THE CONCEPT OF A
SOFTWARE ARCHIVE

'AREPORT TO mscoupmmuussw o
" PLANNING FOR A SOFTWARE' ARCHIVE - PHASE |

ARCHIVES & MUSEUM INFORMATICS
JANUARY, 1987

THE CONCEPT OF A SOFTWARE ARCHIVE
TABLE OF CONTENTS:

Executive Summary T T T se.p.1
Introduction: Tt et ettt ettt et et et et e e e, p.2
I. The Domain of Software: :

What could be archived? cetesrdassere..pP.4

IT. Collection Policy & Selection Criteria:
What should be collected? ovommmmnnn. . . p-17

III. Extant Documentation and Repositories 6f Software:
Where is it to be found? S e e et e e e ettt e p.-27

IV. Mission of a Software Archive:
What do we do?"I'.'I'...'.l"..ll"-"p'31

V. Users and Uses: . : o RS .
Why archlive software? R e I

VI. Planning frameworks and timetables:
How can we do it?

s o 0 4 06 0.8

Appendix 1l: Is ;tinecessggx_ggmbggqb;¢g§9 §qn¢thg.§oftgate? p.47
Appendix 2: Legal issues C ettt ittt et p.53.
Appehdix 3: Intervieweesiivuururrinnnnnn. et et e e e p-58

Appendix 4: Forms of Material for Documenting Software History...p.59

Footnotes R T p.65

Executive Summary

In 1986 the Computer Museum contracted a study of the feasibility
of establishing a software archive as the first phase of implementing
Such a program. Because the cultural and historical significance of
forty years of computer brogramming was self-evident, and no library,
museum or archive known to the staff of the Computer Museum was
collecting software for the purposes of historical documentation, the
questions of whether it was possible to create such an archive, what
it would look like and whom it would serve, needed to be addressed
before planning could commence.

Two potentially insurmountable technical barriers had been
previously identified which the study needed to address: 1) was it
necessary to be able to run software in order to serve an archival
purpose and 2Z) were there substantial legal barriers to receiving
software archives or making them available for research. These two
questions, addressed in Appendixes 1 & 2, and are both answered in
the negative. Important historical questions can be answered from a
range of software documentation without recreating the environments
in which the software ran, and recent tightening of copyright and
patent protection has significantly improved the likelihood that
owners of software would consider depositing it in archives and that
archives could, ultimately, make such materials available.

. The body of the report addresses five fundamental questions about
o such a program:
: what is the domain of a software archive?
---how can an institution frame an executable collecting policy
(for its own program and with other repositories)?
what is the mission of such a program?
who are its users and what are its uses?
what steps need to be taken to establish a software archive?

In a synopsis of the“historyrand sociology of software development
and distribution, numerous historical perspectives are identified.
The potential domain is found to be well beyond the scope of any

¢¢-individual repository, so criteria for collecting foci are proposed

and cooperative reporting suggested. Varieties of documentation are
reviewed and their value for particular types of historical queries
suggested. The value of such a program is identified as being
primarily the support of historical scholarly inquiry, both from the
~nature of its potential users and their uses and from its limited
value as exhibition material and for public education.

The report concludes that such a program is possible and would be
advantageous, and that the Computer Museum should proceed with its
further definition in two pPlanned studies which address the policies
of such a program and its operating procedures.

-\

" Introduction:

The digital computer, an electronic device capable of carrying
out a sequence of instructions communicated to it in a "program"
which can be executed without further human intervention, had its
origins in -wartime applications in the 1940's. It emerged from the
war as an experimental machine, evolving rapidly at universities
during the late 1940's into a practical engine for numerical
calculations and logical operations. Its impact on our daily lives
has been so dramatic during the last thirty years that few other
events in human history can be apprqpriately compdred; and it is much
to early for us to know how it may transform our civilization.

Ho%ever complex and interesting fhe machines which have launched
this revolution are, it is not they, but the instructions people have
written for them to execute which are redefining the world in which
we live. These instructions, or programs, written in languages which
- can be compiled or interpreted into madhine,éoéé, are ambﬁg-the most
exciting creative achievements of our day, yet their contenf;
structure, cultural impact and socio—économic signifiCance have not
yet bécome the subjeCt of critical—historical sfudy. Indeed, early
examples of this ‘genre, monumental intelledfual achievements of early
software development, have already been lost to future study through
neglect. And contemporary software concepts, rarely first embodied in
widely sold general purpose systems, will likewise be lost unless the
cultural history repositories of our day - the museums and archives
of our contemporary society - take action soon to prevent the

disappearance of this record.

—‘L—v

In 1986, the Computer Museum, a cultural repository dedicated to

collecting computers and computing artifacts, determined to establish

a software archive, if it was feasible. They contracted with the
author to examine the nature of software and its documentation, and
determine the feasibility of such a program. The study is to be
conducted in_three phases, the first of which is a proof of concept.
The second and third phases, if called for, will be a plan and
procedures for implementing and maintaining a software archive. This
document is the report on phase one - the proof of concept. It
defines what a software archive might be ‘and endeavors to demonstrate
that sﬁch 4 program is not impossible and would have some substantial
culturél value.
This report poses broad questions about software, about
7 documentation efforts and about the requirements of such a program,
’H;and resolves these questions when it can be shown that they are not

: fundamental barriers to prpcée&inq.iItgdoesant‘lay out costs and

" benefits or identify the guidelines. which would be used in

administering such a program;_Thése would have to be addressed by any

~given institution in determining the scope, if any, of its own

. software archiving program, but they are more suitably addressed in a
planning phase report, and will be if the decision is made to

proceed.

I. The Domain of Software: What could be archived?:

To plan for the preservation of software, we must first
understand what it is and what social activity generated it. We must
then examine the types of evidence these activities left behind.
Finally we must consider the challenges of collecting and providing
access to an adequate record of that activity.

Computers are machines operated by instructions which are input
to them in a form they can execute. These instructions, or programs,
began to be called software relatively late in the ﬁistory of the
computer, to distinguish them as components of thé‘system from the
hardware, o;Aequipment.l This distinction, while sufficiently clear
in principle, has in fact never been absolute; the emergence of the
term firmware, to denote instruction sets imbedded in hardware,

reflects the increasing resolution of this still gray area. For the

purposes. of a survey of the universe of potential software

documentation issues, software must be considered to include any

instruction set, however emboddied, thereby forcing us to consider

(a;thgggb,not;necessarily to subsequently collect) firmware by the
original equipment manufacturer and by third parties. -
Likewise, for the purposes of assessing the range of a

comprehensive record of software, no purpose is served by defining an

arbitrary moment after which computer programs can be considered

software; the potential domain of a software archive must extend to

the earliest computing devices. Experimental computers developed

prior to 1948 lacked control units and stored logic sequences and

operated in part under the control of mechanically set switches.
2

Although "programs" were written for these machines , the

e Ve e S

VY W\._(/&;:j:-i du _J;Q ‘
‘processing was not fully controlled by the programs. Computers for

which software could operate as a complete instruction set, requlred
transfer of control and stored logic (demonstrated by the SSEC
machine, 27 Jan 1948), electronic registers (demonstrated by the MADM
» June 1949), a control unit and a memory size adequate to support it
(demonstrated by the ACE machine in 1950, and EDVAK in 1951), and
paging of memory (although nmot automatic, demonstrated by EDSAC 6
May 1949). All these features did not come together in practical
machines until the advent of the UNIVAC I and IBM 701, the first
"mass produced" computers,3 in 1952/3. Nevertheless, a number of
quite important computer programs were written before 1952/3, and

many very important software concepts emerged from this period. 1In

documenting the history of software we cannot ignore these

i developments simply because the term "software" had not been coined,

or because. executing a particular program on these machines required

- a particular prior physical configuratfon*and, sometimes, human

intervention during execution.
But thg;symbiosis in,these years between particular devices and
. the specific programs written to control them does have implications

~ for the establishment of software archives. Since each of these

i experimental computers was unique and the methods of expressing

instructions were non-standard, and tied closely to the physical
device, these programs and their hardware on which éhey ran must be
considered-to be a piece, with responsibility for documenting both
assumed by the cultural repository which acquires thg hardware. The
function of a software archive with respect to such early programs

will be to impress upon the museum repositories that in undertaking

'to preserve the meaning of the artifact, they are assuming
responsibility for documenting the problems which the machine was
given, the way in which these problems were set up, both in hardware
and software, and how execution took place. There may be occasions
when the machine for which such an early program was written no
longer exists or is not being preserved, and, if adequate
documentation exists to describe the machine itself and its
functioning, the software written for it may be intelligible. With

few exceptions, however, the domain of the software archive will

encompass computer programs written since the mid-1950's for machines

(and later operating systems and lanquages) which are non-unique;

software for unique devices will continue to be collected along with

those artifacts, by @ggeqm curators.

~Software may be the product of the machine manufacturer,
academics, the user, or of commercial "third parties" (who are
. relative late comersTT”W}iting computer‘prbgrams-as an activity
separate from designing and building computers, arose with the
commercial distribution of computers in the early 1950's. However,
when it first moved out of academic«iabotatories, it remained largely
donfined to the province of the computer manufacturers, in
collaboration with their (large) customers, for several years. An
early example of a program of this sort was that written by UNIVAC
engineers as part of the first computer sales effort - the splashy
joint venture with CBS in November 1952 to predict the Presidential
‘election results from exit polls and to launch the UNIVAC I.v

Collaborative relations between the customers of computers and the

manufacturers, with spillover between hardware design and

"application, continued to be the norm in the period when each

computer was dedicated to a single task. Thus IBM developed not only
the software to run the Social Security system on its model 701 in
1953, but also developed (and subsequently sold) a tape processor to
store the dataset.4 As with many government procurements of the
period, new hardware and software concepts were developed around the
statement of a practical problem and multi-million dollar computers
were sold to process a single application. Because each model of
commercial computer during this period was sold to a small number of

;fsites (rarely over 20), the documentation of software and hardware

for this period can be segregated. In documenting custom application

systems, both the records of the design process and those of the

client are important. Unfortunately for the future of a software

. archive, it does not appear that the size of early custom systems and

An explosion of computer programming which laid the foundations
for most concepts being refined toda&, took place in the late 1950's.
M]With the development of paging (moving data between layers of the
:'heirarchy in fixed blocks) and the evolution of drum memories and
eventually disk packs (introduced by IBM as RAMAC in 1956), the
 computer became a sufficiently general tool to require local
engineers who were capable of writing instructions for new
.applications. Many of fhese locally developed tools were adopted at
other sites either informally, like Bob Patrick's (General Motors)

"monitor system" for the IBM 704 or formally, like Ray Nutt's (United

Airlines) assembler for the IBM 701. Such applications in
themselves, together with the development of general languages for
writing machine independent instructions, such as FORTRAN, LISP,
ALGOL and COBOL, all of which hag their origins in the late

1950'5,6 ushered in a new phase of computer program evolution,

during which the cohcept of software as a separate entity begins to
have meaning. Because a single model was available in numerous sites
(sales now exceeded 1000 for successful computers), and begause
numerous applications were being run on a single ﬁachine, expertise
was deyeloped in house, and software concepts began to be developed
from»gﬂcommunity of programmers, rather than as the reflection of a
manufacQurers requirement to install a system. Because the control
uqit,wa§3giVen increasingly complex tasks to manage, with the advenf
of* new input and output devices and deeper layers of storage, the
need for operating systems was general.'igamﬁecausé-operating systems
could handle physical level instructions which were repetitive,
highggb;gyel languages began to evolve, each requiring a compiler for
every new-machine, and each giving rise to application routines and
librarieS«in @ community of specialists. By the late 1950's this
actxvxty was reflected in the evolution of institutionalized software

7
exchanges, such as the IBM user group, SHARE. Documenting the

evolution of software will involve documenting these social contexts

for the dlssemlnat1on of knowledge of operating systems and libraries

of system management routines in the transition from single processor
systems to multi-processor sites with numerous I/0 devices and

3)
complex communications.

