (QUOTE PUTQQ) (GETD PUTQQ»)
(TERPRI)

(PRIN2 (LIST (QUOTE DEFUN) (QOOTE FLAGQQ) (GETD FLAGQQ»)
(TERPRI 3)

(PRT-TXT (PUT-TO-TXT NAME lOOOTE FUNCTIONS»)
(TERPRI)

(PRT-TXT (POT-TO-TXT NAME (QUOTE VARIABLES»)
(TERPRI)

(HAFC (GET NAME (QUOTE FUNCTIONS» (QUOTE (LAMBDA (ATM)
(TERPRI)

«EQ {CAR (CADDR (GETD ATM») (OOOTE ~RACE»
(ONTRACE (LIST ATM»
(PRT-TXT (DEF-TO-TXT (LIST ATM»)
(TRACE (LIST ATM»)

{PR~-TXT (DEF-TO-TX~ (LIST ATM») »)
:TERPRI)

:HAFC (GET NAME (QOOTE VARIABLES» (QUOTE (LAMBDA (ATM)
(TE.R.PRI)
(«EQ ATM (EVAL ATM»)

(PRT-TXT (SET-TQ-TXT (LIST Ant»))
(MAPC (CDR ATM) (OOOTE (LAMBDA (EXP)

(TERPRI)
«ATOM EXP)

(PRIN2 {LIST (OOOTE PLAGQQ) A'rM En»
(TERPRI))

(PRT-TXT (POT-TO-TXT Ant (CAR EXP») ») »)
TERPRI)
PRINT - (ROS) .)
WRS) » _

TQQ 0 EXECUTIVE (LAMBDA (
CHARS)

LOOP
. (SETa CHARS (QOERY$ -DRIVE LETTER-»

((~"ULL CHA.~S»

(SETQ CHARS (CAR CHARS»
«EQ (L~~GTH CHARS) 1»)

(h"ULL CHA.RS»
SETQ *ORIVE* CHARS) »

~FON DEL-CHAR (LAMBDA (CHARS
TOKEN)

(PRINl CHARS)

, DELIMITER CR&~S ,

6 ('1\

?C (QUOTE (• • .,. -(- -)- -._ W[__]. »
200TE (LAMBDA (CHARS) (FLAG CHAR$ (QCOTE DEL-CHAR»»

(NOLL (CDR *COL*»
(INSERT-DEL CHARS)

(NOT * INSERT-)
(SETQ TOKEN (DELETE-CBAR»
(INSERT-DEL CHARS) ,)

INSERT-DEL CHARS)
PRX-REST-LINE ·ROW* ·COL. 0) »

, RETREAT TOKEN ,

, RETREAT CHAR \

, RETREAT CHAR \

, MOVE TO END LINE

(DErUN CTRL-A (LAMBDA
TOKEN)

(LOOP
(SETQ TOKEN (MOVE-LEfT-TOKEN»
«NOT (SPACES TOKEN»).
(PRINl BACK))

{(NULL TOKEN)
(LOOP

«NULL (CAR *ROW*»)
(CTRL-E)
({CDR *COL*)

(CTRL-B))))
(BCK-SPACES (TOK-?RT-~EN TOKEN») »

(MOVD CTRL-S CTRL-B)

(DEFON CTRL-S (LAMBDA (
CHARS TOKEN)

(SETQ TOKEN (CAR ·COL*»
«ATOM TOKEN)

«MOVE-LEFT-TOKEN)
(BCK-SPACE$ 1))

«NULL (CAR *ROW*»)
(CTRL-E)

. (CTRL-B))
(BCK-SPACES 1)
(SETO TOKEN (UNPACK$ TOKEN»
«NULL (CDR TOKEN»

«OR (NOLL (CDR *COL*» (ATOM (CADR ·COL·»)
(SETQ *COL* (RDC$ (CADR *ROW*) *COL·»)

(RPLACA (CDR ·COL*) (PACKS (APPEND TOKEN (CADR *COL*»»
(SETQ *COL* (ROes (CADR *ROW·) *COL*»
(RPLACD *COL* (CODR *COL*»)

(SETa CHARS (CONS (CHOPS TOKEN»)
(RPLACA *COL* TOKEN)
«(OR (NULL (CDR *COL·» (ATOM (CAOR *COL*»)

(RPLACD *COL* (CONS CHAR$ (CDR ·COL*»))
(RPLACA (CDR "'COL*) (NCONC CHARS (CADR *COL*») »

(CTRL-J)
((CDR.·COL*»))

(PRT-TOK TOKEN)
(LOOP

«NOT (SPACES (NEXT-RIGHT-TOKEN»»
(MOVE-RIGHT-TOKEN)

. (SPACES 1)) »

(DEFON CTRL-B (LAMBDA (
TOKEN)

(LOOP
(SETQ TOKEN (MOVE-RIGHT-TOKEN»
((NULL TOKEN»
(PRT-TOK TOKEN)) »

o

o

(-

.~

,
",,,,,

, ESCAPE CHAR ,

, TOGGLE *INSER~* ,

, ADVANCE CHAR ,

, ADVANCE TOKEN ,

, IF A~ !NO OF co~ LINE
, AND NOT END OF 'rEXT,
, '.mEN NEl-l LINE.

