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1 Introduction 

Loupe is the symbolic debugger for Modula-2+ (the dialect of Modula-2 
developed and used at DEC's Systems Research Center). Loupe provides 
most of the features one would expect from a modern high-level language 
debugger-mostly in the ways one would expect-but with some number of 
interesting capabilities. Loupe understands the Modula-2+ type system; 
you (the user) can use Loupe to inspect and modify the data values in your 
program. Loupe also treats types and modules as values, and lets you inspect 
them. You can type the names of variables and get their values; you can 
also evaluate arbitrary Modula-2+ expressions. Loupe provides a keyword­
oriented command language whose design was iterated until it became easy 
to use. Loupe itself is programmable, as well as providing mechanisms for 
controlling the execution of the program being debugged. The design of 
Loupe evolved over time, guided by its users' reactions. 

2 Displaying Values 

Loupe understands the Modula-2+ type system; you can use Loupe to in­
spect and modify the data values in your program. 

The output syntax for a value is the same as the input syntax. Some val­
ues can be input in multiple ways (144C = 'd • = "d" = '\144' = "\144"); 
these are canonicalized on output ('d', but "d" for the one-character string 
as distinguished from the character constant, and OC for the null character, 
and so on). 
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Modula-2+ has no input syntax for values of some types. For exam­
ple, RECORD values have no input syntax, nor do ARRAY values (except for 
character arrays in their role as character strings), nor do POINTER or REF 
values, nor do System. Address values, and so on. Loupe provides no input 
syntax for such values (except for circumlocutions like LOOPHOLE(929e4H, 
System. Address)), but it manufactures an output syntax. 

RECORD values print as a list of name-value pairs, as in <seconds = 
509747164, microseconds = 210000>. Array values print as a list of val­
ues, as in <O, 10, -11, 1, 0, 0, 8, -10, 15, 3>. Angle-brackets are 
used to enclose these lists because angle brackets were otherwise unused. 

Early in Loupe's development, RECORD and ARRAY values were displayed 
prefixed by their type name, if any; this was by analogy to SET values. Back 
then, Loupe would display the above RECORD value as Time. T<seconds = 
509747164, microseconds = 210000>. Users complained that this was 
too verbose ("If I wanted to know its type, I'd have asked for its type"). 
When the analogy with SET values was explained, users suggested that 
maybe SET values shouldn't print with type names either. In the current 
compromise, Loupe prints SET values with a leading type name, but RECORD 
and ARRAY values without. 

What about POINTER values and REF values? Loupe initially took the 
view that POINTER and REF values were just indirect names for the values 
they referenced, so a POINTER value might print as POINTER TO <seconds = 
509747164, microseconds = 210000>. Circular structures were elided, as 
well as very long or deeply nested structures (under simple user control). An 
opposing view was that POINTER values and REF values are just addresses, 
and should print in hexadecimal; the above POINTER value might print as 
08ce18H. Of course, the value of the referent and the address of the referent 
can be independently obtained by the Loupe user; the question was what 
Loupe's default output format should be. This became a religious issue, with 
neither side wanting the output syntax to detract from the true meaning 
of POINTER and REF values. The current compromise is to print POINTER 
and REF values as in POINTER TO <Time. T at <08ce18H», which greatly 
displeases only the "If I wanted to know its type, I'd have asked for its type" 
camp. 

Loupe checks POINTER and REF values for consistency before printing 
them; the referent must be accessible in memory (as might not be the case 
for an uninitialized POINTER or REF), and the typecode stored with a REF's 
referent must match the REF's type. Loupe initially printed bad POINTER 
and REF values as hexadecimal numbers (equating a typefree format with a 
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typefree value) but users didn't get the joke; Loupe now prints such values 
as,say,<the nonsensical TextCommon.CharPtr value 020202020H>. 

REF ANY values print with the name of the actual REF type prefixed, as in 
Wr. T: REF <WrV. T at <08ca74H>>; this happened not to be controversial. 

System. Address values print symbolically when possible. If the address 
is a text address within the target program, a reference into the program is 
printed, as in <Scanner.NextChar, line 63 ("c := Rd.GetChar(in); ") 
+ 0cH>. If it is a static data address, the name of the data object is 
printed, as in <ThreadsPort.readCV[O] .queue>. Local data addresses 
(stack- or heap-based) are not printed symbolically, for reasons of effi­
ciency. Fallback positions are to print addresses relative to a linker symbol 
(<_SYSTEM_transfer + 01daH>) or in hexadecimal (<086618H>). 

