The Software Archive

Proposal Outline

= Motivation

- Our civilization is being transformed to one that runs on software.

- Software is a form of literature and has intellectual value.

- Preserving such artifacts provides raw materials for future generations of software
archeologists, historians and software developers. They can learn from the past
regarding

= What worked and what didn't
* What was brilliant and what was a failure
» How the technology of software evolved
» The history and development of fundamental software concepts and
architectures, including:
e Data structure and algorithms
e Performance and other tradeoffs
e Use and evolution of programming languages
e (Coding styles, idioms, and their evolution
e Influences from other disciplines and genres

- Code and designs that this software manifests tells us much about the state of
software practice, the minds of their inventors, and the technical, social, and
economic forces that shaped these products in their time

- We must act now because:

= Many authors of seminal systems are still alive but elderly

* Many participants may have the source code or design documents for
these systems collecting dust in their offices or garages

* Time is our enemy; over time these artifacts will become lost forever

- No one else is doing this. No comprehensive and intentional activity has yet been
undertaken to preserve the artifacts of software history

= Goals

- We wish to create a permanent repository of the world’s important software.
- The primary goal of this project is preservation.
= Interpretations and analyses use this material, but are done as part of other
projects.
= Exhibits use this material, and but done as part of other projects.
- The emphasis is on the technical (engineering and scientific) contributions, but we
also include documentation of commercial and societal consequences
- We give priority to fragile objects and elderly people because they are at risk of
loss
- We collect collateral information and objects that supply intellectual context

L. Shustek, 10/24/2003 Page 1

= The audience includes:

= Scope

Historians who want to understand the development of the technology

Software analysts who want to understand the architecture of programs and how it,
and the design process, has changed

Code warriors who want to read programs that others -- pioneers, heroes,
competitors, friends -- have written

IP researchers who are searching for prior-art evidence

Patent and copyright owners who are searching for IP violations

Posterity: people not yet born who will do things we can’t imagine with this
archive

We call here all software creations “programs”, but we mean software broadly
defined. We include: programs, systems, applications, tools, etc.

= Mechanism

= Filter

The appendix contains a list of objects which could be collected for these
programs. For most programs we will collect only a small number of the objects.
This is primarily a web-based collection for which paper and magnetic/optical
data media are considered an intermediate form that must be scanned or converted
to be useful to the project. Whether the originals are kept is a decision of the
curatorial staff.
Related physical ephemera (T-shirts, coffee cups, hats, etc.) will be added to the
physical artifact collection of the Computer History Museum.
Conceptually we are filling in a matrix where the columns are programs and the
rows are objects to collect for those programs
* In general the matrix will be sparsely filled
* Some columns -- for particular important programs -- will be well-
populated.
This is a distributed effort that can only succeed by involving hundreds or
thousands of contributors.
The longterm project targets are:
= 100 “critically important” programs that are proactively targeted for
complete archiving with as many of the objects as possible, including
newly-done interviews of participants
= 1000 “important” programs that are proactively solicited (by
announcements and by email sent to known participants) and reactively
collected with as many objects as are submitted.
= 10,000 programs that are reactively collected with probably little more
than source code, a couple of documents, and some commentary from the
contributor

We want to be as inclusive as possible, subject to:
= resource limitations such as people time and disk space

L. Shustek, 10/24/2003 Page 2

= keeping the signal-to-noise ratio reasonably high
- Because of the above, we cannot accept everything
- But want the filter to allow — in fact, encourage — more than just the
conventionally-defined “important” software. We need to be unbiased with

respect to:

* Type of software

* Programming language

= Approach or basic philosophy

= [dentity or nature of the developer(s)

= Success or failure of the software

* Country or region of origin

* Purpose of the software

= Architecture, design approach, or development methodology

* Time period in which the software was developed

- One suggested filter mechanism is:

1. Establish a “software archive acquisition committee” of 10-20 judges who
participate by email.

2. Establish criteria for acceptance which permits a liberal number of
“excuses” to collect a program, some of which are quite subjective:

It is the first of its kind

It is an important example of a genre

It was successful (had >100 users over its lifetime)
It is interestingly unique

It is beautiful

It had an important consequence

It was written by someone important

It was used by someone important

3. Establish a web form for submission which includes

A description of the program
Which criteria from the list it meets, in the submitter’s opinion
Which objects are available, now and possibly in the future
Evidence of authenticity (provenance) of the objects being
submitted
o We need to be concerned about forgeries. Prior-art patent
evidence provides ample motivation for nefarious acts.