, IP TOKEN IS A DELIMITER
, PRINT TOKEN AND
, ADVANCE COL.

8

CTRL-P {LAMBDA (
tEN)
J TOKEN (MOVE-RIGHT-TOKEN»
~L TOKEN)
)oP

'(NULL (CDDR *ROW*»)

IN CTRL-D (LAMBDA (
:HA.t"{$ TOKEN)
:TQ TOKEN (NaT-RIGHT-TOKEN»
roLL TOKEN)
. (l1"ULL(CDDR .ROW*»)
CTR!.-K))
.TOM TOKEN)
PRIN1 TOKEN)
MOVE-RIGHT-TOKEN))
TO TOKE.'i (UNPACKS TOKEN»
l"O CHARS (CONS (POP roXEN»)
r-TOK CHARS)
:-OM (CAR ·COL*))
(NOLL TOKEN)

(POP ·COL*))
tPLACD "COL* (CONS CHARS (CDR *COL*»)
~OP *COL*)
~LACA (CDR ·COL·) TOKEN))
ACA *COL* (APPEND (CAR ·COL*) CHAR$)"
LL TOKEN)
PLACD ·COL· (CODR .COL.»
ACA (CDR ·COL*) TOKEN) »

IN CTRL-V (LAMBDA ()
~TQ *INSERT* (NOT *INSERT.» »

~UN CTRL-P (LAMBDA (
CHARS)
iETQ CHARS (READeR»
IRT-c.BAR CHARS) »

QQ - (- ALIAS {)
QQ .). ALIAS })
2<2 • - AI.IAS -J

ON CTRL-W (LAMBDA () , SCROLL DOWN ,
NOLL *PRE-TEXT*»
({~uLL (CDDR *ROW*»

(CTRL-E)).)
PLACD *TE.XT* (CONS (POP ·PRE-TEXT*) (CDR *TEXT*»)
aSB (CHOPS *TEXT*) *POST-TEXT*)
«NULL (CAR *ROW*»

(POP ·ROW·)))
ISP-TXT *TEXT· *ROW* ·COL*) »

ON CTRL-R (LAMBDA (· , SCROLL DOWN PAGE ,
NUM)
~1JLL *?R.E-TEXT·)
8TQ NOM (DIFFERENCE PAC-LENS '6»
JOP
(PUSH (CHOPS *T~XT-) *POST-T~~T·)

(RPLACD *TEXT* {CONS (POP *PRE-TEXTW) {CDR *TEXT*»}

(DEFUN CTRL-N (LAMBDA (, INSERT NEW LINE \
NUM)

«~1JMBERP (CAR *COL*»
(SETQ *COL* (CONS a})
(RPLACD *ROW* (CONS ·COL* (CDR *ROW*»)
(«GREATERP (LENGTH *TEXT*) PAG-LENS)

(PUSH (CHOPS *TEXT*) *~OST-TEXT*)

(SETQ h~M (ROW-PRT-LEN (CAR *POST-TEXT·)})
(SETQ NUM 0) }

(ROLL-OWN-ROW (CDR *ROW*) NOM))
(RPLACD (CDR *ROW*) (CONS (CONS 0) (eDDR *ROW·»)
(CTRL-J)
(«GREATERP (LENGTH ·TEXT·) PAG-LENS)

(PUSH (CHOPS *TEXT·) *POST-TEXT*)
{SETQ NUM {ROW-PRT-LEN (CAR *POST-TEXT*»))

(SETQ NUM 0))

~FUN CTRL-O (LAMBDA ()
(PRINl CR)
:SETQ ·COL* (CADR *ROW*»
',SPACES (CAR ·COL*» ')

:FON CTRL-E (LAMBDA (
NOM)

(NULL (CAR *ROW·»
«NULL *PRE-TEXT*»
(CTRL-W)
(CTRL-E))

SETQ NOM (SPAC~S»

OP-LIN$ 1)
SPLICE-TOKEN *COL*)
SETQ *COL* (CAR *ROW*)
SE~Q *ROW* (ROeS *TEXT* *ROW*»
SPACES (CAR ·COL·»
(,.OOP

«NOLL (CDR *COL*»)
«NOT (LESSP (SPACES) NOM»)
(CTRL-F)) »

~UN CTRL-X (LAMBDA (.
NOM)

:NULL (CODR *ROW*»
«NULL *POST-'rEXT*»
(CTRL-Z)
(CTRL-X),)

;ETQ NOM. (SPACES»
:TRL-J)
.OOP
«NULL (CDR *COL*»)
«NOT (LESSP (SPACES) NOM»)
(CTRL-F)) »

, MOVE TO BEGIN LINE \

, MOVE UP LINE ,

, MOVE DOWN LINE ,

-....
\,.)

o

o

((NULL *PRE-TEXT-»
(SETQ NUM (SUBl NOM»
((ZEROP NOM»)

(SETQ *ROW* *TEXT*)
(SETQ ·COL· (CADR ·ROW*»
(DISP-TXT *TEXT* *ROW* *COL*) j)

(DEFUN CTRL-Z (LAMBDA ()
«NULL *POST-TEXT*»
(«NOLL (CAR *ROW*»

(CTRL-X)))
(«EQ *ROW* (CD~··TEXT*»