Since System.Address values print symbolically, you can print an ar­
bitrary number symbolically by casting it to a System. Address. Simi­
larly, an arbitrary number can be printed in hexadecimal by casting it to a 
System. Word, or in decimal by casting it to an INTEGER. This was once the 
only way to choose output format, but users complained that one should be 
able to specify the format independent of the type. Another religious war 
ensued. Loupe now lets you specify the format independent of the type: 
formats are decimal, octal, hexadecimal, address, and roman (a joke on 
the proliferation of formats, but few users read the documentation in enough 
detail to notice it; Loupe prints 1986 in roman as 0mcmlxxxviR, and accepts 
this input syntax as well). 

Loupe currently provides a hexdump command, which prints the contents 
of a range of addresses in hexadecimal and ASCII. The initial Loupe policy 
position was that such a command was unnecessary since one could (and 
should) access memory through the program's type structure, but this is 
sometimes impractical; one common use of the hexdump command is to look 
for some pattern in an area of memory that has unknown or unexpected 
contents. 

Loupe's current tty-style user interface places a premium on the use of 
screen space; the less it displays, the better. On the other hand, if you 
are forced into multiple steps to obtain some desired output, the screen 
will scroll faster than if the output were more simply available. There is 
generally a balance between brevity and verbosity, arrived at historically; 
a value that now displays as POINTER TO <Time. T at <08ce18H» would 
once have displayed as POINTER TO <the Time. T value at 08ce18H>. 

Another balance is between brevity and readability. Loupe currently pro­
vides a simple pretty-printer for its output; the RECORD value <definition = 
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<in= REF <ScopeDef.ScopeR at <08b244H», name= "CARDINAL">, tag 
= TypeDef.SubRangeTag, subRange =<type= REF <TypeDef.TR at <08cb24H>>, 
a = 0, b = 2147483647» might print 

<definition= 
<in= 

REF 
<ScopeDef.ScopeR at <08b244H>>, 

name= "CARDINAL">, 
tag= TypeDef.SubRangeTag, 
subRange = 

<type= 
REF <TypeDef.TR at <08cb24H>>, 

a= 0, b = 2147483647>> 

(on a narrow screen). Most users find the pretty-printed form worth wasting 
screen space for, and others can disable the pretty-printer. 

3 Values 

Loupe's idea of value extends Modula-2+ 's. For example, types are consid­
ered values; if you ask for the value of System. Address, you get POINTER 
TO System. Word (if you ask for the value of System. Word, you get <WORD>, 
which is Loupe's internal model of the System. Word type). Loupe provides a 
new built-in procedure TYPEOF; asking TYPEOF (99) gives [99 .. 99] (this fol­
lows Modula-2+ 's rule for numeric constants). Asking TYPEOF (System. Word) 
gives <INTERNAL>, since it's an object internal to Loupe. 

Loupe models values and variables as (type, locative) pairs. Locatives are 
also user-visible values. Asking LOCOF (Writer. depth) might give <the 32 
bits at <loc 05d740H»; asking LOCOF(TRUE) on a VAX gives <the bits 
representation in <the bits 10000000» (Loupe's view of an immedi­
ate value). The locative can be as complex as 

<the open array of 8-bit elements with 
count at 
<the 32 bits at 

<32 bits off 
<the local at <64 bits off <ap>> with 
fp = 0926f8H and ap = 09270cH>>> 

and contents at 
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<indirect thru 
<the 32 bits at 

<the local at <64 bits off <ap>> with 
fp = 0926f8H and ap = 0927OcH>>>> 

Locatives are interesting to look at (if the user doesn't want interesting, 
the user can use System.Adr instead of LOCOF). Locatives can also be used 
wherever System. Address values can be used, if they lie on a byte boundary 
(locatives provide bit-addressing internal to Loupe). 

Modules and procedures are also values. The module Token might dis­
play as: 

<<T = 
REF 

RECORD 
CASE tag: TokenDef.Tag OF 
I TokenDef.ValueTag: value: V.T; 

ELSE name: TextCommon.Text; END; 
END>, 

<_initflag = 
<the BOOLEAN variable at 

<loc 0695aOH>>>, 
<Prin = 

<the PROCEDURE(REFANY) at 
<loc 02efO8H> with 
<<x = 

<the REFANY argument at 
<32 bits off <ap>>>>, 

<token= 
<the Token.T variable at 

<-288 bits off <fp>>>>>>>, 
<_init = 

<the PROCEDURE() at <loc 02f038H> with 
<»» 

This mechanism lets you browse through the name space. (Here, _ini t is 
the compiler-generated "initialization procedure" corresponding to Token's 
body; _initflag is used at runtime to avoid executing _init twice. Loupe 
does not attempt to hide these artifacts from the user.) 