During the 1950's, computer Prxogramming became evolutlonary in

~3-

‘another extremely important respect - programmers built higher level
concepts on lower level ones using new computing "languages". Many
important programming concepts of this period were embodied in
languages, each language envisioned as being most appropriate to
particular kinds of problems and each providing tools of particular
sorts. Thus the history of programming languages is particularly
important at this time; fortunately programming languages are the one
area in the history of computer programming for which a modest
archive has already been established.9 Thg_ erﬁergence of
Sfprogramming languages marks a radical departure with major impacts

3'for any potential software archive; programming langquages are

7Vdocumented virtual machines and software written in them can be

comprehended without the necessity of maintaining the kind of machine

. specific documentation required to understand software written in

lower level code. The history of LISP, which was developed before

John McCarthy had access to a computer which could run it, and of the

FORTRAN programs written by prospective IBM 704 customers before a

compiler for FORTRAN was written, provide a dramatic illustration of

While operating systems and Programming languages were being

' constructed as the base of a software revolution, computer

~applications were attracting substantial public attention. Following

" the publication of Edmund Berkeley's Giant Brains:or Machines that

~think, in 1949, such journals as the Harvard Business Review were

quick to focus on the potential of computers, and devoted numerous

serious articles to following the utility of applications in their
11
areas of interest . Even though general purpose computing was

still a modest component of the usage of computers (by far the most
extensive use of computers was in military applications such as
atomic energy, ballistics and eventually the space race), the
potential of software as a competitive edge was clearly demonstrated
by some Pioneering efforts, such.as the SABRE airline reservation
system developed by American Airlines and IBM from 1956 to 1962. The _

developing public awareness of software, and of the ways in which

software could be used to competitive advantage, is a critical

component of the domain of a software archivg.

While software was already a commercial asset in the early 1960°'s,
as demonstrated by the success of Computer Sciences Corporation which
was formed in 1959 to sell contract developed programs, the emergence
of an independent software marketplace for software as a coﬁmodity
required a sufficiently large popplation‘of computers of a common
type. to assure that multiple users would purchase or license a given
product. This condition, was on the verge of being met by the IBM
1400 series when IBM pulled the rug from under its users, destroying
their software investments with the introduction of the IBM 360. It
was ‘met by the 360 and its successors. Operating systems were sold as
part of the computers they operated; it was no longer possible for
local programmers to make or even borrow code since the number of
lines of instructions required had grown from‘a modest 5,000 lines
for the IBM 650 to several million lines for the IBM 360!12 Other
software tdols, as they began to be developed, were leasecd by the
manufacturers. while application software was being developed in
numerous computer using organizations, it was not until the 1970's

that it was commercially distributed by third parties dedicated to

‘developing software for resale. By 1970, one can begin to talk about

4 fourth period in the history of software - the period of

commercial, third party, unbundled, software development and the
parallel development of a distribution system which can only exist in
contrast to the commercial system, that of public domain or free
software exchanges. Groups of organizations with common requirements,
whether tradé organizations, government agencies, or non-profit

- cultural institutions, began to develop software in consortia or

- developed mechanisms to exchange software among themselves. The

f;emergence of software as a commodity, and the credtion of pricing

structures, markets and suggliers, is a part of the domain of a

software archive.

Computers were developed to support military objectives and
 ;perform calculations at a speed which surpassed thaﬁ of people, but
it was not long beio:e,thé computerhwas put to work as a routine tile
clerk in civilfgﬁwﬁrojects,.maiﬁtaining@iarge,setstof data and
'T?retrieving required information from them. In thése functions the
N‘éomputer performed work which could have been given to people, but
1was repétitive and duliﬂ unpine_bookkeeepipg‘on a large scale was
<. 8rror prone; searching for-filesqpf,caSes was likély to result in
‘v’misfiling them after the tasks was completed. The computer not only
'~ assisted in these operations, it eventually made possible file
J“management on a vast new scale - such és that of the credit card
companies or the social security administration - thus shaping the

. Way in which business was conducted by making it possible to conduct
- business in that way. Until about 1970 the impact of computers on

- such large scale enterprises was imitatjive of the human processes

- -

" (although, because computers cost over a million dollars and were
expensive to lease and because large staffs and special facilities
were required to run them, we can assume it was cost effective).
During the 1970's this changed. As computers came down in price and
their performance was improved more and more processes were
automated, thereby qualitatively transforming the functions which
they controlled. By the end of the 1970's, computers as powerful as
those used by large scale enterprises in the 1950's were available to
small businesses, and they were.already changing the way in which
they managed their internal functions. Concurrently, the larger
enterprises had figured out how to coordinate a great deal of their
proceséing from the initial component order to the final collection
of receipts on the product, and this end to end automation was
beginning to involve the ultimate customer, the consumer. The
fonsumer became aware of automated inventory systems at the cash
:;Egistef,:of.automated banking transacfions at the 24 hour ééllé;
@échineadndiofAlarge databases about himself through the

“petsonglized";targetted mailings he received daily. The domain of a

SOEtwarevarchive”ehcompasses documentation of such fundamental

cultural effects a5~those of changing the scale of business and

government, transforming mans sense of self, and altering the balance

13
of power between information rich and information poor.

The availability of computers to small enterprises and
individualé in’thé 1980's had immediate implications for the
development of software which became evident following the release of
the PDP-8. For the first time computer owners lacked the specialized

staffs to develop their own software, and they were numerous and thus

represented a potentially lucrative market. A new kind of software

market, the market of software as a consumer products evolved, and

found that customers were anxious to buy. The level of investment in
software by users grew rapidly, creating pressure on the
manufacturers to maintain stable operating environments, or
downwardly cqmpatible ones at least. While this stability benefited
their software competitors, the manufacturers accepted the inevitable
challenge to their software monopolies, and eventually came to enjoy
the benefits of having buyers attracted to their products because of
;ﬂthe range of third party competitive Software which was available.

- The transformation of software into a consumer product is another

 ’concern of the software archive. Documenting this phenomenon will

‘. require not so much the acquisition of these off-the-shelf products,

‘. as the documentation of the emerging system for their delivery and

the secondary business in. consumer accessible on-line data services

thch they are making possible.
How is it that these new products readily found. customers? In
éffect theygysed existing outlets. They were reviewed in existing
journals and'taught in existing schools or through existing user
groups. They'were touted (and pPanned) on existing electronic bulletin
? boards and methods for exploiting them were published by general
J;distzibution commercial publishing houses and sold in general books
T?Stores. In the process some of these conduits were transformed as
~well. One national chain of discount book stores opened separate
outlets devoted to software inventories. A recent issue of Science,
carried in its new product announcement section, announcements of

14
seven new products, all of which were software based!

Of course, not all marketplaces were effected by the emergence of
the software ihdustry. Only one customer continued to exist for
numerous national security systems and a small number of customers
with highly specialized needs dominated such major arenas as the
stock markets or commodity exchanges. In these areas, custom
developed software, at increasing expense, continued to be the norm.
Often it is still the case that these application require entirely
new computers to be designed especially for them; thus the market
continues to witness a stream of special purpose machines ranging
from mini-computers to sSuper computers with custom programming. The
pressure to reduce the costs of these software applications led to
the construction of numerous specialized tools for all aspects of the
software development, testing and implementation process. These tools.
were then used in the construction of custom solutions and in the
development of commercially available software. As a consequence the
_mérket for software workbench products,ipkoductivity tools and
testing tools itself became an arena for commercial product
develppment. Increasingly powerful tool bdxes\incorporating higher
and higher level features including artificial intelligence
applications for self checking began to be produced in commercial
quantities. These same large systems also required substantial
communication networks which were themselves under the control of
sophisticated software systems. For these systems, software
development is a vast organized effort akin to major construction
projects with increasingly specialized roles assigne@ to participants
and growing degrees of similiarity in the tasks of designers, project

managers and technicians in software projects and other large scale

-\

'engineering efforts. The software archive will need to continue to

document changlnd methods and tools In software development. As a

practical matter, this may involve identifying software efforts
during their active life and working closely with those responsible .
for them to assure that adequate documentation is maintained.
As noted earlier, software functions are increasingly being
migrated into chips, freeing the memory of machines for more complex
- software driven functions and decreasing the access or execution time
- by precious nanoseconds. While the prolifération of software over
~"the past fifteen years presents a challenges to tthe who would
** document it, an equally complex challenge derives from the symbiotic
relationship between hardware and software. From the earliest
'computers forward, architects of computer systems embodied in the
“ hardware functions which would otherwisé"require softwaté

~instructions. As computers evolved in complexity, the governing of

storage heirarchies and 1nput/output dev1ces required increasingly

a2

\‘ﬁcomplex operating systems. Over time, some specialized applications

could be better performed with machines designed to satisfy
pplications requirements at the hardware level without the overhead
;éof general operating systems software not used by the particular
;application. With the implementation of solid state devices (printed
~circuit boards and silicon chips) in the place of transistors, which
~had themselves replaced the vacuum tubes of the earliest computers, a
- means was found of providing specialized instructions in hardware

which had earlier been designed in software. The software archive

-must be alert to the source of hardware innovations in software and

"of software innovations in hardware, documenting special purpose

-\5 -

‘computers as the source for software lnnovations resident on general

Rurpose machines and visa versa.

Analysis of the history of software will always play a significant
role in defining the potential scope of a software archive. Such
research will, therefore, need to. be provided for as an integral
component of the program. In itself, such research does not define
what any given archive should collect, not how it should use the
materials or who it should Serve. The role of historical
understanding here is to sketch a landscape; it permits rational
choices to be made in the upcoming journey. Like dany sketch, it also
does not identify the specific Eoci' of collecting which will best
illuminate any particular part of the picture, but poses a challenge
tq the archivist to Begin to document more fully, and learn more

detail which then guides the next stage of collecting.