(SETQ *ROW* *TEXT*)))
(HOMES)
(TERPRI (SUBl PAG-LEN$)}
(PRT-ROW (CAR *POST-TEXT*»
(TERPRI)
(PUSH (<:ADR *TEXT*) *PRE-TEXT'*)
(RPLACD ·TEX"!'* (CDDR *TEXT*»
(NCONC *TEXT· (CONS (PO~ *POST-TEX~*»)

(MOVE-CUR *TEXT* *ROW* *COL·) »

(DEFON CTRL-C (LAMBDA (
NOM)

((NOLL *POST-TEXT*))
(SETQ NOM (D!FFERENCE PAG-LENS 6)
(LOOP

(PUSH (CADR *TEXT*) ·PRE-TEXT'*)
(RPLACD *T~'::XT* (CDDR *~EXT*»

{NCONC *T~'T* {CONS (POP *POS~-~EXT'*))

«NULL *POST-TEXT'*})
(SETQ NUM (SOBl NOM»
(ZEROP NOM»)

(SETQ • ROW'" *TEX'r*)
(SETQ *COL* (CADR *RO'W*»
(DISP-TXT *TEXT* *ROW* *COL*) »

•

, SCROLL UP ,

, SCROLL UP PAGE ,

10 ria

, SEARCR AGAIN \

, FIND TOKEN \

13

(PRINl CR)
(SPACES (ROW-PRT-LEN (CADR -ROW*»)
(PRINl CR)
(SETQ *COL* (CONS 0»
(RPLACA (CDR *ROW*) *COL·))

«AND (NULL *POST-TEXT*) *PRE-TEXT*)
(RPLACD *TEXT* (CONS (POP *PRE-TEX~*) (CDR ·TEX~*»)

(RPLACD *ROW* (COOR *ROW*»
(SETQ *COL* (CADR *ROW*»
(DISP-TXT *TEXT* *ROW* *COL*))
«NULL *POST-TEXT*»
(NCONC *TEXT* (CONS (POP *POST-TEXT*»)

(ROLL-UP-ROW (CD~ *ROW*»
(RPLACD *ROW* (CDDR *ROW*»
(SETa *COL* (CADR *ROW*»
(SPACES (CAR *COL*» »

(DEFON CTRL-O (LAMBDA (
READCH)

(BO~.E$)
(SPACES (ROW-PRT-LEN (CADR *TEX'r*»)
(PRINl CR)
(PRINl -FIND NAME? .)
(SETO READCB T)
(SETQ *STRING* (CAR (RD-LIN$»)
(HOMES)
(SPACES LIN-LENS)
(HOMES)
(PRT-ROW (CADR *TEXT*»
«NULL *STRING*)

(MOVE-CUR *TEXT'* -ROW· *COL*)
(CTRL-L) »

(DEFON CTRL-L (LAMBDA ()
«NULL *STRING*»
(MOVE-RIGHT-TOKEN)
(SReB-TXT ·STRING* *ROW* *COL*)
(MOVE-CUR *TEXT* *ROW* *COL*) »

(DEFtrn SReH-TXT "(LAMBDA (TOKEN ROW COL)
(LOO!?

«SETQ COL (SRCE-ROW COL»)
(SETQ *COL* COL)
(SETa *ROW* ROW))

(POP ROW)
({NULL (CDR ROW»

(SETQ ROW *TEXT*)
(LOOP

(SETQ COL (CADR ROW»
«SETQ COL (SRCS-ROW COL»

(SETQ *COL* COL)
(SETQ *ROW* ROW))

(POP ROW)))
(SETQ COL (CADR ROW)}) »

()

b

o

'\...

, DELETE TOKEN ,

, DELETE LINE ,

, DELETE CHAR ,

, NE'W'LINE TAB ,

12

"""'EFON CTRL-G (LA!'..BDA (
TOKEN)

(SETQ TOKEN (DELETE-CRAR»
((NULL TOKEN»
(PRT-REST-LINE *ROW* *COL* 1) »

DEFON CTRL-T (LAMBDA (
TOKEN NUM)

(SETQ TOKEN (DELETE-TOKEN»
((NOT TOKEN»
(SETQ NOM (TOK-PRT-LEN TOKEN»
(LOOP

«NOT (SPACES (NEXT-RIGHT-TOKEN))
{SETQ NUM (ADOl NOM»
(DELETE-CHAR))

(PRT-REST-LINE *ROW* *COL* NOM) »

)EFUN CTRL-Y (LAMBDA ()
«NULL (eDOR *ROW*»

(ROLL-OWN-ROW (CDR *ROW*) NOM) »

(DEFUN CTRL-J (LAMBDA' ()
«NOLL (CDOR *ROW*»)
(SPLICE-TOKEN *COL*)
(SETQ *ROW* (CDR *ROW*»
(T'ER,pRI')
(SETO *COL* (CADR *ROW·»
(SPACES (CAR *COL*» »

(DErON CTRL-M {LAMBDA (*INSERT*) , CARRIAGE RETURN ,
((EVAL *INSERT·)

(CTRL-N)
(CTRL-F))

(NOLL (eDOR -ROW·»
({NULL ·POST-TEXT·)

(SPLICE-TOKEN *COL*)
(SETQ *ROW· (CDR *ROW*»
(TERPRI)
(SETa *COL* (CONS 0»
(RPLACD -ROW· (CONS -COL·»
«GREATERP (LENGTH *TEX':') PAG-LEN$)
. (POSH (CADR *TEXT·) *PRE-TEX~*) .