Loupe also treats EXCEPTIONs as values. System. Fail would be dis­
played as <an EXCEPTION(System.FailArg)>. 
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Loupe does not consider stacks or stack frames to be values; this seemed 
too difficult. AB a result, the user mechanisms for browsing and manipulat­
ing control structures are distinct from those for data structures. 

4 Names 

You can type the names of variables to Loupe and get their values. As a 
default, top-level names are looked up in the global scope. Thus, the name 
Module refers to the top-level module Module; the name System refers to 
the System module; the name INTEGER refers to the built-in type INTEGER; 
and so on. 

If a procedure activation is selected, names defined in it are visible first, 
then the names in its enclosing scope (a module or a procedure), and so on 
up to the global naming scope. Since names in outer scopes may be hidden 
by names in inner scopes, Loupe predefines the (fairly unique) name Cl in 
the global scope to refer to the global scope itself; a fully qualified name can 
therefore be preceded with Cl . since Cl will probably be defined in no inner 
scope. 

A qualified name, such as System. MaxCard, is interpreted by first looking 
up System, then interpreting MaxCard in that context. The left-hand side of 
the . operator can be a module or a RECORD value, as in Modula-2+; Loupe 
also allows it to be a PROCEDURE value, in which case the stack is searched 
for an activation of that procedure and the right-hand side is interpreted in 
its context. 

Loupe does not provide unqualified dynamic scoping. If you ask for i, 
and there is no i in the selected activation, Loupe does not search up the 
stack for any i. Although such automatic searching would seem friendly in 
some instances, it would be probably be too dangerous in general. 

Loupe draws no distinction between names defined in an IMPLEMENTATION 
MODULE and names defined in a DEFINITION MODULE; information-hiding 
seems undesirable in a debugger. 

When Loupe prints a value, it might choose to print it by name. Types 
can have names; asking TYPEOF(3+4) displays INTEGER. The official name 
of a type is the first name bound to that type; if a program defines type 
A to be POINTER TO System. Word, and type B to be A, and type C to be 
B, then asking Loupe for C's value will display A. As a special case, asking 
Loupe for A's value will display POINTER TO System. Word; Loupe never 
answers a question with the same question. Note that if Loupe displayed C's 
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value as POINTER TO System. Word, the user would have no way of knowing 
that it was the same instance of POINTER TO System. Word as A; this is an 
important distinction given Modula-2+'s type semantics. 

Scopes (modules and procedures) always have names, and they are al­
ways printed by name except in response to a direct question. 

Enumerated values also have names, and are printed by name. Enumer­
ated values that are out of range ( e.g., a BOOLEAN whose ORD is 3) print in 
hexadecimal. 

Otherwise, values are not printed by name; Loupe will never print System. MaxCard 
instead of 2147483647. An early version of Loupe would have, but the rules 
for equality for ordinary values make any such mechanism impossible or 
confusing. 

Names printed by Loupe are fully qualified; a fully qualified name is al­
ways possible since scopes always have names. At one time, Loupe qualified 
names only enough for the selected context, but this seemed potentially con­
fusing to users; a name printed out a few interactions ago may no longer be 
fully correct. Loupe's current rule is justified by the maxim that the output 
format should be an input format. 

6 Expressions 

Loupe contains a full Modula-2+ expression evaluator, with a few extensions 
to increase its usefulness. 

Loupe's expression syntax is more general than Modula-2+ 's. Modula-
2+ doesn't allow the user to say Time. Now(). seconds, thereby simplifying 
compiler-writing while simultaneously enforcing programming rigor. These 
are not issues for Loupe, and the construct is useful interactively, so Loupe 
allows the construct. 

Similarly, you can say LOOPHOLE(x, ARRAY [O .. 7] OF BITS 4 FOR CARDINAL). 
Again, this is convenient in interactive use even though it may be undesirable 
m a program. 

Loupe's expression syntax was derived from Modula-2+ 's by such small 
generalizations. Loupe uses a simple recursive-descent parser, whose flexi­
bility has often been convenient, and whose simplistic error detection and 
correction pose no real problem. 