"II. Collecting Policy:

A. Perspectives on the history of software:

The historical synopsis in section one alerted us to the
significance of different factors at different times in the history
of software and suggested the connections between documenting the
evolution of software and documenting a variety of general historical
issues. We recognize implicitly that a software archive will need to

'exploit an understanding of the history of software in order to judge
}_the importance of particular software developments, however, this
‘Qttells us little about how such an understanding could be
ijsystematically used to guide collection development and
‘ interpretation. A systematic categorization of the universe will be
;frequired in order fof a software archive to develop a definition of
~ the scope which it will give to its own collecting, assuming as we

must that it will be less than fully comprehensive. Each archival

Program must consciously review: the universe of documentation and
make choices about how completely, and from what perspectives, it
Qill document any given period, place, type\bf software or group of
people or organizations. Such«choicés,’or collecting policies, need
to be consciously made and publicly_articulaﬁed, Eo; the benefit of
g,potential donors, for other programs which are likewise collecting

E the history of software, and for researchers who need to know which
:;institutions will hold collections which meet their needs.

- Ultimately, the princlpal beneficiary of the collections policy is
‘fthe institution which.makes the effort to state it; it can use a

policy to attract support, forge an understanding of its purposes,

-\~

and assess how well it is doing. Framing a collecting policy begins

with the definition of a schema which adeguately depicts the universe

of which the collection is to be a subset.

Traditionally, software has been classified somewhat
unidimensionally, and from the berspective of the machine, according
to the layer at which it operates with respect to other software -
ie. as machine code, operating system, language, application
environment, application, or user interface. Using this schema, a
software archive might reasonably ask what its Collecting objectives
were for each of these levels, and develop criteria based on
priority, uniqueness, conceptual interest, market success, etc. This
would, however, only give us one dimension of the history. Could we
then adopt a more comprehensive schema, such as that used by the ACM

COmgutinq_Reviews? ~No. Although it may be valuable for the

subsequent task of indexing the‘holdings of an established archive
(mostly because it would havéfthéwédvantage of pointing_a;wairectly
into published literature), this scheme is too inconsistent about
softwq;evto be reliable.15 Therefore, I have proposed a variety of
ways to view the-universe of software, each of which supports a
particular type of historical inquiry. In,aiticulating a collecting
policy, the software archive should consider how its holdings would
illuminate each of these dimensions, and hence how they would provide
evidence for accounts of software history from these discrete
perspectives:

1. Function - How did software evolve to perform different tasks? or

how was it designed to meet higher level applications needs? or to

fit into systems which in their sum served a larger function? Among

-\ -

‘the difficulties we will encounter here is determining what level of

functions to document - controllihg analog input devices? handling

modem communication? editing text or managing databases? or
regulating air traffic?
2. Funding Source - What kinds of capital was found for software
development?_ How did the approaches of entrepreneurial, corporate
R&D, contracted, andg grant funded development efforts change?
3. Sponsor - Who paid? What patterns of interest are documentable for
industry, civilian government, military, or educational institutions?
4. Computing Environment - a3) Hardware: what proce;sor(s) does it run
on? What other devices are réquired?
b) Communication Environment - how is it
accessed? (direct connect, timesharing,
remote terminal, LAN, WAN, VAN? etc.
‘c) Software Environment - what virtual

‘machines? Operating Systems? DBMS and

I/R systems, development tools etc?

operated, in what spheres, and with what success? How has the
existence of such mechanisms shaped the software and its use?

6. Development approach - What styles of development and what kinds
of processés can we document for individual, team, and broadbased
éolleagial development efforts? How can the evolutionary development
of software through user feedback be documented?

7. Ownership Restrictions - What has the history of intellectual

—A\Q -

property control mechanisms been and how has this impacted on the
character of software documentation? 1In particular, how have
copyright, trade secret, public domain, freeware, shareware and other
concepts evolved?

8. Design Theory - How have concepts in cognitive science impacted on
data structures, knowledge representation and parallel Processing?
How have issues in software engineering influenced program
structuring, information hiding, data driven approaches, etc?

10. Business area - What industry/commercial spheres have been
influenced, and how? (e.g. banking, libraries, real estate, airlines)
11. Social impact - What pPopulations or events were effected? The
challenge here is to examine impacts not just on pulic policy,
education and the computing profession, but in terms of social
history of everyday‘life.

+ This 1ist is not, nor can any list be} an exhaustive set of valid
Nyiswssqf~the software universe. In defihihg whaé_an;‘given software
archlve will collect, the management of that repository must,

' however, .ask what aspect of the history of software it seeks to
documsnt, what types of questions 'the documentation should be able to
support when the archive is maturef I1£, for exampls, the archive
feels researchers should be able to ask of its holdings what kinds of
software sought copyright protection and why, or what software was
widely disseminated in the public domain among users of particular
types of systems, and what those users could get from it, then it is

essential to consciously collect by ownership restriction materials

which might not be collected as documentation of some other view.

—-—20m

IS

B. Forms of Material:

Up to this point we have spoken of software documentation as 1f
it was uniform and identifiable. It is not. One of the few Statements
we can make with certainty is that the documentation of software
appropriate for collecting in an historical archive will not consist
for the most part consist of what active users of the system
considered to be its "documentation". Memoranda and Correspondence

- written during the development brocess, logs of fixed (and unfixed)
bugs, market studies, RFP's, financial analyses citing competitive
fadvantage gained from software, early designs sinéé discarded, and
" the source code itself, must all be considered as part of the
~ documentation.

Understanding of the forms of material which are likely to have

- been generated in the context of differeht“types of software

Only with concrete criteria and

& proactive collecting stancéjcaﬁ“a reasonably full documentary

record bevbuilt from numErous7soﬁrces, including but not limited to
f’archival collections. The policies which dictategd why the software
‘1was collected will help to define what types of documentation of
,ksoftware Creation should be sought. If the material was obtained to
1llustrate a particularly elegant technical solution to a problem,

then code will be necessary for its study. If market penetration due

to exemplary advertising and marketting strategies is the rationale

for deciding to collect a piece of software, then the advertising

strategies, the TV clips and the packaging discussions are grist for
the historical mills. Often a software development effort which was
important from one perspective, will also have significance from
another point of view. For inc stance, we may be interested in the
first appearance of a function - screen writing languages - on a
particular mechine - and also in how software engineers from a number
of different development contexts worked together and separately on
these tools. This would dictate a search for documentation of the
code, but,also of documentation ef the social contexts out of which
the software was developed and of the patterns of communication -
memo's, 1etters, technical reports and conference attendence - of the
participants. Just as the schema of perspectives on software
(developed to help define a collecting policy) can be a usefdl
catechism for selecting decisions, it can help guide us to types of
documentation which can be used to study software from any one of its
"Berspectives. While such a schema‘wili'need‘to be developed fully,
if Qe:procede to establish an archive; an unsystematic discussion of
the klnds of p01nts it would address is presented in Appendix 4.

xe One addltlonal point should be made about documentation, because

1t Poses a. serious programmatic choice for any software archlve. if
the documentation does not exist or was never created, reconstructive
research, including oral history, model construction etc. can
sometimes serve in place of contemporaneous documentation. Such
brograms are expensive and person intensive, and they are only
possible while the participants are alive, nevertheless many archives
Choose to support active documentary reconstruction efforts. Whether

this form, of material wil] be collercted must be addressed directly.

C. Selection Criteria:

After the software archive has selected arenas for documentation
(applied its collection policy and knowledge of history to the
selection of candidates for documentation), and defined the kinds of
records which will be required to- illuminate the topics chosen
(determined the value of different forms of material for the
purpose), it will face the significant task of selecting materials
- for retention. What criteria can it bring to this process?

The first criteria arise from outside of the target context
 a1together. They have been applied in the process of selecting the
"problem. For instance, if other records are perfectly adequate for
.cOnductlng research on the subject, then limited resources argue we
.should look to another topic. If other repositories wish to collect

Jicertain records, and can give them adequate care, then efficiency
:{argues that they should generally be encouraged to do so. This is not

?ivery profound but mlght easily be. mlssed ‘hkhw'»

’ Nor 1s;the first criteria which we apply/tO‘theqrecords‘themsélves

very profdund. ~Indeed, it is a tautology: if doCumentation'of the

sort -needed to support research along one or another perspective is

’tflacklng in any given case, then that case does not. make a good
 candidate for study in that dimension. Therefore, one criterion
which always applies in the selection of candidates for documentation
is the value of the extant documentation for the stated purpose. If
we only waﬁt to know what a clever sub-routine looked like, but have
no code éxtant, then we cannot very well document it. If, on the
other hand, we are mostly interested in the types of networks whlch

partlcipated in the elaboration of the clever routine, we may be able

-3~

to document a considerable amount without the code.

Selecting criteria are not, however, usually so obvious to derive
or simple to apply. Should a repository seek out the earliest
manifestation its focus? Or its most successful embodiments? Or
manifestations which are internally interesting, coherent or richz
Should it collect an instance from each machine? or each family of
machines? or each vendgr? Should it document the same function in
each industrial arena, or each sector of the economy? Of what
interest is the criteria of nationality? Should we document each
‘criteria for each country? Of what significance, if any; is
incremental evolution? Should we, once we have decided to document a
particular piece of software, collect records of all its stages and
changes, all the local variations and enhancements?

Nor can these criteria be considered in isolation. One repository
may want to document theﬁearlieSt manifestation of a new idea, even
when that manifestation had little or no practical spin-off, while
another with the same collecting érena within its policy, may not.
Qh thg¢other hand,;. it might decide to collect an essentially routine
intellectual development which, through good marketting or good
fortune, swept the world.

Selecting criteria do not have their referent in the abstract
value of the event being documented, but in the concrete value of the
documentation within the framework of other existing documentation.
It frequently happens that the most important development is
virtually undocumentable, and hence should not be collected at all,

or a second case Should also be selected, because it is similar and

better documented. Likewlse, a candidate for documentation may be

less Important because relatively much is already known from other

sources, published and unpublished.

The extent to which the development of software is evolutionary,
rather than revolutionary (which will differ from one domain to
another) will effect the collecting decisions of the archive. In
highly evolutionary situations, in which there are influences from
other developments always impacting on the making of the next
product, it may be important to retain documentation of these
iﬁfluential elements as well as the product which is-the focus of the
- .Collecting effort. The evolution may be either coﬁceptual or market
based. 1n developing DBase II/III ‘Ashton Tate broke new ground in
PC database management systems but when they recently released
RapldFlle, a low end file manager, they were clearly responding
- directly to the successful marketting of IBM's PFS: file, and did not

1ntroduce any new concepts.. Similarly, if we want to document the

ggevolution‘of IBM's VM operatlng syqtem, we must do so in the context -

of other IBM: operating systems and their 11m1tat10ns, as well as in

the context of the Pressures exerted upon IBM by the capabilities of
DEC's vMs operating system. The evolutlon of a single product over an
‘E»éxtended Period of time will show 1nvent1ve and market advances and

" the interplay of a varlety of external factors. As a consequence,

documentation of a software product over a period of time can exXpose

- different factors than we can see in monochronic snapshots.

