
Designing Loupe: A Modula-2+ Debugger

John DeTreville
Systems Research Center

Digital Equipment Corporation

March 18, 1986

1 Introduction

Loupe is the symbolic debugger for Modula-2+ (the dialect of Modula-2
developed and used at DEC's Systems Research Center). Loupe provides
most of the features one would expect from a modern high-level language
debugger-mostly in the ways one would expect-but with some number of
interesting capabilities. Loupe understands the Modula-2+ type system;
you (the user) can use Loupe to inspect and modify the data values in your
program. Loupe also treats types and modules as values, and lets you inspect
them. You can type the names of variables and get their values; you can
also evaluate arbitrary Modula-2+ expressions. Loupe provides a keyword­
oriented command language whose design was iterated until it became easy
to use. Loupe itself is programmable, as well as providing mechanisms for
controlling the execution of the program being debugged. The design of
Loupe evolved over time, guided by its users' reactions.

2 Displaying Values

Loupe understands the Modula-2+ type system; you can use Loupe to in­
spect and modify the data values in your program.

The output syntax for a value is the same as the input syntax. Some val­
ues can be input in multiple ways (144C = 'd • = "d" = '\144' = "\144");
these are canonicalized on output ('d', but "d" for the one-character string
as distinguished from the character constant, and OC for the null character,
and so on).

1

----- ----------

Modula-2+ has no input syntax for values of some types. For exam­
ple, RECORD values have no input syntax, nor do ARRAY values (except for
character arrays in their role as character strings), nor do POINTER or REF
values, nor do System. Address values, and so on. Loupe provides no input
syntax for such values (except for circumlocutions like LOOPHOLE(929e4H,
System. Address)), but it manufactures an output syntax.

RECORD values print as a list of name-value pairs, as in <seconds =
509747164, microseconds = 210000>. Array values print as a list of val­
ues, as in <O, 10, -11, 1, 0, 0, 8, -10, 15, 3>. Angle-brackets are
used to enclose these lists because angle brackets were otherwise unused.

Early in Loupe's development, RECORD and ARRAY values were displayed
prefixed by their type name, if any; this was by analogy to SET values. Back
then, Loupe would display the above RECORD value as Time. T<seconds =
509747164, microseconds = 210000>. Users complained that this was
too verbose ("If I wanted to know its type, I'd have asked for its type").
When the analogy with SET values was explained, users suggested that
maybe SET values shouldn't print with type names either. In the current
compromise, Loupe prints SET values with a leading type name, but RECORD
and ARRAY values without.

What about POINTER values and REF values? Loupe initially took the
view that POINTER and REF values were just indirect names for the values
they referenced, so a POINTER value might print as POINTER TO <seconds =
509747164, microseconds = 210000>. Circular structures were elided, as
well as very long or deeply nested structures (under simple user control). An
opposing view was that POINTER values and REF values are just addresses,
and should print in hexadecimal; the above POINTER value might print as
08ce18H. Of course, the value of the referent and the address of the referent
can be independently obtained by the Loupe user; the question was what
Loupe's default output format should be. This became a religious issue, with
neither side wanting the output syntax to detract from the true meaning
of POINTER and REF values. The current compromise is to print POINTER
and REF values as in POINTER TO <Time. T at <08ce18H», which greatly
displeases only the "If I wanted to know its type, I'd have asked for its type"
camp.

Loupe checks POINTER and REF values for consistency before printing
them; the referent must be accessible in memory (as might not be the case
for an uninitialized POINTER or REF), and the typecode stored with a REF's
referent must match the REF's type. Loupe initially printed bad POINTER
and REF values as hexadecimal numbers (equating a typefree format with a

2

typefree value) but users didn't get the joke; Loupe now prints such values
as,say,<the nonsensical TextCommon.CharPtr value 020202020H>.

REF ANY values print with the name of the actual REF type prefixed, as in
Wr. T: REF <WrV. T at <08ca74H>>; this happened not to be controversial.

System. Address values print symbolically when possible. If the address
is a text address within the target program, a reference into the program is
printed, as in <Scanner.NextChar, line 63 ("c := Rd.GetChar(in); ")
+ 0cH>. If it is a static data address, the name of the data object is
printed, as in <ThreadsPort.readCV[O] .queue>. Local data addresses
(stack- or heap-based) are not printed symbolically, for reasons of effi­
ciency. Fallback positions are to print addresses relative to a linker symbol
(<_SYSTEM_transfer + 01daH>) or in hexadecimal (<086618H>).