Loupe's lexical scanner began as an exact copy of the compiler's ( and its 
use in an interactive environment helped speed the discovery of several bugs). 
Changes to the scanner included extending the set of characters allowed in 
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identifiers (Loupe provides partial support for programs in languages other 
than Modula-2+, such as C and assembler, with different lexical rules for 
identifiers); additionally, any character is considered alphabetic if \-escaped. 

Semantically, Loupe's expression evaluation also extends Modula-2+'s 
for the sake of interactive convenience. REFANY values, for example, can 
be dereferenced without being NARROWed to the correct REF type; Loupe 
automatically performs the NARROW. 

Similarly, an array can be subscripted by an appropriate subrange type, 
obtaining a subarray value; "abed" [ [1 .. 2]] is "be". (Because of its syn­
tax, users tend to remember this facility as "Use double brackets to get a 
subrange"). 

Loupe implements all Modula-2+ built-in procedures except for DISPOSE, 
NEW,RAISE,System.NewProcess,System.Transfer,andSystem.UnixCall; 
implementing these correctly would require additional interaction between 
Loupe and the runtime system. Many of Modula-2+'s built-in procedures 
have proved quite handy interactively; you can ask, for example, System. Size (x). 

Many new features of Loupe are provided by built-in procedures. TYPEOF 
and LOCOF have already been mentioned. The built-in procedure AT(location, 
type) returns the type value at location. (This order of arguments is by anal­
ogy with LOOPHOLE. Loupe also accepts AT (type, location), by analogy with 
VAL. The author likes to be able to use either order without thinking, and 
usually does.) 

LINE(procedure, n) returns the System. Address of line n in procedure, 
which is sometimes useful. REG I STER( n) returns the value of register n in the 
selected activation. GETWORDAT(location, n) fetches the n-bit word at loca-
tion in a single operation, facilitating access to device registers; SETWORDAT (location, 
n, value) stores a new value in a single operation. 

Some operators and built-in procedures provided by Loupe have looser 
type-checking than in Modula-2+; this was for ease of implementation in 
Loupe. For example, one can say TRUE OR 5, which evaluates to TRUE; 
evaluating TRUE AND 5 gives a type error. 

6 Command Syntax 

If Loupe provided a full Modula-2+ interpreter, Loupe's command language 
would then be Modula-2+. On the other hand, providing a Modula-2+ inter­
preter, while quite useful in many ways, would also be quite an undertaking, 
and it is unclear how good a command language Modula-2+ would be. 
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Loupe's command language was initially based directly on expression 
evaluation, as in Lisp systems. Typing an expression caused it to be eval­
uated and the result, if any, printed. The expression syntax was slightly 
extended to include assignment; other operations were performed by special 
built-in procedures. 

So, to print x, you would type simply 

<1> X 

(Loupe prints numbered command prompts in angle brackets) and Loupe 
might reply 

4 

To set x to 6, you would type simply 

<2> X := 5 

To set a breakpoint at line 63 of Scanner. Get Char, you would type simply 

<3> BREAK(LINE(Scanner.GetChar, 63)) 

Users complained unanimously, and Loupe eventually went to a more con­
ventional keyword syntax; the examples above became 

<1> print x 
<2> set x := 5 
<3> break LINE(Scanner.GetChar, 63) 

Mter more complaints, the last finally became 

<3> break Scanner.GetChar 63 

The print command prints the value of an expression; the set command 
performs an assignment. In the original expression-oriented command syn­
tax, you could type an expression with no value, such as INC(i), and no 
value would be printed. Since print would be a misnomer for such an op­
eration, the call command was added; it takes an expression that returns 
no value (which, in Modula-2+, must be a procedure application; an empty 
argument list is added if absent) and merely evaluates it. To enforce proper 
rigor, the print command signaled an error if the expression had no value, 
and call signaled an error if the expression did; this was later relaxed to 
make print and call identical except for their names and for call's syn­
tactic insistence on a procedure call. 
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The next change was to add abbreviations. Some commands, like print, 
are so heavily used that even such a short name is cumbersome. Other com­
mands, like previousframe (formerly the built-in procedure PREVIOUSFRAME), 
are cumbersome to type even infrequently. A system of two-letter abbre­
viations was instituted: print can be abbreviated pr, previousframe can 
be abbreviated pf, and so on. All abbreviations are two letters long, for 
consistency. Some commands were not abbreviated; set has no reasonable 
two-character abbreviation, and although break could have been abbrevi­
ated br, the closely related unbreak could not have received the closely 
related ubr, and ub seemed too unpleasant. Similarly, neither the frame 
nor the frames command were abbreviated. 