Software products may be embodiments of software theories - as for
instance the market for relational databases on large computers - or
they may provide a stimulus for software theories - as Apple did for

~ the user-interface research community when it invented pull down

‘windows. Entire areas of software development, such as object
oriented processing systems and parallel Processing systems at the
moment, and many areas of artificial intelligence until recently,
exist largely as working models being sold in a marketplace which
consists of other developers. The extent to which other collections
in the archive are able to shed light on the theoretical roots of a
particular development will be a factor in selecting documentation to

be retained.

Criteria for cdllecting are not dictated by abstract values, but

reflect the actual interests, expertise, limitations and strengths éf

the collecting repository. Their correctness is ultimately always

measu;gq byvtheir appropriateness to the repository. Once each
repositg;yﬁidentifieé for itself what characteriétics of software
will f;qpq,its collecting policy, it can apply a variety of tests to
judge,§igpéﬁ;gance, including uniqueness, priority, impact or
inflggp%9é;ahd §hte11ectua1 style and‘fgfégrity.gone of the major
cha}}éggegjgﬁ developing a Plan for a software archive for the
Compqggfjﬁq§gg§ will be to define”collectingipolicjes and selection
qrite;ig yh?ch,fit smoothly into,thefoverallggoa}s of the

institution.

mzb-

CIIT. Extant Documentation & Repositories of Software: Where is software?

In undertaking to establish a software archive the Computer Museum

was acting on its belief that such collections do not already exist and
that there remains extant documentation which deserves archival
retention. The existence of other repositories interested in or already
pursuing software archiving would be welcome; the size of the universe has
already determined that no one archive can be comprehensive. Nevertheless
it is ctitical for the development of rational collecting strategies to
know of other repositories interested in, or collecting, the history of
" software. Likewise it is important to have some sense of the extent of
documentation which might be discovered by a full blown program to archive

'fﬁsoftware and its documentatlon. In addition to the literature search

':4(C

¢l

;whlch was conducted at the outset of this study to identify works on the

"*hlstory and sociology of Software, I conducted a phone survey of

archivists at a few computer companies,’ high—teChnOIOgy firms,
universities, professional associationsland'governments te”determine
iyhether-they‘collected such material, and whether that theught the records
of software history still existed in the institutions for which they were
responsible In addition, I tried’ to detetrmine why they currently were
»'3-not collecting this material, in order to identify any previously
EﬂUnforeseen obstacles. (The contacts and their institutions are listed in
-+ Appendix 3.)
Though superficial, this Survey exposed some salient facts about the
enterprise:
. 1) as assumed, no‘one has formed a software archive nor is anyone
‘collecting software documentation except as an inadvertent bi-product of
“institutional archives. Even organizations such as SHARE and the Federal

Software Exchange, which existed for the purposes of "archiving" software

..2_:‘._

in the data processing sense, that is keeping it for distribution during
its useful life, have not retained their "back stock". A large number of
such distribution programs still exist, however, and those which do
(SERAPHIM, SIMTEL, EDUCOM, Waterloo, SHARE, FSE etc.) would probably be
very conducive to depositing their mate::ials.l6

2) In the few repositories which are sophisticated in collecting
machine readable materials, attention has been exclusively focussed on how

to get the data out of software specific environment - and formats in order

“to dispose of the software. The only exception to this has been in

studies of DBMS and electronic mail environments where the question has
been posed whether the documentation of such systems will reguire
retention of the software. Here alsq, however, the focus has been on how
to avoid keeping the software (and being dependent upon it). Therefore we
need to make a radical distinction between a machine readable data archive
and the concept of a software archive,
-%3), In general the concept 5f dailecfing software'fo: ;Eggbrical,
- Lésearch purposes has not occured to archivists,‘inbpart because there is
Mno%USerfcbmmunity. It seems no one ever asks for such documentation! . For
. variety of reasons best traced to the influence of data archivists over
the development of machine readable archives guidelines, American
archivists do not see software as having any evidential significance, and
thus do not collect it as an aspect of documenting the ways in which their
organizations worked.
4) Whilé technological barriers have not been the reason why this
material has not been collected, they would have become a reason
immediately had the respondents given the matter any attention. Initially

~each archlvist felt that executing the software would be necessary, and

-2 ¢~

‘couldn't imagine how to provide such facilities. When pressed to state

brecisely what kinds of research would require having the code and

machines on which to execute it, no one was able to come up with a
convincing example, however.

5) Once introduced to the concept, there was considerable interest in
the idea. Many of the interviewees requested copies of the final report
and without prompting suggested that their institutions would be
interested in pursuing the matter further. Most of the repositories
contacted were, of course, natural components of a software archiVing
consortuium or reporting network. -

While little was revealed by the interviews which was not anticipated,
the absence of a community of scholars dees need to be addressed as the
mission of the software archive is articulated. The interest of other

- repositories in potentially collecting software needs to be exploited as a
rwwconsc1ous element of the collecting strategy And the distinction between
#{the functlons of the software archlve and those of data archives needs to

. be made a clear focus of future pPresentations of the concept.
In discussing of the kinds of materiais which exist in their
{winstitutions (as a postscript to explaining that there wasrno software

?arch1ve), atch1v1sts identified numerous forms of mater1a1 which would be
1nvaluab1e as part of a software archive. This suggests first, that
substantial documentation surrounding the history of software still
exists, and second, that those responsible for it WQﬁld not recognize it
as forming a potential part of a software archive. However pleased we may
be that some material has survived, both parts of the response represent
a threat to the enterprise. Archivists intuitively regard a software

archive as consisting of code, and are therefore likely to discard other

~28- -

documentation even if they are trying to be helpful. Since we are speaking
of archivists here, we can't expect that sending the AFIPS brochure
"Preserving Computer Related Source Material" will be the solution.
Getting archivists to preserve appropriate source materials depends on an
appropriate articulation of the mission of the software archive. It will
also require planting the concept of the history of software as a
broadbased resdearch arena in appropriate places in archival literature.

For example, Appraising the Records of Modern Science and Technology: A

Guide, though only two Years old and written by an active participant in

of the scientific endeavor. The accepted literature on methods of
archiving machine readable files, on archives automation and on the
challenges of documenting database management and electronic mail
<env1ronments all view the software env1ronment in which such new systems

are lmplemented as a barrier to archives, rather'than as a potential

subject for>documenting.

"IV. The Mission of a software archive or museum:

A. Distinctlons between a software archive and a software library:

The first step in establishing a software archive, assuming
questions about its feasibility have been satisfactorily answered, is
to define precisely what its purposes are, and are not. It may be
useful, because we are defining a new kind of cultural institution,
to contrast it to existing institutions before attempting an
independent definition of its mission.

A software archive or museum differs from a software library in
that its Primary aim is to document the history of_software, while
that of the software library (even if, following data propcessing
usage, it calls itself an "archive") is to provide software for the
shortterm use of its clientele. As such the archive supports research
about software, not research using softwere;

A software archive is an hlstorlcal collectlon. It may document
’how partlcular 1nst1tut10nsh;sed software, and thereby provide
{ev1dence of the functioning of the organlzatlon, but this is a
secondary purposes of the software archive per se. Of course,
rvev1dent1a1 reasons may be the primary or even sole reason why a
general archival program retalns a particular software product.
(Indeed, I would argue strongly that corporate archives should retain
software documentation for evidential reasons, but this report is not
about such actlivitites.)

Becauserits focus is on exemplars of a creatlive genre, rather than
on evidence of the activity of an organization or person, the
software archive resembles a literary, art or music collection. It

collects specific examples of software and materials which provide

-3V~

evidence of the way in which software was created, distributed and
used, in order to support research on software itself. However, just
as we cannot understand art, without understanding the world of art
patrons, art dealers and artists, we cannot understand software
without documentation of its context of development, dissemination
and use. The software archive will not consist of records of the
software products alone, without any documentation of process.

Even though a software archive or museum will seek to further our
understanding of the history of software through interpretative
exhibitions and publication, its principal function is to preserve a
"body of matezial'gox research. Although exhibition purposes are best
served when we can show as well as tell, a researcher will be able to
learn much £rom‘§oftware even i1f it cannot be demonstrated. Just as
an historian of music can appreciate a score, without hearing it
p;gyed, or especially without hearing it played on.period
Eﬁgfiuménts, g,:eﬁea;cher in this field will be able to understand
software withput:necessarily playingﬂit back on the machine for which
is was-written. Therefore, the availability of hardware and software
environments appropriate for running a piece of software should not
be considered a prerequisite for collecting it, although it should be
taken into account in evaluating the exhibition vél&e of the item.
(For further discussion of this issue, see Appendix 1]

In this respect, a software museum or softwaie archive differs
fundamentally from a software library, which has as its sole purpose
the provision of software for use. Software which is not of use,
would not be collected by libraries, nor should it be. Further, the

archive or museum 1s interested as often as not in only modules,

‘routines or even sub-routlines, not in full systems, since the novelty

of the software, or its distinguishing features, may well be in a

very minor component of the overall system. The archive or museum,
therefore, may not be overly concerned about whether a compiler
exists, or whether the source code itself can even be found, if other
documentation makes it clear what the nature of the software
innovation was, and supports a variety of types of scholarly
queries. As a consequence of being machine independent, the software
museum or archive can collect software developed in a wide variety of
specialized contexts - such as navigation systems, energy management,
robotic control, etc. while a software library must restrict itself
to genéral purpose software, usually written for the kind of small,
general purpose, computers it can afford to maintain for its users.
Finally, a software archive can no more consist exclusively of

~ code than a music collection could consist only of scores. It will

’ necessar11y hold a wide varlety of forms of materlal including the
{vcorrespondence of software developers, the business plans of -
f?sponsors,yand the financial agreements of copyright agents. A
?TSOEtware;mnseum will also contain some«examples‘of eailier:computers
and operéting environments so that the software'can_be'played to an
audience which needs to know what it "felt like". Of course, the
museum aspect of the software archive will also benefit from the
range of forms of material, permitting exhibits to be developed
around themes ranging from the sponsorship of software development to
the nature of software advertising. The software library, most
likely, would be interested only in holding the documentation

required to "use" the software, for its original purpose.

B. Acquiring the software archive:

Except for those organizations in the software business, the
acquisition of a software archive will require "collecting" rather
than "retaining" materials. This discussion is restricted to software
collecting, since the burposes of retaining software, as evidence of
organizational activity, are distinct from those which quide
collecting.