(RPLACD *'rEX'!· (CDDR *TEX'.r*»))
(CTRL-Z)
(CTRL-K))

(SPLICE-TOKEN -COL-)
(TE.~RI)

(SETQ *ROW* (CDR *ROW*»
(SETQ ·COL* (CADR *RCW*»
(LOOP .

«ZEROP (CAR ·COL·»)
(RPLACA *COL- (SOBl (CAR ·COL*»)
(RPLACD *CQL* (CONS (QUOTE • -) (CDR *COL*»)) »

(DEFUN INSERT-PRT (LAMBDA (CHARS)
{(ATOM (CAR *COL*»

(RPLACD *COL· (CONS (CONS CHARS) (CDR ·COL*»)
(POP ·COL*))

(RPLACA ·COL* (NCONC (UNPACKS (CAR ·COL*» (CONS CHARS») »

(DErON INSERT-DEL (LAMBDA (CHAR$)
«(AND (NUMBERP (CAR ·COL·» (SPACE$ CHARS»

(RPLACA ·COL* (AnOl (CAR *COL*»))
(RPLACD *COL* (CONS CHARS (CDR ·COL*»)
(SPLICE-TOKEN ·COL*)
(POP ·COL*») .

~.'#i

';«EFUN SRCH-ROW (LAMBDA (COL)
(LOOP .

«NOLL (CDR COL» 'NIL)
«EO TOKEN (CAADR COL» COL)
(POP COL)
(EO COL *COL*) COL)) »

l
***************** CURSOR CONTROL PRIMITIVES *******************'

14

o

()

(1)

{::)E:U~~ DELETE-CHAR (LAMBDA
CHARS TOKE.~)

(SETQ TOKEN (NEXT-RIGHT-TOKEN»
((~uLL TOKEN) NIL)
«ATOM 'rOKEN)

(RPr;ACD ·COL* (enOR *COL·»
TOKEN)

(SETQ TOKEN (UNPACKS TOKEN»
(SETQ CHARS (CONS (POP TOKEN»)
((NULL TOKEN)

(RPLACD *COL* (CDDR ·COL·»
CHARS)

(RPLACA (CDR *COL·) TOKEN)
CHARS » <

(DEFUN DELETE-TOKEN (LAMBDA (
TOKEN) .

(SETQ TOKEU (NEXT-RIGHT-TOKEN»
«NULL TOKEN) NIL)
(RPLACD ·COL* (CDDR ·COL*»
TOKEN))

(DEFUN MOVE-RIGUT-TOKEN (LAMBDA
TOKEN)

(SETQ TOKEN (NEXT-RIGHT-TOKEN»
«NULL TOKEN) NIL)
({Alm (NUMBER? (CAR *COL*}) (SPACES TOKE.~»

(RPLACA *COL* (ADOl (CAR *COL*»)
(RPLACD *COI..* (CDDR *COL*»
TOKEN) ,

«(SPLICE-TOKEN *COL*)
(POP ·COL*)
TOKEN)

TOKEN))

(DEFUN NEXT-RIGHT-TOKEN (~~BOA ()
(NULL (CDR *COL*) NIL)
(CADR *COL*) »

15

, PRINT A ROW OF TEXT ~

, DISPLAY TEXT ,
, CLEAR SCREEN \
, MOVE TO aOMES ,
, PRINT TEXT \
, RESTORE CURSOR ,

, PRINT TEXT \

********************\

(DEFON REPL-RQW (LAMBDA (COL LENGTH
NUM)

(PRINl CR)
(PRT-ROW COL)
(SETQ NOM (SPACES)
(SPACES (DIFFERENCE LENGTH NOM»
NUM »

(DEFUN DISP-TXT (LAMBDA (TEXT ROW COL)
(TE...tU'R! 47)
(BOME$)
(PRT-TXT TEXT)
(MOVE-CUR TEXT ROW COL) »

;\:. ':ztJN PRT-TXT (LAMBDA (TEXT)
• . (MAPC' (CDR TEXT) {QUOTE (LAMBDA (COL)

(PRT-ROW COL)
(T E...~RI))) »

t!(DEFON PRT-ROW (LA..~BDA (COL)
t (SPACES (CAR COL)

{MAPC (CDR COL) PRT-TOK) »)

()

o

•~ ;!~>~) \ ** * ,.. * * ** * * * * • .. '* * * T EXT P R I N T E R

r (DEFUN ROLL-UP-ROW (LAMBDA (LINE
t NUM LENGTH)

~ ~ (SETQ LENGTH (SUBl (LENGTH LINE»)
, (SETQ NOM (REPL-ROW (CAR LINE) 0»
~ . (POP LINE)
l (LOOP

((NULL LINE»
(SETQ NUM (REPL-ROW (POP LINE) NOM»
(TEJtPRI))

(SPACES NOM)
(OP-LINS LENGTH) »

(DEFON ROLL-OWN-ROW (LAMBDA (ROW NOM)
(TERPRI (50B1 (LENGTH ROW)})
(SETQ ROW (R-~ERSE ROW})