In the current version of Loupe, a space at the beginning of a command 
line is taken to mean print, set or call; this almost returns to the original 
syntax for these common, simple cases. Instead of typing 

<4> print x 

{Loupe prints numbered command prompts in angle brackets) or 

<6> pr X 

you can use a leading space and type simply 

<6> X 

The initial space is very easy to type; it becomes a reflex. In fact, it 
becomes so much of a reflex that users often type an initial space before 
other commands; this is an error. In correcting for this behavior, they start 
leaving off the space in cases when they should have it; this is also an error. 
It would be nice if Loupe tried to second-guess such behavior and correct for 
it; one simple implementation of this idea, though, turned out to produce 
confusing diagnostics for syntax errors not involving extra or missing leading 
spaces. 

Commands can extend over more than one line. Loupe uses the rule, 
borrowed from BCPL, that a new-line ends a command if the command 
could syntactically end at the new-line. So, you can say 

<7> print 3+4 
7 
<8> print 3+ 

4 
7 
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In practice, this works quite well. Implementing this mechanism, and the 
leading-space mechanism, required close cooperation between Loupe's lexi­
cal scanner and its parser. 

In all cases, Loupe treats the command syntax merely as an alternative to 
the expression syntax, and turns all commands into applications of built-in 
procedures. Commands and expressions therefore differ only syntactically. 
As an escape from expression syntax into command syntax, Loupe provides 
the ! (and) brackets; enclosing a command in ! ( and ) allows it to appear 
in an expression context. Similarly, the value command, which returns the 
value of its argument, allows an expression to appear in a command context. 

Why is the ability to switch between syntaxes important? Commands 
can take arguments that can be expressions or can be other commands. For 
example, Loupe's if command should take its first argument, the predicate, 
in expression syntax rather than in command syntax; if's consequent ar­
guments would most naturally appear in command syntax, by analogy to 
Modula-2+ 's IF statement. For some arguments to some commands, though, 
it is less obvious whether they should by default be in expression syntax or 
in command syntax. Loupe's simplistic solution is that all arguments to 
all commands appear in expression syntax. This rule is easy to remember, 
although it means that you may have to type ! ( and ) more often than oth­
erwise. (This solution also has the amusing property that the end in if ... 
then ... else ... end and in similar constructs is optional since only single 
expressions appear as the arguments.) Operators take their arguments in 
expression syntax, except for the ; operator, which takes its in command 
syntax. 

Let's look at some individual commands. The print command has the 
form print [expression [format/ [, ... jj. Each expression can be followed 
by a format: decimal, octal, hexadecimal, address or roman, or their 
three-character abbreviations dee, oct, hex, adr or rom. Since the format is 
a single identifier, no syntactic ambiguity results. One print command can 
print multiple expressions, separated by commas; this is handy for tabular 
output. A trailing comma suppresses the trailing new-line on output. 

The syntax of the hexdump command is hexdump {address/ [, count/; 
defaults are chosen for the address and the count if they are absent. An 
earlier syntax which did not include the comma was syntactically ambiguous; 
hexdump ptr (newCount - oldCount) * 4 could be parsed incorrectly. If 
Loupe had used a parser mechanically derived from a formal grammar, this 
ambiguity could have been detected, but Loupe's syntax would have been 
perhaps less capable and harder to change. For backward compatability, the 
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comma was made optional. 
The break command's syntax is break loc [line} /when predicate]. Ignore 

the predicate for the moment. If loc is a procedure, then a breakpoint is set 
at its first instruction or at the specified line. If loc is a module, its initial­
ization procedure is used. If loc's type is compatible with System. Address, 
a breakpoint is set at the instruction at that address. This sort of poly­
morphism is common to many commands, and, although cumbersome to 
enumerate, seems to work well in practice. 

7 Control and Programmability 

Loupe provides the typical set of mechanisms for inspecting and controlling 
program execution. You can browse the stack and examine stack frames. 
You can browse the set of threads and focus on particular threads. The 
program can be started and stopped interactively. It can be single-stepped 
by instruction or by statement or within a procedure or by procedure call 
or by procedure return. Breakpoints can be set at interesting locations. 

( One problem with such mechanisms is their use in a concurrent Modula-
2+ environment. If you are inspecting the execution of some particular set 
of threads, it should be possible to choose whether the other threads are 
stopped or running. The uneven passage of real time is also a problem. 
Loupe's current mechanisms in this area are inadequate but have caused no 
real problems so far.) 