There are several discrete acquisition issues:-
1) what do we want to collect?
2) where is it found?
3) who owns it?
'~ -~ 4) how may it be acquired?‘

Previous sections of this report addressed the first two
questions. We want to document the history of software, not an
unproblemmatic goal, but given the nagnitude of the effort, one which
‘no s}nglgha;chive,.or small group of inStitutions, could achieve
without cqoperation. Efforts at pre-arranging what independent
»1nst1tut10ns will collect have been. notorious failures, so no effort
will . be made. to "divy up" the universe. Instead, the organizations
willing toqcollect software should institute a mechanism to share
information with each other about their respective holdlngs, and if,
trust holds, about the contacts they are making . In this way they
can controls their own collections strategles while cooperatively
covering the field.

The second issues is where we will find the documentation. In the
first section we hinted broadly that it would be found along the

dissemination paths. Just as the most interesting documentation for

.VOBL*..

understanding the process of creation of software will be found

Closest to 1its origins, documentation of other significant processes
(distribution, sale, use) will be found closest to where they took
Place. The interests of different institutions will skew some towards
the financial impacts, some towards the use of software in a sphere
of activity (such as Communications, chemistry éducation, or air and
spaceR&D)18 some towards internal devélopments in software
concepts. Any comprehensive long term documentation strategy will
necessarily require numerous organizations with such distinctive
perspectives to cooperate. B

Acquiring titlg to software may be a stumbling block for a museum
or archival repository which waﬁts to establish such a program. ([For
a detailed discussion of legal issues surrounding rights in software,

- see Appendix 2.] The developer, his or her employer and the client

.« all have claims to ownership and is also likely to each possess

Q?dlfferent parts of the documentatlon. While such ownershlp rights are
1finot legally any less straightforward than they are in any other kind
gf;of contracted creative production, these kinds of relationships have
:itradltlonally been exceptions in archives but they are likely to be
ﬁ very common in software collections. As a practical_matter, this may
- make very little difference so long as the software being collected
ls obsolete. 1In such a case, the employer and or client rights are
unlikely to be claimed if the sod:ce of the materials collected is
the creatof. The creator would probably not retain rights in
materialsrturned over to his or her employer or cliept, and would be
unlikely to claim them against the archive in any case. However,

anyone using the archive with the intention of publishing, would be

~3¢8-

well advised as in any copyright situation, to seek all plausible
permissions before reusing the material. Nevertheles ss, the ownership
Issues are likely to be problemattic because it is not always, or
even perhaps generally, advisable to wait until the commercial value
of a software product has bassed -to collect documentation. Much
better records will be collected if the product is identified for
acquisition early in its 1life.

In order to collect software related materials early in the
product life without risk of liability the software archive should
probably resort to all of the following tactics:

1) acquire permissions from all parties which can be identified
and located. |

2) arrange for tﬁe acquisition of the materials at a future date
when the party which has a commercial interest decides that interest
has elapsed or acquiré the materials but keep them closed to research
for aiperiod of time adequate to assureitﬁ;EfEhefcoﬁmercialIinterest
has: passed.

- 3). make materials available, whenever. they are opened, with
strict warnings about ownership righ£s-in conjunction with initial
registration of patrons, each specific request for’paterials from the
cdllection, and any requests to duplicate portions of the materials.

Of course, the greatest protection derives from being granted
ownership and all rights of use by those who Previously enjoyed these
rights. In acqu1r1ng holdxngs, the software archive should seek
.donationa which grant the most comprehensive rights possible to the

19
archive (but not necessarily to its patrons).

"ab"

V. Users and Uses:

An archive for the history of software could attract three kinds

of users:

1) Regardless of how it presents itself or what its collecting
criteria emphasize, it will be of value to historians of science and
technology and other academics, such as psychologists and
philosophers, interested in the historical evolution of software-
embodied concepts. If the collection policies permit-acquisition of
software which was important to particular industries or sectors,
specialist historians will, in time, also be attracted to conduct
, iesearch in the archive.

2) If the software archive makes unique design concepts a focus of
its collecting, and in some way indexes its holdings to reflect such
: conceptual linkages, it would be of great benefit to lawyers
;e;epresentlng software developers and to software engineers

’fithemselves While the utility of reusableé code is still a matter of

"{fdebate within the software community, the potential value of studying

previoyus implementations of common underlying concepts is

self- -evident. . This would be especially true if thé holdings included
V;geOftware of recent v1ntage.»Rec1proca11y, the holdlqgs of patent
attorneys and others representing software developers are also
important sources for documenting the history of software.

3) In theory, the software archive could be 3 faeility for
casual,.noﬁ-scholarly, Inquiry if some or all of the software
.collected could be run‘on either the devices for which it was
designed Or on systems emulating those devices. 1In practice,

however, providing for this kind of casual inquiry is more complex

-33 -

than mounting an exhibit, since few if any software systems yet
designed can be said t§ be accessible to naive users without
substantial domain knowledge, on-line help and even bre-programming,
which would have to be supplied by the curator. One exception to this
rule is software documentation in the form of films, as the Computer
Museum has shown in its collection of computer assisted animation
movies from SIGGRAPH and elsewhere, which document the Capabilities
of the software which generated them, and in the acquisition of
movies showing how software operated on machines for which it was
initially designed. Another exception is in timed demonstration disk
and educational software ventures, both of which are becoming a more
qqmmqqilbut still represent only a tiny corner of the market.

»AIg seems, therefore, that the software archive must be viewed as a
research facility above all else, and that its support will have to
come from sources other than general visitors to the Museum. As
gdtgdvnglier, with the exception-ofwa,fzny community of histoglgaér
Qﬁgcomputing, there is not yet any research interest in software, so
the creatlon of a user community and the collecting of a software
qggp;yetw111 need to go- hand in hand. . This is particularly important
if otherdinstitutions, especially uniQersities, are to be encouraged
to collect oftware and its history and if scholarly foundations are
to support part of the costs of building such collections.

One component of the software archive program, then, ought to be
directed at building up a scholarly research community. Among the
(time-honored) activities which contribute to this end, many of which
are already being conducted by the Charles Babbage Institute, are:

- Publication of a reqular report on archival developments,

“Including new holdings deposited In Institutions throughout the world

(such a column could appear in the CBI Newslctter, or a general

publication read by historians of science and technology).

- Employing recent graduates of history of science and technology
programs in projects of the software archives, or enmploying graduate
students to encourage dissertations using software archives
resources. Possibly the ptovision of research grants to post-doctoral
students.

- Holding talks, seminars, or conferences on topics in softwarg
history, and possibly publishingAproceedings of such conferences.

- Publishing bibliographies.

- Seeking funding from corporations with software to finance
student help in organizing and describing their holdings. Seeking to
encourage university R&D Projects involved in devéloping new software
- to document their initiatives.

It is in thghggiereét of the Computer Museﬁm. and other
W,#epositories which might collect the history of software, to have the
| ;ffigld of software history recognized by the National Science
;itébundation,and the National Endowment for the Humanities as é
 déve1oping discipline, with~practitioﬁers to whom*ggants can be made.
In addition support, even if very modest, for the implementation of a
Pilot program should be sought from the NEH and,NHPRC, in order to

give the program visibility and legitimacy.

— 3‘.—

'VI. Planning Frameworks and Timetables:

How then, should a particular institution, in this case the
Computer Museum, go about establishing a software archive?

First, the decision to form 3 software archive should derive
directly from the goals and purposes of the host institution ang the
Criteria for acquisition should fit into the collection development
policies of the host. [In a different siﬁuation, in which the
software archive was to be an independent entity, it would need to
‘adopt a statement of goals and develop collections policies.]l The
critical factor in this decision is the recognition thaf a software
archive is a commitment to supporting research; while it mnight
contribute somewhat to exhibition and public programs, the principal
benefits will be long-term and academic, and the burden does have the
potential of taking resources away from other museum programs
,(although as discussed later, I believe a software archive can be
.Self—supporting). -
| ©While the Museum Can announce its openness to receiving software
-gnd software documentatlon, it should not do so without a clear sense
”of the criteria it will use to evaluate such gifts. In effect, these
crlterla are 1dent1ca1 to those it would employ in a self-conscious
collectlng effort. Ssuch self-conscious collecting,efforts will, in
any event, be required in order for the Museum to acquire a
collection with coherence and roundedness. Defining such a collecting
effort involves identifying either products or persons (including
corporations) which exemplify a "type" being sought. Approaching
potential donors with a clear definition of the Place which the

software they Possess occupies in the documentation strategy of the

“o-

‘archive will also be an Incentive to them to donate the desired

materials. To develop such criteria, the Museum should articulate

what it expects its archives to be and to be doing in ten years.

Defining the significant developments and actors in any given
Plane of the matrix of perspectives on the history of software
described in section 1, is a substantial research effort. while the
Museum is well positioned to undertake such research, and it
curatorial staff needs to do so for general purpose computers and
general purpose software as a conseduence of its mission, it should
use specific exhibitions, or funded research projébts, or special
publications to frame software collecting objectives in specific
'arenas. Initially the program was envisioned with a half-time
curator; I believe that this will not be adequate to give the program
-the level of activity required. A full time curator in charge of
‘research and sol1c1tat10n, a part-time collections brocessor and-
*}51gn1f1cant clerical support, wouldu;;;h to'be a minimum for
;Qpermanent staffing. Consideration should be given to strategies
T‘thch would augment such a basic staff. w1th additional focussed
 jrgsouzces.

The rhythm of such spec1al projects in an organizatlon the size of
‘the Computer Museum can be estimated from the activity of the very
successful Center for the History of Physics at the American
Institute of Physics in New York. The Center, founded in 1965 at the
end of a four year "“survey" project funded by NSF, both collects
materials relating to the history of physics and encourages other
organizations to do so. It aséisfs in identifying materials which

should be preserved and maintains a catalog of materials housed in

~\§| -

repositories throughout the worid. Every several years the Center has
launched a study of some special arena for physics research - nuclear
physics, astrophysics, solid state physics, phsdics in national
laboratories, and laser Physics - with support from outsidevfunding
agencies. These studies have served to identify important historical
developments, locate existing documentation andg provide information
about its contents, alert collecting organizations about lacunae in
collected documentation, and to support a growing community of
scholars, many of who served post~doétora1 years és project staff,
who further interpret the field. -

They have also had the important secondary effect of making
potential donors aware that they possess materials of ihterest to
historical repositories and 0f helping the repositories to define
criteria for3assessing such evidence if it is offered. The full-time
archivist and. full-time historian on the staff have had their ranks
augmedgga_by Project oriented staff throughout the: 11£e of the
- Center,. and the- pro:ect oriented staff have been responsible for
numerous<pub11cat10ns and at least one-major travelling exhibit which
have enhanced the visibility of the repository. Historians of science
as.well:.as pfactlcing sclentists have proved very supportive and the
Centexr has aiso made some fundamental contributions to archival
practice.

A reasonable long-term strategy for the Computer Museum could be
developed around this model. During an initial period of three
Years, the Museum could form an archive devoted to documenting

critical developments in general purpose computing since the earliest

computers, but focussing active Collecting on the past twenty years.