, {LOOP
~(.,." ' (SETQ NOM (R.::PL-RQW (POp· ROW) NOM») I

«NULL ROW»
(UP-LIN$) }

{PRINl CR} »

~FUN SPLICE-TOKEN (LAMBDA (COL
LST')

. (ATOM (CAR COL»
((NO'! {NUMBERP (CAR COL»»
(POP LST)
(LOOP

((OR (NULL LST) (NOT' (SPACES (POP LST»»)
(RPLACA COL (ADOl (CAR COL»)
(RPLACD COr.. LST)))

(OR (h"ULL (CDR COL» {ATOM (CADR COL»)
(RPLACA COL (PACK$ (CAR COL»)
T)

RPLACA COL (PACK$ (APPEND (CAR COL) (CADR COL»»
RPLACD COL (CDDR COL»
'IL »

,EFUN MOVE-LEFT-TOKEN (LAMBDA
TOKEN)

(SETQ TOKEN (CAR *COL*»
«NUMBERP TOKEN)

«ZEROP TOKEN)
NIL)

(RPL.ACA *COL* (SOBl -rOttEN»
(RPLACD *COL* (CONS • • (CDR *COL·»). .)

(SPLICE-TOKEN *COL*)
(SETQ *COL* (ROes (CADR *ROW*) *COL*»
rOKEN » .

i(DEFON MOVE-CUR (LAMBDA (TEXT ROW COL)
(HOMES)
(LOOP

((EO ROW TEXT»
(TERPRI)
(POP TEXT))

(SETQ TEXT (CADR ROW)
'SPACES (CAR TEXT»
"\'~OOP

, MOVE TO ROW ,

\ MOVE TO COL \

17

,~

'~

._ ••• ***.* S-EXPRESSION TO TEXT TRANSLATOR *••• **** •••• *•• \

((EQ TEXT COL»
(POP TEXT)
(PRT-TOK (CAR TEXT») »

:DEFUN PRT-ReST-LINE (LAMBDA (ROW COL NO~
NOMQ)

(SETQ NOMO (SPACES»
(MA2C (CDR COL) PRT-TOK)
(SETQ NOM (DIFFERENCE (SPACES NOM) NOMO»
((LESS? NOM NUMO)

(BCK-S?ACE$ NUM))
(PRIN1 CR)
(SETQ ROW (CADR ROW»
(SPACES (CAR ROW» ,
(LOOP

«(EQ ROW COL»
{SE-rQ ROW (CDR ROW})
(PRT-TOK (CAR ROW») »

~EFUN PRT-TOK (LAMBDA (TOKEN)
({ATOM TOKEN)

(PRINl TOKEN))
«NULL (CDR TOKEN)

«NULL WRS)
(PRINl (COND

({GET (CAR TOKEN) (OOOTE ALIAS»)
«CAR. TOKEN» »)

(PRIN2 (CAR TOKEN»)
«NOLL WItS)

(MAPC TOKEN PRIN1))
(MAPC TOKEN PRIN2) »

tEFON ROW-PRT-LEN (LAMBDA (COL
NOM)

,(SETQ NOM (POP COL»
((LOOP

((NULL COL) NOM)
(SETQ NOM (PLUS NOM (TOK-PRT-LEN (POP COL»»

£FO~ TOK-PRT-LEN (LAMBDA (TOKEN)
«ATOM TOKE...~) 1)
«NOLL (CDR TOKEN»

(LENGTH (CAR TOKEN»)
(L~GTR TOKEN) »

18

))

,.

(-

o

()

_&

.....; (DEFUN OE:F-TO-TXT {LAMBDA (VAR , TRANSLATE OEFINITIO
TXT)

(SETQ TXT (CONS»'
(LOOP

(NCONC TXT (CDR
(EXP-TO-TXT (GETD (CAR VAR» (LIST (OOOTE DEFON) (POP VAR») »

«NULL VAR) TXT)
(NCONC TXT (CONS (CONS 0»)) »

(DEFUN SET-TO-TXT (LAMBDA (VAR , TRANSLATE VALOE ,
TXT)

{SETQ TXT (CONS»
(LOOP

(NCONC TXT (CDR '
(EXP-TO-TXT (£VAL (CAR VARl) (LIST (QUOTE SETQO) (POP VAR»))))

{ (NOLL Vi\...q) TXT)
(NCONC TXT (CONS (CONS Ol})) »

1(DEFON POT-TO-TXT (LAMBDA (VAR ATM) , ~~SLATE PROPERTY %
(EXP-TO-TXT (GET VAR ATM) (LIST (QUOTE POTQQ) VAJ1 ATM)} »

(DEFUN EXP-To-TXT (LAMBDA (EXP LST
~~XT *LINE* *LENGTB* ~AB INDENT)

(SETQ TAB 0)
(SETQ INDENT 1)
(«LESSP LIN-LEN$ 60»

(SETQ I~~ENT 2)) .
(NF:ri-LIN TAB)
(PUSH -(- *LINE*)
(LOOP

«h1JLL LST»
(EXP-TQ-LIN (POP LST»
(POSS • - *LINE*))

(TSK-To-TXT EXP TAB)
(POSH .). *LINE*)
(N~.i-LIN TAB)