A breakpoint can have an associated predicate; the breakpoint will 
fire only when the predicate is true. One can say, for instance, break 
Writer. Prin when depth < 0. One can also say break Writer. Prin when 
! (print "depth =11 , depth; value FALSE) to print the value of depth 
whenever Writer. Prin is entered, but not stop. 

The stepping commands can also take predicates. The singlestep com­
mand (not abbreviated ss, since showstack was already abbreviated ss) 
steps by one machine instruction; one can say singlestep until AT(8cc04H, 
INTEGER) = 0 to solve a low-level core-smash problem before embarking on 
a bicycle tour of the Sierras. 

It is also possible to call user procedures from Loupe. Saying print 
Time.Now() calls Time .Now, which returns <seconds = 509856375, microseconds 
= 260000>, which Loupe prints. You can plan ahead and include useful de­
bugging routines into the program, then call them when necessary. It is 
interesting to note that user procedures thus called can hit breakpoints or 
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other conditions that cause a return to Loupe, as in 

<9> break Time.Now 
<Time .Now, line 186 ("PROCEDURE Now(): T; ")> 
<10> Time.Now().seconds 
running ... 
. . . debugger 
<Time. Now, line 186 ( "PROCEDURE Now() : T; 11 ) >: 
stopped at breakpoint 
<11> unbreak Now 
<12> stepup 
running ... 
. . . debugger 
returned <seconds= 609866376, microseconds= 260000> 
back to <10> 
609866376 

Here, the stepup command printed the value returned by Time. Now. Loupe 
then realized that it could resume command 10, and did so, notifying the 
user. Explicit notification is important because multiple procedure calls 
could be outstanding, and because, in the presence of coroutines or multiple 
threads, they could return in an unexpected order. 

Procedure-call is of course dangerous; calling an arbitrary procedure 
from an arbitrary situation could violate various invariants. Loupe makes 
absolutely no attempt to protect the user from such mistakes. It could 
detect some potential problems, but might thereby lull the user into a false 
sense of security. 

Another dangerous mechanism is provided by the RETURN command 
(whose name is upper-case for this reason). RETURN {value] forces a return 
from the selected procedure activation (which need not be at the top of the 
stack). One might imagine that Loupe would perform any appropriate final­
izations as part of the RETURN operation, by analogy with exception-raising. 
It does not; the rationale is that programmers provide finalizations only for 
those cases that they believe could happen, based on their knowledge of the 
program structure; they would not necessarily have planned for an abnormal 
return initiated interactively. Since Loupe cannot solve the whole problem, 
it attempts no part of the problem, although its other facilities should allow 
the user to solve the problem by hand. 

Loupe itself provides a number of programming features. To start, you 
can bind global names using the define command; define name = value 
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binds name to value in the global scope. To rebind a global name, DEFINE is 
used (upper-case for safety; one can say DEFINE FALSE = TRUE and Loupe 
will do it). A similar feature provides a history mechanism; the global name 
$ is always bound to the result of the most recent command (that had a 
result), and $n is bound to the result of command n (if any). 

(Loupe's model of sharing is different from Modula-2+'s, as seen in 

<13> X 

5 
<14> LOCOF(x) 
<the 32 bits at <loc 06d740H» 
<16> LOCOF($13) 
<the 32 bits at <loc 06d740H» 
<16> X := 4 
<17> $13 
4 

This model is convenient for interactive use; instead of saying x : = 4, one 
could have said $13 := 4. One can also have said AT(5d740h, INTEGER) 
: = O, which is often handy. For cases where such sharing is undesirable, the 
built-in procedure COPY(z) returns a copy of z that does not share storage 
with it.) 

Loupe provides a number of commands for interactive programmability. 
The lambda command returns a lambda-expression. 

<18> define floattime = !(lambda (time) 
FLOAT(time.seconds) + 
FLOAT(time.microseconds) / 1000000.0) 

<19> floattime 
<<lambda (<<"time">>) 

<<<"+">>( 
<<<"FLOAT">>( 

<<<".">>( 
<<"time">>, <<"seconds">>)>)>, 

<<<"/">>( 
<<<"FLOAT">>( 

<<<".">>( 
<<"time">>, 
<<"microseconds">>)>)>, 

<1000000.000000>)>)>> 
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<20> floattime(Time.Now()) 
running ... 
. . . debugger 
609860960.000000 

(As a syntactic variation, one can phrase the above as define floattime (time) 
= .... ) Similarly, the let and le tree commands provide syntactic sugar 
for lambda-binding, and the LET command changes the value in an existing 
binding (like Lisp's setq). 