Wy -

It would agressively collect information about holdings already

deposited elsewhere (if any can be found) and accept general purpose
software of an earlier period, if offered. After three years the
Museum could launch a separately funded project to document the early
evolution of software (prior to general purpose mini-computers and
the IBM 360), with special funding from major foundations and the
industry. This effort would have publication of an early history, an
exhibit, and the articulation of explicit collecting objectives for
future pre-1960 collecting by the Museum, as its products. Subsequent
spec1a1 projects might include a focus on a particular industry
(aerospace, finance, insurance) or a sector of the economy
(goverﬁment, corportate, non-profit) or a specialized software
function (CAI/CBE, CAD/CAM, AI, Graphics). Again, these would be
“coordinated with exhibits and publications, and would have explicif
;Qbals of alerting potential future donors: to the interests of the
f;Museum as well as targetting“gpeé;fic:items for'acduisiézgh.

If the decision is ~made to go ahead with a software archive, the

:fMuseum should launch a concurrent campaign to raise additional funds
 §£0: the core program. . While the reasons to collect software are
flnt11n51c, collecting it could open new sources of support for the
mdseum. Only @ handful of software companies are represented among
the contributors to the Museum at present, even though the universe
of such companies is much larger than that of hardware firms which
are well represented. While the engineering of new computer systems
Is an anonymous undertaking, the authors of software are still
frequently sole operators or leaders of relatively small design

teams, and take a considerable pride in the products of their

43 -

‘efforts. Both the software companies and the authors of software,
need to be reached in order for the software collecting effort to be
successful; it would be vVery surprising if these contacts did not
Jgenerate substantial new gifts of funds in addition to the software
documentation targetted for collection acquisition.

Generally, the most interesting documentation of software
development from an historical point of view will be that which sheds
light on the development process. Such documentation, of false
starts,. intermediate steps, ideas accidentally gathered during ther
course of other day to day activity, and persbnal"recollections, is
also the most fragile. Usually this kind of documentation will
survive in the context of undisturbed records but will not be
retained after several moves, a change in ownership of the company,

~the retirement or death of the creator, or any other conscious

filtering process driven by other than historical retention aims.

Therefore the time to undertakeﬁsuchfan'effort’is'now, rather than
later; and much of the documentation,will:alréady be lost.

;qu;quickly can such a program be mounted?: - Assuming the Computer
Museum Board determines to proceed with- establishing such a component
of its collections, policies and procedures: for suc@ an archive could
be drafted within four months. Plans could be made for special fund
raising to assure adequate facilities and staffing for the project
for its first two Years and efforts to recruit an archivist could be
launched in parallel with the drafting of policies and procedures. If
no special facilities are required, a start-up date in the fall of
1987 would be a reasonable target.

Whether or not special facilities would be required by the

-\ -

‘archives depends on decision made about the formats in which software

code itself is to be maintained. 1If the recommendation of Appendix 1

is followed, ie. that original storage media be preserved as
artifacts for exhibit burposes, but that the intellectual
characteristics of code be stored on today's media, either
eye-readable or readable by production computers which are being
malnta1ned for day to day operational purposes by the Computer
Museum, then the facilities required by the software archive could be
readied within the four months provided. They would consist of
standard archives shelving with a wide range of archives boxes and
tubes suited to the diverse formats of paper documentation, and of

-;film, audio tape and pheto archivesecontainers. Software provided in
machine readable form would be copied onto local DASD (and it would
be worth ‘looking into WORM drives for these purposes). Formatting

e[data for communication to these devices would fall variously to the

ufﬁdonors, if they had the fac111t1es,vor to a commercial service
“bhreau. [It might be possible in some cases to borrow facilities of

19¢a1 universities and cultural institutions to make such transfers .

1ﬁ”if,they‘haye_the necessary equipment].

1£3¥Need1ess to say, if the decision is made to retain some or all

eeoftware in obsolete formats and to run it on the systems for which
is was designed, the facilities requited for the software archive
will have to include a fully equipped temperature controlled and fire
protected computer room (of potentially vast size) and substantial
exXpansion space for the variety of drives, CPU's, anq I/0 devices
which are represented in systems for which the software was written.

In this scenario the acquisition of applications will require

-\ 5

"acquisition of operating systems and language compilers which are
synchronous with the application software release. Operating such
systems would require all the usual expertise of a systems software
staff, plus knowledge of a continuocus stream of releases of each
software component, for each manufacturer, if not each machine, in
inventory. Obviously, deciding that it is necessary to preserve
software in its conﬁext of operation in order to meaningfully study
it is tantamount to determining that there cannot be comprehensive
software archives for the full range of scholarly research topics.
During the course of discussions, a number ofﬁprogrammatic
décisions which the Computer Museum will face have been raised. wWill
the Museum decide to have an oral history program or other active
documentation reconstructlon effort? Does the Computer Museum wish to
take on the role of a nexus of a network of institutions collecting

software and»exchanging information about it. If so, what

1mpllcat10ns ‘does this have for publication and information systems
development within:-the museum. Does the Computet Museum wish to
assist.other repositories byrpublishingfguidelineSﬂfor the -~
development of softﬁare archives or éraining‘archivists to deal with
software related issues. What tole, if any, does the Computer Museum
wish to take in the systematic collection of ephemera? - coordination
or management of a sampling program? Finally, and this is the most
important, what Scope does the Computer Museum wish to set for its
own collectlng actlvity in order to encourage other institutions to
‘collect, compete with them as little as possible, and still gather
for the software archive an important record of the developments in

the history of software?

. L

APPENDIX 1

Is 1t necessary to be able to "run" the software?

The most cited barrier to establishing a software archive or
museum is the assumption that it will be necessary for the purposes

of the archive to preserve the software code itself in a form which

makes it possible to load on the hardware for which it was designed.

If this were not such a fundamental stumbling block, planners would
soon discover that the same logic requires the preservation in
operating order of other software which ran in concert with the
target package. -

Up front in our planning, therefore, we need to address the
question of whether it is necessary to be able to run the software
a software archive. Our conclusion, I believe, will depend almost
entirely on the answer to a prior guestion; What are the purposes
the archive? If the answer is public display or visitor education,
f,then—the software must run to be apprec1ated Since the answer is
support scholarly research, the question is considerably more
complex.

First wé should consldér Just what is at stake. 1If we determine

in

of

to

‘that meaningful kinds of historical research on software code require

the preservation of associated software and hardware systems in
working order, it is exceptionally unlikely that much software will
ever be preserved, and that fraction which is will be retained,
almost by definition, in museuns. If, on the other hand, we save
software code and documentation for which the enabling software and

hardware tools are lacking, we must know what kinds of scholarly

-4 -

[ea

research can be conducted about software without running it and the

kinds of assoclated documentary materials which will best support

that research.

Let us define the issue tightly, so as to make certain that we are
not setting up a straw man. There is no debate over whether research
can be conducted on the commercial distribution of software, or its
legal protection, or the mechanisms of social recognition among
communities of developers, or the impact of particular products or
types of products on spheres Qf business. Surely no one will dispute
that each these kinds of research can be conducted-without code, that
each will contribute to understanding the history of software, and
‘that, therefore, documentation to support these kinds of research are
apprpriately collected by a,softwarebarchive. Many forms of
material, from advertising copy to oral history tapes, will
contribute to this history, and the underlying story will be
’wapprec1ated by laymen andg- ‘will be: acce551b1e ~through exhibits,

‘ wlthout recourse to details of the code. Nor is there any debate

: that even though software documentation and advertlslng campaign
Erecozds may be of value in understanding why one product succeeded
'where another failed, we will better appreciate consumer was
res1stance if we can "feel" the product and see it work. Finally,
there is no dispute that published sources from the time and the
correspondence of software company executlves and their clients will
point to the correct, source of the failure, even if we are deprived
of a first hand "fee]', |

What, then, is the utility of saving the software (and the

hardware on which it runs) in operating condition? What kinds of

—ug-

research can only be conducted, or can be conducted significantly
easier, this way?

One variety of scholarly research which will not be satisfied
w1thout recourse to the code is called "internalist" history of
science or intellectual history. It is concerned with the development
of concepts and the ways in which they are articulated. In order to
know whether a software designer or programmer employed a particular
recursion technique or constructed independently executing modules,
we need to examine the code. To understand a departure in Al
Programming, we ﬁay need to see how LISP demons were employed.
However, the fact that many of the questions which intellectual
historians might want to ask can only be answered from examining
code, does not mean that they could be answered by running a

¥program. Indeed, the foregoing examples are illustrative of

“questions which:would not be clarlfied by having the- program operate;
““*%they can only.be: answered by dissection and analysis. One of the
klnds of: research which the software archive does want to support is
_precisely‘this type of intellectual history. It is for this reason
that the archive will often wish to acqulre specific routines, or
modules, even: though the systems of which they are components are not
historically important.

As is axiomatic among systems designers, one cannot fully
understand a complex system by the study of its parts. Software is,
of course, only one component in a complex system consisting of other
software, firmware, hardware, communications media, standards, data,
people etc,. The kinds of 1nterrelat10nships and dependencies which

exlst in complex systems are extremely difficult, if not impossible,

—4Q—

to comprehend in the abstract. This is, of course, one of the reasons

why software undergoes so many releases; capabilitles which

implemented. Changes to the appli;ation suggegt needs to optimize
features of the underlying environment which ls then changed in
response. As in any ecological system, these adjustments are taking
Place all the time.

The ecological metaphor suggests that researchers wishing to
understand how systems actually worked would be seriously handicapped
if the software could not be made to "run" as desxgned But even
~retaining every release of an application System, and all the
software and hardware releases which took place over its life, would
not allow the researcher to model how somethlng actually worked at a
spec1f1c site. Systemuvsoftware Specialists. are notoriously |
brilliant lclever at applylng flxes to their. Tocal systems, and
:equally poor at documenting them. The way.the software actually ran.
lat a particular place and time is nearly impossible. to define, to say
-ﬁnothing of trying to replicate it. Even if we assumed that the
l"conflggfgplon management" hlstoryhof a:site_was{pgrfectlyr
?documented, it is extremely unlikely that we could ever reconstruct

it, at least not without a large staff of systems Programmers, and

This is not to Suggest that there is no value in seeing how a
Piece of software ran, or was intended to run. Much can be learned

from such an €Xperience, whether as a simulation, on film or by

—-ge—

i

running it on the actual device for which 1t-was designed. It is to
argue however that too much can be made of the value of such "live"
study of software for research purposes, and that with very few
exceptions the costs of achieving such an end will be found to
greatly outweigh the benefits.