'\ (R-~E..ttSE *TEXT1Ir) »

(DEFON TSK-TO-TXT (LAMBDA (TSK TAB) , TRANSLATE TASK \
(SE1'Q TAB (PLUS TAB INDENT»
«(ATOM TSK)

(EXP-TO-LIN TSK))
«ATOM (CAR TSK)}

«MEMBER (CAR TSK) (QOOTE (LAMBDA NLAMBDA»)
(POSH "(" .*LINE*)
(EXP-TO-LIN (POP TSK»
(PUSH " " *LINE*)
(EXP-TQ-LIN (POP TSK»
(BOY-To-TXT TSK TAB)
(POSH It) It *LINE*})

«MEMBER. (CAR TSK) (OOOTE (LOOP COND PROGN PROGl AND OR))
(POSH -(" *LINE*)
(~XP-TO-LIN (POP TSK»

19

(BDY-TO-TXT TSK TAB)
(POSH .). *LINE.))

(EXP-TO-LIN TSK))
«ATOM (CAAR TSK»,

(PUSH -(. *LINE*)
(TSK-TQ-TXT (POP TSK) TAB)
(Ah~ TSK (ATOM (CAR TSK» (NOLL (CDR TSK»)

(POSH • • *LINE*)
(EXP-To-~IN (CAR TSK»
(POSH .). *LINE*))

(BDY-TO-TXT TSK TAB)
(PUSH .). *LINE*))

(POSH -(. *LINE*)
(POSH • • ·LINE*) I

(BDY-TO-TXTl TSK TAB)
(PUSH .). -LINE·) »

1%jEFON BDY-TO-TXT (LAMBDA (BOY TAB)
.~ ((NULL BOY})

(NEfl-LIN TAB)
(BDY-TQ-TXTl BOY TAB) »

DEFON BDY-TO-TXTl (LAMBDA (BOY TAB)
(LOOP

(TSK-TO-TXT (POP BOY) TAB)
«NULL BOY)

(PUSH • - *LINE*) }
(NEW-LIN TAB)) »

)£FUN EXP-TO-LIN (LAMBDA (aP)
«ATOM EXP)

(PUSH (CONS EXP) *LINE*)
(PUSH -(- *LINE')
(LOOP

(EXP-TQ-LIN (POP EXP»
«ATOM EXP)

«NULL EXP»
(POSH • • *LINE*)
(PUSH -.- ·LINE*)
(POSS • • *LINE*)
(POSH (CONS EXP) *LINE*)

(PUSH • • *LINE·))
(POSH -)- -LINE·) »

, T~~SLATE BODY ,

(

o

o

(SETQ LENGTH {PLUS LENGTH (UNIT-LEN (CDR LINE»»
(LOOP

«NOT (L~SP LENGTH LIN-LENS»
(SETQ ·LINE* (CONS TAB (CDDR LINE»)
(RPLACD LINE NIL)
(CUT-LIN *LINE* (CAR *LINE*»)

(SETQ LINE (NXT-UNIT (CDR LINE»)
«NULL LINE}) .
(SETQ LENGTH (PLOS LENGTH (ADDl (UNIT-LEN (CDDR LINE»»)) »

(DEFUN UNIT-LEN (LAMBDA (LINE
PRINl) . ,

((OR (NULL LINE), (SPACES ,(CAR LINE) I» 0)
(ATOM (CAR LIN~»

(ADDl (UNIT-LEN (CDR LINE))
(({NULL WRS)

(SETQ PRINl T)))
(PLUS (LENGTH (CAAR LINE}) (UNIT-LEN (CDR LINE») »

(DEFUN NX~-ONIT (LAMBDA (COL)
(LOOP

({NULL (CDR COL» NIL)
«SPACE$ (CADR COL» COL)
(SETQ COL (CDR COL») il

,

~UN NE".-1-LIN (LAMBDA (TAB)
:SETQ *LE~GTH* TAB)
:SETQ -LINE· (REVERSE -LINE·»
:SETQ TAB {PLUS (CAR *LINE*) (TIMES 2 IND~~»)

CUT-LIN *LINE- (CAR *LINE-»
SETQ *LINE· (LIST *LENGTB*) »

FON COT-Lr~ (~~BOA {LINE LENGTH}
;OSB *LINE* *T£AT*)
(NULL *LINE*» -

20

(S4?ACE$ TOKEN) (EQ -r~gEN .,.»))

-******.***** TEXT ~O S-EXPRESSION TRANSLA~OR .*.****.*********\

c
(DEFON PRTARGS (LAMBDA (FUN ARGS)

(SPACES INDENT)
(SETQ INDENT (PLUS INDENT 1»
(PRINl FON) (PRIN1· [-)
«h\JLL ARGS)

(PRINT • 1.))
(LOOP

«ATOM ARGS)
(SETQ ARGS (EVAL ARGS»
(LOOP

(PRINl (POP ARGS»
«(ATOM ARCS»
(PRINl ., .)))