Since System.Address values print symbolically, you can print an ar­
bitrary number symbolically by casting it to a System. Address. Simi­
larly, an arbitrary number can be printed in hexadecimal by casting it to a
System. Word, or in decimal by casting it to an INTEGER. This was once the
only way to choose output format, but users complained that one should be
able to specify the format independent of the type. Another religious war
ensued. Loupe now lets you specify the format independent of the type:
formats are decimal, octal, hexadecimal, address, and roman (a joke on
the proliferation of formats, but few users read the documentation in enough
detail to notice it; Loupe prints 1986 in roman as 0mcmlxxxviR, and accepts
this input syntax as well).

Loupe currently provides a hexdump command, which prints the contents
of a range of addresses in hexadecimal and ASCII. The initial Loupe policy
position was that such a command was unnecessary since one could (and
should) access memory through the program's type structure, but this is
sometimes impractical; one common use of the hexdump command is to look
for some pattern in an area of memory that has unknown or unexpected
contents.

Loupe's current tty-style user interface places a premium on the use of
screen space; the less it displays, the better. On the other hand, if you
are forced into multiple steps to obtain some desired output, the screen
will scroll faster than if the output were more simply available. There is
generally a balance between brevity and verbosity, arrived at historically;
a value that now displays as POINTER TO <Time. T at <08ce18H» would
once have displayed as POINTER TO <the Time. T value at 08ce18H>.

Another balance is between brevity and readability. Loupe currently pro­
vides a simple pretty-printer for its output; the RECORD value <definition =

3

<in= REF <ScopeDef.ScopeR at <08b244H», name= "CARDINAL">, tag
= TypeDef.SubRangeTag, subRange =<type= REF <TypeDef.TR at <08cb24H>>,
a = 0, b = 2147483647» might print

<definition=
<in=

REF
<ScopeDef.ScopeR at <08b244H>>,

name= "CARDINAL">,
tag= TypeDef.SubRangeTag,
subRange =

<type=
REF <TypeDef.TR at <08cb24H>>,

a= 0, b = 2147483647>>

(on a narrow screen). Most users find the pretty-printed form worth wasting
screen space for, and others can disable the pretty-printer.

3 Values

Loupe's idea of value extends Modula-2+ 's. For example, types are consid­
ered values; if you ask for the value of System. Address, you get POINTER
TO System. Word (if you ask for the value of System. Word, you get <WORD>,
which is Loupe's internal model of the System. Word type). Loupe provides a
new built-in procedure TYPEOF; asking TYPEOF (99) gives [99 .. 99] (this fol­
lows Modula-2+ 's rule for numeric constants). Asking TYPEOF (System. Word)
gives <INTERNAL>, since it's an object internal to Loupe.

Loupe models values and variables as (type, locative) pairs. Locatives are
also user-visible values. Asking LOCOF (Writer. depth) might give <the 32
bits at <loc 05d740H»; asking LOCOF(TRUE) on a VAX gives <the bits
representation in <the bits 10000000» (Loupe's view of an immedi­
ate value). The locative can be as complex as

<the open array of 8-bit elements with
count at
<the 32 bits at

<32 bits off
<the local at <64 bits off <ap>> with
fp = 0926f8H and ap = 09270cH>>>

and contents at

4

<indirect thru
<the 32 bits at

<the local at <64 bits off <ap>> with
fp = 0926f8H and ap = 0927OcH>>>>

Locatives are interesting to look at (if the user doesn't want interesting,
the user can use System.Adr instead of LOCOF). Locatives can also be used
wherever System. Address values can be used, if they lie on a byte boundary
(locatives provide bit-addressing internal to Loupe).