I1f this conclusion is sound, there is little reason to retain
software code in the original storage media or formats.-If we don't
have working seven inch magnetic drives attached to the appropriate
system with all the required software and output devices of the
period, then we might as well take the seven inch tape and transfer
its contents (while this is still possible using commercial service
bureaus) to a medium which will be accessible to our research
clientele. While code which i1s in print form need not be made
machine readable, code which is already in a machine readable format
should almost certainly be maintained in maéhjihe‘readable form on a

contemporary medium, 1f possible (with the current preference being

'secured directories on hard drives or WORM drives. When the program

 15mcopied onto new media, and the original medium is an artifact of

intrinsic historical interest, such as the Teletype Tape which input
Bill Gates' BASIC interpreter for the Altair cdmputer, the artifact
can be accessionedkinto the Museum. In such a case both the copied
code (used for historical research purposes) and the original
artifact (used for exhibit purposes) would be kept. A similar case
would be made for the first program commercially distributed on five
and one-quarter inch floppies or some like distiction, but in most
cases the original format is irrelevant.

Obversely, 1f the computers which ran a particular program are not

Sy —

in existence anywhere, then retaining the system code would be futile

if we believed that software had to be run to be studied. Those with

whom I have discussed this issue seem to be in agreement that the
argument for keeping code is actually stronger for such extinct
hardware environments than it is for hardware environments which have
been preserved or documented. While nearly everyone concurred that
it would be acceptable for research purposes to retain only those
modules, routines or even sub-routines which represented interesting
departures with large scale systems written on computers which still
exist or have been well documented, they saw benefits to retaining
the complete code in the case of systems which don't exist and/or are
poorly documented. The complete code will suggest the functions which
lie beyond it; if these are runningre]sewhere, it is not worth
keeping anothér copy, but if they are not documented, the code of an

application which calls them may suggest. aspects of their design.

PR

-Gy —

APPENDIX 2
Legal Issues:

Anyone considering creating a software archive or museum
confronts a number of questions which can best be answered by an
appreciation of the legal status of software as a protected asset.
Can software owners and developers get protection for their products
if they are deposited in an archive organized for histoiical
research? What kinds of uses can the archive permit users to make of
the software deposited with them? And who owns the software, and is
therefore able to give it to the archive? |

~The same review of the legal environment surrounding software
protection allows us to answer the question of whether copyright and
patent office records will be an important source for identifying the
universe of software and establishing what novel features of that
universe. should be conside;ed for archival collection.: |
. The authoritiative source for any review of the legai issues
surrounding software is The Computer Law Monitor (CLM). CLM reports
on Federal court and state superior and supreme court rulings on
matters of cqpyright, patent, trade secret and trademark protection
for computer software and firmware (chips, microcode etc.) as well as
about many other legai matters relafing to computing. Since laws,
and court interpretations of them, can change, CLM should be
considered a continuing source for anwering the questions posed
above.
As of the beginning of 1987, certain conclusions are warrented.
First, while copyright protection has been extended to all

software programs in recent years (Apple v. Formula International),

-3 -

the situation has been sufficiently confused until 1985 to limit the
utility of copyright office files for comprehensive analysis of the
software universe.

Secondly, the courts have recently upheld strict
interpretations of the rights of copyright holders. They have ruled
that software is tangible personal pfoperty (National Surety Corp v.
Allied Systems) and awarded significant damages for its
misappropriation. They have made it clear that printing the code does
not reduce rights to protect against its copying in electronic form
(Micro-Sparc inc.v Amtype Corp, Apple v. Formula International), and
they have ruled that reproducing the concepts and flow of code in

:another language (Whelan Associates v. Jaslow Dental Labs) or even

-making code from copyrighted English language statements of methods

~(Williams v. Arndt) is a violation of the act. They have further
‘;ruled that the programs need not have a copyright notice on them, if
j{ghey are%éistributed with written material bearing the notice (Koontz

: ’Jaffarian). Finally, they have applied copyright protection to

:ideo games (Midway Mfg. v. Dirkschneider) and other computer
ﬁstructions S0 long as these are not determined to be the only way
;to produce a particular result. These protectlons should be adequate
.to‘assure the future protection of owners of software who deposit
such materials as code and the records of its development in
archives.
Thirdly, the courts have provided positive incentives for
archiving the records of the design and development process by ruling
that in the absence of such records of independent development,

Charges that software was copied illegally can be upheld by

comparison of the resulting software in copyright and trade secret

suits (Dickerman Associates v. Tiverton Bottled Gas). In other

decisions about trade secrets, the courts have placed a substantial
burden on the holders of trade secrets to demonstrate that they
possessed a secret which gave them competitive advantage, that they
took measures to prevent the disclosure, that they had a confident
relationship with the party charged with disclosure and that when
adopted for use the trade secret worked to their financial

detriment. 1In the main, these requirements, along with growing

protectioh in copyright and patents, méy have reduced the appeal of

trade secrets as a method of protecting softeware, but they also make

it clear that when this method has been employed, depositing the

information in an archive, even with strict instructions to keep it
-Closed until some future date, would risk the protection afforded by
secrecy. In these cases it may be necessary for the archive to -
ivga;;qpéq‘fo;‘a future deposit, with the materials remaining inthe
custody of the owner or a. third party acting as the owners confident
agent, until that date.

: ng:thly; patent_protection:has~been extended to ROM chips
(Diamond v Brédley) and may be extended to other forms of microcode
(NEC Corp v. Intel Corp. still underway) despite earlier rulings that
software, as a "calculation, mathematical formula or algorithm" was
not subject to patent. TI settled out of court with Fujitsu and Sharp
early in January 1987 under trerms which suggest that patent
protections for RAM chips are now perceived to have real teeth. Now
that computer code embodied in firmware is recognized as a

"mechanism"” and may be patented, we can expect the patent offlice

-

files to become an increasingly good source for assessment of the

direction of firmware development (especlally since patentees must

arque why their invcentions are novel). Patent protection also
depends on demonstrated development documentation, so the opening of
pPatent protection.also bodes well for archives.

However, the courts have not made the task of archives easier by
their rulings on software ownership. In the case of Josfens’Inc. v
National Computer Systems Inc. for example, they ruled that the
purchaser of a proprietary software package owned the rights to the
package as a whole, not to "the individual routines or lines of
code", which, by default, belonggd to the developer. 1In S&H Computer
Systems v SAS Institpte, the court ruled that\SAS was prohibited from
copyrighting its software due to haQing accepted government funding
early in the development process (before incorporating) which
requ1red products to be in the public domaln In numerous rulings on

: employment of technical staff, the courts have ruled that software
thOducts belong to employers, but that software concepts belong to
»their inventors. Since an historical archive will be interested both
 ;in collecting software products (a relatively straightforward o=

- ownership issue) and software coﬁcepts (a much more complex issue,
lsince they must be embodied in code which may belong to someone other
than the creator), they will need to be awafe of these issues and
seek the protection of joint donations when that is appropriate.

Finally, the courts have been extremely clear about what
constitutes fair use of protected (cppyriqht) materials. In this they
have clarified for a software archive what it may and may not permit

of its users. Fair use includes any access which serves a public

P 1

purpose such as criticism, comment, news reporting, teaching,
scholarship and research so long as the activity is not for profit
and does not harm the potential market value of the work. Since any
study of software and its development conducted in an archive would
meet these tests, except for a use which resulted in copying the work
for resale or reproduction in a compéting product (covered by the
provisions of copyright) it would seem that a software archive is
protected in the issue of user access simply by assuring that it is
understood that all materials in its custody are covered by copyright
- Jjust as in any traditional archive. Exhibit uses, reproduction for
explangtory,‘educational and scholarly purposes, and technical

criticism would all be permitted.

-5 -

APPENDIX 3
ARCHIVISTS CONTACTED IN PHONE SURVEY

High Technology settings:
Joan Warnow - AIP Center for History of Physics (Bookhaven)
Vicki Davis - Lawrence Berkeley Laboratories
David Baldwin - MITRE
Government Archives:
Harlod Naugler & John McDonald - Public Archives of Canada
John Fleckner - Smithsonian Institution
Computer Manufacturers:
William Rofes & Robert Pokorak- IBM
Bruce Bremmer - CBI
Professional Associations:
Linda Resnik - American Society for Information Science
Brian Kahin - EDUCOM
Universities: e
Maynard Brichford - University of Illinois
Tom Hickerson - Cornell T
Helen Samuels - MIT

APPENDIX 4

Forms of Material for Documenting Software History

The process of developing, manufacturing, distributing and selling
software is not fundamentally different from other research and
development and marketting processes and can be expected to generate
similar types of records except in a few respects, noted in more
detail below. The best assessment of the Significance and utility of
different types of records, in the context of the place they played
within the R&D process, is presented in Haas, Samuels & Simmons,

Appraising the Records of Modern Science & Technology: A Guide

(Cambridgé, MIT, 1985). Unfortunately, Haas, Samuel & Simmons
érovide no guidance regarding software, and little with respect to
.processes driven by software. When we consider that most of the tools
.currently being reviewed in Science for use in modern R&D
tilaborétories are either software or software based integrated
systems, fhe importance of providing better guidance is clear. In»
addition,. archivists concerned exclusively with the preservation of
data compiled by computers have made significant progress in the past
decade in establishing standard methods for archiving of
Machine-Readable Data Files. Their guidance asserts that the data
should be rendered software ihdependent by rewriting it to sequential
data tapes documented by fixed field code books. This practice,
while preserving the data for future social scientific analysis, has
the potential of seriously impacting on our ability to understand the
meaning of the data to those who compiled it (ie. how they were able

to use it in its native implementation). It is also easlily misread

- 53—

by archivists without any technical training to recommend that they

dlspose of software and software related documentation, which could

reduce the universe of such documentation. Once the Computer Museum
determines what documentation of software and software history is
most valuable for research, it should publish a corrective article or
brochure to assist archivists to separate the issues of how best to
retain data files for reuse and how best to document historical uses
of computer based systems.

Software Development:

Software development_does not differ greatly from other creative
enterprises - it is essentially an authoring process, whether done by
.an individual or a team. Obviously if a team is involved, more
explicit outlines of the product, functional decompositions of its
mbdules, and formal definitions of its interfaces, can be expected to
have been pzodﬁced prior to and4durin§'thé process. Often systems
 intten byrindividuals will ‘have such documéntation ¢reated ‘for them
only after the fact. For historical research; ‘contemporanecus &
;éécumentation is much more interesting, since it reveals changing- '
 %Ssumpt1dns, expectations and approaches. As with literary products,
vﬁpre can be made of drafts and discarded code than they deserve;
'éometimes such abortive efforts and early stabs are interesting, but
except in the case of the extraordinary product and exceptional
creatlve genius, these materials will never be used by researchers
and, indeed, little can be learned from fheir gropping progress
towards the finished product.