(PRINl (EVAL (POP ARGS»)
((~1JLL A.~GS»

(PRINl ., .))
(PRINT -1-) })

(DEFON PRTRSLT (~~DA (FUN RSLT)
(SETQ It-t1)ENT (DIFFERENCE INDENT 1»
(SPACES INDENT)
(PRINl FUN) (PRIN1···) (PRINT RSLT)
RSLT »

(DEFUN ~~GS (LAMBDA (ARGS)
«NULL ~qGS) NIL)
({ATOM ARGS)

(EVAL A..~GS) }
(CONS (EVAL (POP ARGS» (MAKARGS ARGS» »

o

~ .*•• ***** T RAe E DEB 0 G GIN G PAC K AGE **********

(OEFUN TRACE {LAMBOA (LST)
(SETQ INDENT 0)
(HAEC LST (QUOTE (LAMBDA (FON BODY FUNt)

(SETQ BODY (GETD FUN»
(SETQ FUNt (PACK (LIST FUN t»)
(MOVD FUN FUN~)

{{MEMBER (CAR BODY) (QUOTE (LAMBDA NLAMBDA»)
(PUTD FUN (LIST (CAR BODY) (CADR BODY)

(LIST EVTRACE FON (CADR BODY) FUNt))})
(PRINl FUN)
(PRINT • is not a LAMBDA defined function·) ») »

(DEFUN UNTRACE (LAMBDA (LST)
(MAPe LST (QUOTE (LAMBDA (FON FUNI).

(SETQ FUN# {PACK (LIST FUN t)}
((GETD FUNt)

(MOVD FON# FON)
(MOVD NIL FONt)) ») »

(DEFON EVTRACE (NLAMBOA (FUN ARGS FON~)

(PRTA.~GS FUN ARGS)
(PRTRSLT FUN' (APPLY FONt (MAKARGS ARGS») »

(

.r.

1 •

DEFUN EVAL-TEXT (LAMBDA (TEXT
COL TXT ERROR)

(LOOP
(SETO TXT (NXT-TOK»
((NULL TXT) '1')
(SETQ TXT (TOK-TO-SEX TXT»
((NOT (NULL ERROR» NIL)
(E"JAL TXT)) »

)EFUN TOK-To-SEX (LAMBDA (TOKEN)
(ATOM. TOKE~)

«EO TOK~ .(.)
(LST-TO-SEX))

(PRIN1- • SYNTAX ERROR-)
(SETQ ER.~OR '!))

((troLL (CDR TOKEN»
(CA.~ TOKEN))

(PAC.~ TOKEN) »

£FUN LST-TO-SEX (LAMBDA
TOKEN LST')

(SE'rO TOKEN (NXT-TOK»
(LOOP .

«EO TOKEN .)W)
(REVERSE LST))

(POSH (TOK-To-SEX TOKEN) LST)
((£VAL ERROR»
(SETQ TOKEN (NXT-TOK»
«EQ TOKEN •••) ,

(SETO TOKEN (TOlt-ro-SEX. (NXT-TOlt))
«EO (NXT-TOK) .) ")

(NCONe (REVERSE LST) -;rOltEN))
(PRINl ·SYNTAX ERROR·)
(SETQ ERROR T))) »

'.FON NX'I'-TOK (LAMBDA
TOKE...~)

LOO?
«(NOLL COL)

(SETQ TEXT (CDR TEXT»
((l'i~ TEXT) NIL)
(SETQ COL (CAR TEXT»
(NXT-TOK))

(SETQ TOKEN (POP COL»
«NOT (OR (NOMBE.R2 TOKEN)

TOKEN)) })

""~

'File: UTILITY. LIB 08/11/80 The Soft Warehouse ,

«(ATOM (CAR LST1»
(SOPERREVERSE {CDR LST1) (CONS (CAR LST1) LST2»)

(SUPERREVERSE (CDR LST1) (CONS (SOPERREVERSE (CAR LST1» LST2» »

(PROGI ••
(POm DEFUN (QUOTE (NLAMBOA (FONe DEF)

(PUTD FUNe DEF)
rUNe »))

, Function APPEND returns a list consistinq of the elements of LSTl
appended to LST2. ,

(DEFON APPEND (LAMBDA (LSTl LST2)
«NOLL LST1) LST2)
(CONS (CAR LST1) (APPEND (CDR LST1) LST2») »

, Function COpy returns a copy of its argument. ,

(DEFON COpy (LAMBDA (EXPN)
«ATOM EXPN) EXPN)
(CONS (COpy (CAR EXPN» (COpy (CDR EXPN») »

, Function ONION returns the union of LSTl and LST2. ,

(DEFON UNION (LAMBDA (LSTl LST2)
«NOLL LST1) LST2)
«ME.-.u3ER (CAR LST1) Lsr2)

(ONION (CDR LST1) LST2»
(CONS (CAR LST1) (UNION (CDR LST1) LST2» »)

, Function INTERSECTION returns the intersect~oft of LSTl and LST2. ,

(DEFON INTERSE~ION (LAMBDA (LSTl LST2)
«NULL LST1) NIL)
«MEMBE..tt (CAR LST1) LST2)

(CONS (CAR LST1) (INTERSECTION (CDR LST1) LST2»)
(INTERSECTION (CDR LST1) LST2) »

\ Function SUBSET is a comparator returning ~ iff LSTl .is a subset
of LST2. ,

(OEFON SUBSET (LAMBDA (LSTl LST2)
«NULL LST1»
«MEMBER (CAR LST1) LST2} .