Modules and procedures are also values. The module Token might dis­
play as:

<<T =
REF

RECORD
CASE tag: TokenDef.Tag OF
I TokenDef.ValueTag: value: V.T;

ELSE name: TextCommon.Text; END;
END>,

<_initflag =
<the BOOLEAN variable at

<loc 0695aOH>>>,
<Prin =

<the PROCEDURE(REFANY) at
<loc 02efO8H> with
<<x =

<the REFANY argument at
<32 bits off <ap>>>>,

<token=
<the Token.T variable at

<-288 bits off <fp>>>>>>>,
<_init =

<the PROCEDURE() at <loc 02f038H> with
<»»

This mechanism lets you browse through the name space. (Here, _ini t is
the compiler-generated "initialization procedure" corresponding to Token's
body; _initflag is used at runtime to avoid executing _init twice. Loupe
does not attempt to hide these artifacts from the user.)

Loupe also treats EXCEPTIONs as values. System. Fail would be dis­
played as <an EXCEPTION(System.FailArg)>.

5

Loupe does not consider stacks or stack frames to be values; this seemed
too difficult. AB a result, the user mechanisms for browsing and manipulat­
ing control structures are distinct from those for data structures.

4 Names

You can type the names of variables to Loupe and get their values. As a
default, top-level names are looked up in the global scope. Thus, the name
Module refers to the top-level module Module; the name System refers to
the System module; the name INTEGER refers to the built-in type INTEGER;
and so on.

If a procedure activation is selected, names defined in it are visible first,
then the names in its enclosing scope (a module or a procedure), and so on
up to the global naming scope. Since names in outer scopes may be hidden
by names in inner scopes, Loupe predefines the (fairly unique) name Cl in
the global scope to refer to the global scope itself; a fully qualified name can
therefore be preceded with Cl . since Cl will probably be defined in no inner
scope.

A qualified name, such as System. MaxCard, is interpreted by first looking
up System, then interpreting MaxCard in that context. The left-hand side of
the . operator can be a module or a RECORD value, as in Modula-2+; Loupe
also allows it to be a PROCEDURE value, in which case the stack is searched
for an activation of that procedure and the right-hand side is interpreted in
its context.

Loupe does not provide unqualified dynamic scoping. If you ask for i,
and there is no i in the selected activation, Loupe does not search up the
stack for any i. Although such automatic searching would seem friendly in
some instances, it would be probably be too dangerous in general.

Loupe draws no distinction between names defined in an IMPLEMENTATION
MODULE and names defined in a DEFINITION MODULE; information-hiding
seems undesirable in a debugger.

When Loupe prints a value, it might choose to print it by name. Types
can have names; asking TYPEOF(3+4) displays INTEGER. The official name
of a type is the first name bound to that type; if a program defines type
A to be POINTER TO System. Word, and type B to be A, and type C to be
B, then asking Loupe for C's value will display A. As a special case, asking
Loupe for A's value will display POINTER TO System. Word; Loupe never
answers a question with the same question. Note that if Loupe displayed C's

6

value as POINTER TO System. Word, the user would have no way of knowing
that it was the same instance of POINTER TO System. Word as A; this is an
important distinction given Modula-2+'s type semantics.

Scopes (modules and procedures) always have names, and they are al­
ways printed by name except in response to a direct question.

Enumerated values also have names, and are printed by name. Enumer­
ated values that are out of range (e.g., a BOOLEAN whose ORD is 3) print in
hexadecimal.

Otherwise, values are not printed by name; Loupe will never print System. MaxCard
instead of 2147483647. An early version of Loupe would have, but the rules
for equality for ordinary values make any such mechanism impossible or
confusing.

Names printed by Loupe are fully qualified; a fully qualified name is al­
ways possible since scopes always have names. At one time, Loupe qualified
names only enough for the selected context, but this seemed potentially con­
fusing to users; a name printed out a few interactions ago may no longer be
fully correct. Loupe's current rule is justified by the maxim that the output
format should be an input format.

6 Expressions

Loupe contains a full Modula-2+ expression evaluator, with a few extensions
to increase its usefulness.

Loupe's expression syntax is more general than Modula-2+ 's. Modula-
2+ doesn't allow the user to say Time. Now(). seconds, thereby simplifying
compiler-writing while simultaneously enforcing programming rigor. These
are not issues for Loupe, and the construct is useful interactively, so Loupe
allows the construct.

Similarly, you can say LOOPHOLE(x, ARRAY [O .. 7] OF BITS 4 FOR CARDINAL).
Again, this is convenient in interactive use even though it may be undesirable
m a program.