Lambda-bindings are lexically scoped and take precedence over Modula-
2+ bindings. (Getting such a feature right can be tricky. Loupe once 
happened not to allow let oldDepth = COPY (Writer . depth) in ! (break 
Writer. Prin when depth # oldDepth) because the when predicate was 
not properly closed in the lexical context.) Loupe's provision of lambda­
evaluation guarantees tail-recursion, eliminating the need for other control 
structures. 

Even so, Loupe also provides the more conventional for, while, and 
repeat commands, which are more familiar to Modula-2+ programmers. 
(In the for command, the controlled variable is lexically bound; its type is 
deduced from the types of the bounds. As a result of the Modula-2+ type 
system, UNSIGNED iteration cannot be supported in this way.) 

8 Interaction with the Compiler 

Loupe's model of the program being debugged, and of the Modula-2+ lan­
guage, should be as close as possible to the compiler's. 

Loupe bases its model of the program being debugged on symbol-table 
information received from the compiler. The compiler produces a Unix-style 
object file for each module compiled, and passes symbolic information to 
the debugger by encoding it in cryptic ASCII strings in the object file. The 
loader coalesces these strings, uninterpreted, into the symbol table of the 
executable program. Unix defines standard ASCII encodings for symbolic 
information from C and Pascal programs; DEC's Western Research Labora­
tory's Modula-2 compiler implemented additional encodings for Modula-2; 
we improved and extended these for Modula-2+. 

The amount of symbol-table information present in the executable file is 
quite large; each module's object file contains, for example, the definitions of 
all the types defined there, plus all the types imported directly or indirectly. 
Popular types are thus defined in each module that imports them, and the 
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loader preserves all definitions. (Naturally, the definitions are represented in 
such a way as to allow Loupe to realize that they are all for the same type.) 
Since Loupe parses the symbol table into an internal form, this mechanism 
has proved cumbersome. Early versions of Loupe parsed the entire symbol 
table at once, but this was far too slow on large programs. Loupe now uses 
a complicated lazy-parsing scheme to help achieve adequate performance. 

Since Loupe's only information about the static structure of the program 
comes from the symbol table, it is important that it be as complete and ac­
curate as possible. Unfortunately, the complex symbol-table structures have 
become difficult to extend. For example, we recently improved our optimizer 
to perform lifetime analysis of local variables and common subexpressions; 
the optimizer can detect variables with disjoint lifetimes and place them 
in the same registers or locations. Unfortunately, there is no current way 
for the optimizer to pass this information along to Loupe, and there are 
practical obstacles to providing one. Since programs compiled with lifetime 
analysis could not be reliably debugged, much less easily, lifetime analysis 
has not been released to users. 

As a smaller example, the symbol-table syntax for compile-time con­
stants defined by CONST is based on the various types such constants can 
take on. A compiler change had the effect of increasing the range of types 
to include System. Address, but the symbol table syntax could not easily 
be extended. As a result, System. Address constants seem to Loupe to have 
INTEGER type. 

Our ultimate plan is to implement symbol tables using a highly efficient 
persistent-data mechanism now under development. This will allow compiler 
data structures, defined using the Modula-2+ type system, to be passed (in 
a suitably edited form) straight to Loupe, and should better allow for future 
extensions while eliminating the need for the compiler to generate and for 
Loupe to parse ASCII representations. 

Implementing Loupe has also helped to refine the compiler and the lan­
guage. In the early days of Modula-2+, it was the compiler that best defined 
the language. A language change required a compiler change, but a compiler 
change was a language change. Since implementing Loupe required reim­
plementing a large part of Modula-2+, this helped to refine the definition of 
the language. 

For example, it was nowhere documented exactly which types the var­
ious Modula-2+ operators and built-in procedures would take, and what 
types they would return. Exhaustive testing provided the results, some of 
which were surprising; for example, the constant NIL was considered type-
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compatible with INTEGER. The non-surprising results were implemented in 
Loupe; the surprising ones were marked to be fixed in the compiler and 
implemented correctly in Loupe. 

9 Interaction with the Runtime System 

Loupe also needs to understand the runtime environment presented by 
Modula-2+ and by the commonly used packages. Loupe does a poorer job 
here than elsewhere. 

Modula-2+ 's runtime system provides support for language constructs 
as well as a rich and evolving set of commonly-used packages. The run­
time system, for example, provides reference counting as a mechanism for 
garbage collection. Loupe ought to interact well with reference counting, 
but does not yet. Setting the value of a reference-counted variable, for ex­
ample, should update the reference counts of the old and new referents. 
Such updating is delicate since the program may be in the middle of making 
such an update itself. Similarly, if Loupe makes a copy or discards a copy 
of a reference-counted variable, it should update the reference count of the 
referent. 