4. Establish an ongoing process:

= Accessibility

L. Shustek, 10/24/2003

The committee reviews the submissions in emailed batches
Committee members have 7 days to vote yes/no on each
submission

Any submission that gets 3 or more “yes’ votes is accepted
The registrar is notified of the decision and enables FTP of the
objects from the contributor

Page 3

= JP issues

We provide no special index structure other than a top-level table of contents.
We depend on a Google engine to facilitate searches of the entire archive.
We provide no personal assistance for finding objects or using the archive.
There is no charge for using the archive for non-commercial use.
Limitations on the use of material from the archive may be required by law. We
may need an “I Agree” gateway agreement to communicate and get acceptance of
the general rules
All aspects of the collection process should be open to public scrutiny

» The identities of the participants

* The principles and practices of collection

* The procedures and limitation on fair use

» Descriptions of all collected items

We know that copyright ownership for many of the programs will be questionable
We will defend making archival copies as a library under the “Fair Use” doctrine
We will make submissions as publicly available as we are permitted by law.
There will be a mechanism to deny public access to objects where necessary. We
will turn on the “deny” bit in a variety of circumstances:

= Request of the contributor

= Request of the copyright owner

» Likelihood that the copyright owner, if known, would ask to deny public

access
= Likelihood of future commercial value

* [mplementation

A full-time software archivist/registrar will monitor submissions and will
communicate with contributors and users.

A part-time IT person will manage the repository and the web entry to it.
Equipment needed is: <TBD>

Overhead and management will be provided by the Computer History Museum.

= Marketing and awareness

We need to communicate information about this project to the various potential
stakeholders.
We need to encourage submissions and participation.

L. Shustek, 10/24/2003 Page 4

Appendix

Objects to collect
to preserve software

This is an inclusive list of objects to collect in order to preserve the history of a particular piece
of software. (“Software” or “program” as use dhere generically includes a program, an
application, a system, etc.)

For no piece of software will all of these objects be collected. For some important software we
will try to collect as many as possible. For most software only a few of the objects will be
collected.

Each object must be collected with information about its provenance so that historians and
researchers can gauge its accuracy and authenticity. We must be aware that in some cases there
could be motivation for the contribution of falsified or counterfeit objects.

* The program

o Copies of the source code intended to be read by people
» Machine-readable when possible, otherwise on paper which will be
scanned
o Compilable copies of source code.
* Presumes that the original software development environment is available
or can be simulated
» Depending on the complexity, that also may require collecting
e Macro libraries, include files, precompiled libraries, etc.
e Software development tools and files (“make”, “lib”, “link”, etc.)
e Subroutines, granularity of codes
o Ready-to-run object code
* Presumes that the original execution environment is available or can be
simulated
o Packaged or distributed versions of the program

= (Collateral materials

o Documentation
= User manuals
» [Installation manuals
* Logic manuals and flowcharts
= Development notes that elucidate the design process
* Books and research papers
* Email Exchanges

L. Shustek, 10/24/2003 Page 5

= Contract Materials
o Marketing material
= Trade show and sales collateral
= Advertisements
= Press releases
o Exhibitable objects
= Card decks, listings
= Buttons, T-shirts, coffee cups, etc.

= Experiences

o The developer’s experience
= Interviews (audio, video, transcripts)
* Photos and videos of people and the enviroment
= Personal papers and email
= Written reminiscences, either contemporaneous or retrospective
= Identities of all participants
= Biographies of key people
» Timeline history of milestones and releases; the product’s lifecycle and
life history
= (ritical assessments of the software
o The user’s experience
» Videotapes and photos of the software in operation
= Reviews and analyses by users and competitors
= Interviews with early or important users
= Profiles of typical users
o The business experience
» Published reviews
» Information about the companies involved in development, marketing,
sales and support
= Sales history
= Competitive environment

= Open Issues:

o How do we identify the fundamental intellectual ideas in a particular program?
What do we collect to document the evolution of those ideas?

o How do we preserve the history of universal concepts like “stack™ or “B-tree” or
LR(k) parsing?

L. Shustek, 10/24/2003 Page 6