Hardware/Software interaction effects:

Software makes generalized machines behave in specialized

- {po ~

ways. Obviously there are two ways to skin this cat - the other being
to design the hardware to behave in the desired fashion. All software
is, to some extent, making use of particular facilities of the
machine environment (some of which may derive from lower level
software) in which it is running.AEver since the very earliest
machines, the engineers who construct the hardware and those who
write the software have been separate; one of the most important and
interesting issues in the history of computing is the interaction
between them. It is truly a two way interaction with some functions
migrating from hardware into software (typically to make them more
flexible aﬁd adaptable) and others migrtating from software into
hardware (usually to optimize performance).

These adjustments generally take place in the development process,
.as part of the testing and tuning of systems, and over the course of
a system?s»}ifeecycle, with new'réleases‘of both hardware and
'fﬁsoﬁpqqref Documentation is-likely to be found in internal memoranda.
andvprogzessl;eports; indeed without . these identifying the causes of
changegtgqnggde,from,one iteration to the next would be difficult.
Alpha;and beta test documentation, will be explicit about the reasons
fo; these_changes.(in the case of beta sites, the peeds of users will .
be concretely stated here, if not in the design documents). The
minutes and petitions of users groups, if these can be found, will
also help explainlboth interactions and unilateral adjustments to
hardware or software. Published reviews, benchmarks, post-bidding
analysis in corporate offices which lose a major contract, and other
critical assessments, also have an impact, and are excellent

documentation to have in conjunction with the altered product.

Educational contexts:
More than most products of our society, software has been

influenced by its own seedbed, the university teaching environment.
A number of significant computing languages have their source in
instructional needs (BASIC, LISP) and because early computing was
born in universities, so do many basic design concepts. Computing
remains an industry which relies heavily on academics to forge new
concepts, as illustrated by the immense programs operated by each of
the major computing manufacturers to give computers to universities
and the reliance of the government on super-computer centers
associated with major research universities to give the United States
the lead in the next generation of computers. Records of grants by
industry and government to academics; and their reports on their
findings, will play an important role in documenting the history of
- software. Fortunately, many uniVersitiés will be retaining much of
;;fhis.record as a routine part of their archival programs.
i%ﬁpfortunately few of these»programséwqrewfoundedjprior to 1970, and

. they have much to collect; alerting archivists to ‘the value of these

 ;§cords for the history of software will increase the likelihood of
.;;heir.retgntion.
,‘The Records of Software Protection:

While, ownership rights in software were poorly protected by each
of the methods available: copyright, patents, code hiding and trade
secrets until recently, any method of protecting ownership involves
making and keeping records in the offices of the corporate counsel.
Now that copyright and patent protection is becoming stronger, we can

expect to see greater use of these methods, and greater historical

interest in the files of patent attorneys and the copyright office.
The requirements of the trade secrets law are such that those who
used this as a method of protection would also have had to construct
files demonstrating how they invented/developed a technique which
gave them a competitive advantage. Thesc records, also found in
corporate legal files, will be of future interest to historians.

The Software Business:

Since software emexrged as a commodity it has been the subject of a
massive ephemeral literature (in print and audio-visual formats) of
advertisements, brochures, catalogs, demo disks, endorsements...etc.
If the history of other aspects of our industrial society, such as
the flowering of the machine age in the second half of the nineteenth
century, are any indication, historians will find these ephemera (if
theyfind them at all) to be extremely valuable evidence. Those of us
who live with this stuff crossing our desks everyday khow‘that we are
talking about immense volumes. Strategies for capturing these volumes
need: to be developed, whether they are cooperative collecting along
dividediiines of responsibility or random or periodic sampling.
Socia;ﬁorganizafion:

Alexis de Tocqueville observed that American's organizé for any
and all purposes, and they still do. There are hundreds of
organizations of persons involved in developing and using software.
As foimal mechanisms for‘communication.and as part of the phenomenon
themselves, these organizations should be documented. Some have
already formed archives, the IEEE for instance. Others have elected
archives; AFIPS is at the CBI. Still others are exploring it; ASIS is

in negotiation with two potential repositories. Yet others will have

to be encouraged and cajoled by the Computer Museum and its

colleaglial institutions. Membership organization records are often

thought to be baren, but committtees of the ACM, IEEE, ANSI, and
other organizatibns have played critical roles in the development of
standards which shape software, and provided for training and
professional education. In éddition they have testified before‘ \
Congress, taken part in international conferences and trade
delegations, and sponsored software exchanges amoung members and even

the development of specialized software to meet shared needs.

~eM -

FOOTNOTES:

1) My search for the origin of the term "software" ended at the
Time-Life volume entitled Software, which locates it as being in
general use by the early 1960's. I assume if there was a better
answer, they would have researched it, although I have a vagque
recollection that William Safire once was more precise...

2) Much important software developed on pre-1946 machines is known
from the published literature, although this is inadequate for
understanding the sources of certain ideas or the trial and error
involved; cf.

Adele Goldfine, 1946, trajectory calculation program for the ENIAC
[reprinted article in Randell]

Claude Shannon, 1938, logic program for his switching relay
{Trans. Am. inst. Elect. Engin. 1938]

R.E. Beard, 1942, actuarial table calculation programs for ?
[J. Institute of actuaries, v.71, 1942 p,193-227)

Howard Aiken, 1944, Manual of Operation of the Automatic Sequence
Controlled Calculator, Harvard U.Computation Laboratory

Annals, vol.l

[reprinted by Babbage Inst.]

3) Mass produced is to be taken as a kind of production, not a
volume: UNIVAC sold 15 UNIVAC I's. IBM manufactured 19 701's (the
number sold is debated) and sold 15 IBM 702's.

4) The IBM tape unit is discussed in Rene Moreau, The Computer Comes
- of Age: The People, the Hardware and the Software, (Cambridge Ma,
MIT Press, 1984). Also see Charles J. Bache, Lyle R. Johnson,

John H.Palmer & Emerson W. Pugh, IBM's Early Computers,
(Cambridge, MIT Press, 1986)
-~ 5) On Patrick see Moreau, op.cit #4; On Nutt, see Bache, ibid.
~+»6) John Backus "History of Fortran I,I1I,III", in Wexelblat, ed. T
-~ History of Programming Lanqua es, (NY, Academic Press, 1981);

. ~also articles on LISP, ALGOL, COBOL etc.
-7) Bache, op.cit. #4 discusses the origin of SHARE. It is worth
- “noting that IBM archives contains "most of the published SHARE
:reports"”
8) Brian Kahin discusses the sociology of software distribution and
~ the efforts to establish a new mechanism better suited to the
needs of academia, in his draft report on the EDUCOM Software
Initiative (November 11, 1986), cited by permission of the author
with the understanding that a final draft of this report will be
- issued by EDUCOM in the near future.

9) Jean Sammett maintains an archive relating to languages at the IBM
Federal Systems Division, in Bethesda Md.

10) John McCarthy reports that since the N.E. Computation Center was
not scheduled to get its IBM 704 until 1957, the design of LISP,
including such central issues as how to use the 15 bit register
which gave us cdr and car, were made without a computer. In the
history of Fortran, we find sites which were awaiting the
delivery of the compiler writing application code to be run when
a compiler was delivered. see Wexelblat, op.cit #6

11) Edmund C. Berkeley, Giant Brains: or Machines that Think (NY,
John Wiley & Sons, 1949). Editors of the Harvard Business Review,
The Digital Computer: Monster or Slave (Boston, HBR, 1955)

12)

13)

14)
15)

John Pfeiffer, The Thinking Machine (Philadelphia, J.P.
Lippincott, 1962) based in large part on a TV program broadcast
by CBS, Oct. 26 1960, as part of the Centennial of MIT. In
retrospect, given the speed at which such innovations began to
impact on daily life, it is startling to realize that the MIT
Computation Center, the earliest computing facility at a
university which was not dedicated to developing new computers
but to using existing computers, was opened to researchers from
30 universities in June of 1957.

Sherry Turkle, The Second Self: Computers & The Human Spirit,
(NY, Simon & Schuster, 1984)

Science, December 15,1986

My basic point here is that no single classification can serve to
quide collecting. It would be desirable to use a scheme which
points to the published literature to index the acquired holdings
of a repository, nevertheless, the ACM scheme has some internal
inconsistencies which will have to be overcome before it can be
used as an indexing scheme for acquired material. For instance,
the ACM scheme provides for software under the major heading
Software (with sub-headings for programming techniques, software
engineering, programming languages and operating systems), as
well as under mathematical software (a sub-heading of Mathematics
of Computation, Database management - Languages (a sub-heading of
Information systems), Information storage and retrieval - systems
and software (a sub-heading of Information Systems), Information
Systems Applications - office systems and communications
applications (both sub-headings of Information systems). In

-addition it provides a major heading for Computer Applications,

16)

17)

18)

19)

but includes Artificial Intelligence - Languages and Software and
all aspects of computer graphics, imagezprocessing and pattern '
recognition under Computing Methodologies. Information Science
Abstracts may prove to have a more useful scheme. g

‘The Simtel 20 file server at the U.S. Army Base at White Sands,

NM has a large library of public domain and user supported
software which was originally built at MIT, including libraries
for a large varierty of operating systems (especially UNIX, Ada
and CP/M) and is available to users of Arpanet (or Bitnet which
accesses Arpanet. :

Joan K. Haas, Helen W. Samuels & Barbara T. Simmons, Appraising
the Records of Modern Science and Technology: A Guide (Cambridge,
Mass., MIT, 1984)

These examples were selected because some collecting has already
taken place at repositories which are naturally affiliated with
communication (Bell Labs archive), automobiles (the Henry Ford
archive) and aerospace (the National Air and Space Museum)
U.S.Congress, Office of Technology Assessment, Intellectual
Property Rights in an Age of Electronics and Information,
OTA-CIT-302 (Washington, DC, USGPO, 1986)

-~ Gl =

Archives & Museum Informatics
5600 Northumberland St.
Pittsburgh, PA 15217

January 22, 1987
Gwen Bell
Director
The Computer Museum,
300 Congress St.
Boston,MA 02210

Dear Gwen,

Enclosed is the report on the first phase of my study
of software archives for the Computer Museum. I look
- forward to discussing it with you in Boston on February 6.
. Since we moved the schedule for the meeting and this
'~ report forward, I did not have the opportunity to present
the findings in a systematic conclusion within the body of
the report; I hope to present a set of concrete ‘
recommendations when we meet on February 6.
#+«= - If you have any comments or suggestions to make prior
.- to.the meeting, I'd be happy to hear from you on
412-421-4638, o ,

" ‘Sincerel ours
—_Sin y yours,

;. David Bearman

,__\n\r;w ?é\ Q‘;“ éNQLmQ. W)mamg&&;\

- N 2 N ral CoP s Sea ch,x“,ﬁe Qusdepudee,

T et Mouk el Nawse R QA Ak, 66 wones e
\H‘L.q%? Con s Qe yg{:TLx_‘4«\Lu%_~k$JJ\(:ouUL\
W algoud Xulg AV SF-JRNN vumA»Q\:*\«««,a_~¥v (51§¥H\0$4>
W plev e SV N PG
Ta\t%w%m.