In general, any Loupe mechanism involving detailed, automatic manip­
ulation of the program state is difficult to provide. Loupe does not provide 
the built-in procedure NEW, since the program's runtime allocator could be 
in an arbitrary state when Loupe's NEW was called. Providing NEW in Loupe 
would require tighter coupling with the runtime allocator, and would make 
it more difficult to experiment with different allocators. 

Loupe does not understand Modula-2+ exceptions as well as it should. 
For example, the stepup command steps up from the selected procedure 
activation by setting a special breakpoint at the point of return, then running 
the program until the breakpoint fires, then removing the breakpoint. If an 
exception causes the procedure to return abnormally, the breakpoint will not 
fire and the program will continue to run. Of course, a clever user could set 
a breakpoint on the procedure Signaller. Raise, which implements RAISE, 
but Loupe should be clever instead. 

Similarly, the multi-threaded runtime environment contains a wealth of 
information available raw to the experienced user, but confusing to others. 
Loupe provides some information directly in a friendly way ( e.g., whenever 
Loupe gains control from a thread different from the previous thread, Loupe 
notifies you of the new thread); it could do more. 
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Loupe also incorporates some knowledge of commonly-used packages. 
An example is the Text package, which provides operations on garbage­
collected byte strings. Most Modula-2+ programs use Text objects at some 
level, but only the implementers of the Text package should be expected to 
understand its implementation. Loupe therefore prints a Text object (which 
is a REF to a variant record) as a character string; the internal representation 
of a Text object can be examined by dereferencing it. Although Modula-2+ 
allows Text literals, Loupe cannot, since this would involve calling NEW. 

As the number of widely used types grows, Loupe will have a harder 
time keeping up. One long-term solution would be for Loupe to provide 
mechanisms to allow the implementors of the various types to provide the 
necessary debugging support themselves. For example, the Cedar system 
developed at Xerox PARC allowed a PrintProc ("print procedure") to be 
associated with a type; the PrintProc was called to print a value of that 
type. Until such systematic facilities are provided, Loupe's users can call 
such procedures manually if they exist. 

10 Retargetability 

Loupe is used to debug programs under Unix and under the Topaz software 
system on the Firefly multi-microprocessor computer. Different versions of 
the Firefly have used different processor families. 

Loupe is therefore retargetable, both across software environments and 
across processor architectures. Most of Loupe is independent of the target 
environment; a target-specific part is provided for each target. 

On Unix, Loupe allows debugging a subprocess (using Unix's ptrace 
mechanism) or post-mortem debugging from a core file. Loupe also sup­
ports teledebugging a Topaz program from another machine, either Unix or 
Topaz, or from the same machine. In the teledebugging case, the program 
need not have been started from under Loupe. Topaz core files can also be 
debugged. 

The Topaz software structure provides multiple address spaces, each with 
multiple threads of control. As a special case, the lowest-level Nub, which 
provides address spaces and threads of control, can also be teledebugged 
(from another machine, of course). Loupe's unit of debugging is a single 
address space, which is a convenient unit in practice and happens to be the 
unit across which Modula-2+ names are consistent. If you wish to debug 
multiple address spaces, you must use a separate instantiation of Loupe for 
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each. Since these Loupes cannot communicate, you cannot automatically 
manage data or events across the address spaces, but this lack has not yet 
proved a practical problem. 

There are obvious major differences in Loupe support for the various 
targets, and many small ones. For example, Loupe often invisibly derefer­
ences POINTER values to check their validity; it does this by attempting to 
fetch the first and last bytes of the referents. This is quite dangerous if the 
referent is a device register. Loupe's rules for POINTER validation are thus 
different for the different targets. 

Loupe's support for different processor families centers on their differing 
data representations. Loupe models memory as being bit-addressed, and 
has per-processor rules for mapping data items onto bit addresses; these 
rules correct for different byte orders. A very small amount of code that 
perform actual data access translates between bit addresses and machine 
addresses; this allows easy, centralized support for teledebugging between 
different processor families. (Early implementations of this mechanism were 
quite inefficient but general; the inefficiency was unimportant since the rate 
of memory access was ultimately limited by the user's speed of typing. With 
the addition of programmability to Loupe, it was necessary to speed up this 
mechanism; this speedup was achieved without loss of generality.) 
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