(SUBSET (CDR LST1) LST2» »

\ Function SoPtRREVERSE returns A list of the elements of LSTl
reversed at all levels. \

(DEFON SUPE~~~£RSE (LAMBDA (LSTl LST2)
«NULL LST1) LST2)

, Function REMBER is a constructor returning a list in which all
occurrences of ATM has been removed from LST. ,

(DEFON ~~BER {~~BOA (ATM LST)
((NULL LST) NIL)
«EQ ATM (CAR LST» ,

(REMBER ATM (CDR I,ST»)
(CONS (CAR LST) (REMBER ATM (CDR LST») »

Function SUBST is a constructor returning the expression resulting
,rom replacing all occurrences of OLD by NEW in EXPN. ,

EFUN SUBST (LAMBDA (OLD NF:il EXPN)
((EQOAL OLD EXPN) NE'W) ,
«ATOM EXPN) EXPN)
(CONS .(SUBST OLD NEW (CAR EXPN» (SUBST OLD N£W (CDR EXPN») »

\,

, tunction NTH is a selector wbich returns the result of
removing 'the first NOM elements from the list LST. ,

(DEFON NTH (LAMBDA (LST NOM)
«NOT (PLOSP NOM»

LST)
(LOOP

(SETO LST (CDR LST»
(SETO NOM (SUBl NOM»
((ZEROP NOM)

LST)) »
\

t Punction GE~SYM is a constructor which returns a new name
O~ the fo~ Gxxxx where xxxx is a number incremented each
time G~~SYM is called. , .

(SETQ GENSYM 0)

(DEFON GENSYM (LAMBDA (NOM LST)
(SETO NOM (DIFFERENCE 4 (LENGTH GENSYM»)
(LOOP

{ (ZEROP NOM»
(POSH 0 LST)
(SETO NOM (SOBl NOM»)

(PROGl
{PACK (~CONC (CONS (QUOTE G) LST) (LIST GENSYM»)
(SETQ GENSYM (ADOl GE~SYM»)) »

\ Junction MAX returns the greater of two numbers. \

(DEFUN MAX (LAMBDA (M N)
«GREATERP M N) K)
N)J

(OEFON ADDl (LAMBDA (NOM)
(PLUS NUM 1) »

(DEFUN SOBl {LAMBDA (NOM)
(DIFFERENCE NOM 1) »

, Function DEPTH returns the maximum depth of an expression. \

(DEFON DEI''!:! (LAMBDA (EXPN)
({ATOM EXPN) 0)
(ADOl (l'~ (DEPTH (CAR EXPN» (DEPTH (CDR EXPN»»))

, Function ABS returns the absolute value of NOM. ,

.- (DErON ASS (LA.~DA (NOM)
«MINOSP NOM)

(KINOS NOM))
NOM »

Function Gee returns the Grea~est Common Divisor of NOMl and
NUM2. \

~OEFUN GCD (LAMBDA (NOMl NUM2
NUM3)

(LOOP .
«ZEROP NUM2) NOM1)
(SETQ NOM3 NOM2)
(SETQ NUM2 (REMAINDER NOMl NUM2»
(.SETQ NUMl NUM3)) »

\ The following are examples of Mapping Functions equivalent to
the definitions found in LISP tutorials. ,

(DEFON MAPC (LAMBDA (LST FUN)
(LCOP

\ \ ~iCLL LST) NIL)
(FUN (POP LST)))

'EFON M.APCAR (LAMBDA (LST FUN)
«NULL LST) NIL)
(CONS (FUN (CAR LST» (MAPCAR (CDR.LST) FUN» »

(DEFUN MAPLIST (~~DA (LST FUN)
((~'1JLL LST) NIL)
(CONS (FUN LST) (MAPLIST· (CDR LST) FON» »

\ Function DRIVER is 'originally defined in machine language to be
an EVAL-LISP executive driver. However, it may be redefined as
desired. The following is an ·EVAL-QOOTE driver I which must be

to load the remainder of the functions in this file. ,

{OEFON DRIVER (LAMBDA (RDS WRS)
(LOOP

(TERPRI)
(~~ I;,,!~~l (QOOTE • > .)
(PRINT (APPLY ~ (READ) (READ) (TERPRI»)) »

(DRIVER)

'.Function FACTORIAL returns NOH factorial. ,
. ' .

(DEFUN FACTORIAL (LAMBDA (NOM
• ANS)

.'t ((NOT (GREATERP NOM -1» NIL)
(SETQ ANS·l)
(LOOP

«EQ NOM 0) ANS)
(SETO ANS (TIMES NOM ANS»)
(SETQ NOM (SUBl NOM») »

, Function POWER returns NOM! raised to the NUM2 power. NOM3
isa local or temporary variable for the function PCWER. ,

(DEFON POWER (LAMBDA (NOMl NOM2
NOM3)

(SETO NOM3 1)
(LOOP

(SETQ NCM2 (DIVIDE NOM2 2»
- («(EO (CDR NUM2) 1)

(SETQ NOM3 (TIMES NOMl NOM))
(SETQ NUM2 (CAR NUM2»
«ZEROP NUM2) NOM)
(SETa NUMl (TIMES NOM1.NOM1») »)

(ROS) , DELETE THIS LINE IF YOU WANT AN EVALQOOTE DRIVER ,

(