Loupe's expression syntax was derived from Modula-2+ 's by such small
generalizations. Loupe uses a simple recursive-descent parser, whose flexi­
bility has often been convenient, and whose simplistic error detection and
correction pose no real problem.

Loupe's lexical scanner began as an exact copy of the compiler's (and its
use in an interactive environment helped speed the discovery of several bugs).
Changes to the scanner included extending the set of characters allowed in

7

identifiers (Loupe provides partial support for programs in languages other
than Modula-2+, such as C and assembler, with different lexical rules for
identifiers); additionally, any character is considered alphabetic if \-escaped.

Semantically, Loupe's expression evaluation also extends Modula-2+'s
for the sake of interactive convenience. REFANY values, for example, can
be dereferenced without being NARROWed to the correct REF type; Loupe
automatically performs the NARROW.

Similarly, an array can be subscripted by an appropriate subrange type,
obtaining a subarray value; "abed" [[1 .. 2]] is "be". (Because of its syn­
tax, users tend to remember this facility as "Use double brackets to get a
subrange").

Loupe implements all Modula-2+ built-in procedures except for DISPOSE,
NEW,RAISE,System.NewProcess,System.Transfer,andSystem.UnixCall;
implementing these correctly would require additional interaction between
Loupe and the runtime system. Many of Modula-2+'s built-in procedures
have proved quite handy interactively; you can ask, for example, System. Size (x).

Many new features of Loupe are provided by built-in procedures. TYPEOF
and LOCOF have already been mentioned. The built-in procedure AT(location,
type) returns the type value at location. (This order of arguments is by anal­
ogy with LOOPHOLE. Loupe also accepts AT (type, location), by analogy with
VAL. The author likes to be able to use either order without thinking, and
usually does.)

LINE(procedure, n) returns the System. Address of line n in procedure,
which is sometimes useful. REG I STER(n) returns the value of register n in the
selected activation. GETWORDAT(location, n) fetches the n-bit word at loca-
tion in a single operation, facilitating access to device registers; SETWORDAT (location,
n, value) stores a new value in a single operation.

Some operators and built-in procedures provided by Loupe have looser
type-checking than in Modula-2+; this was for ease of implementation in
Loupe. For example, one can say TRUE OR 5, which evaluates to TRUE;
evaluating TRUE AND 5 gives a type error.

6 Command Syntax

If Loupe provided a full Modula-2+ interpreter, Loupe's command language
would then be Modula-2+. On the other hand, providing a Modula-2+ inter­
preter, while quite useful in many ways, would also be quite an undertaking,
and it is unclear how good a command language Modula-2+ would be.

8

Loupe's command language was initially based directly on expression
evaluation, as in Lisp systems. Typing an expression caused it to be eval­
uated and the result, if any, printed. The expression syntax was slightly
extended to include assignment; other operations were performed by special
built-in procedures.

So, to print x, you would type simply

<1> X

(Loupe prints numbered command prompts in angle brackets) and Loupe
might reply

4

To set x to 6, you would type simply

<2> X := 5

To set a breakpoint at line 63 of Scanner. Get Char, you would type simply

<3> BREAK(LINE(Scanner.GetChar, 63))

Users complained unanimously, and Loupe eventually went to a more con­
ventional keyword syntax; the examples above became

<1> print x
<2> set x := 5
<3> break LINE(Scanner.GetChar, 63)

Mter more complaints, the last finally became

<3> break Scanner.GetChar 63

The print command prints the value of an expression; the set command
performs an assignment. In the original expression-oriented command syn­
tax, you could type an expression with no value, such as INC(i), and no
value would be printed. Since print would be a misnomer for such an op­
eration, the call command was added; it takes an expression that returns
no value (which, in Modula-2+, must be a procedure application; an empty
argument list is added if absent) and merely evaluates it. To enforce proper
rigor, the print command signaled an error if the expression had no value,
and call signaled an error if the expression did; this was later relaxed to
make print and call identical except for their names and for call's syn­
tactic insistence on a procedure call.

9

The next change was to add abbreviations. Some commands, like print,
are so heavily used that even such a short name is cumbersome. Other com­
mands, like previousframe (formerly the built-in procedure PREVIOUSFRAME),
are cumbersome to type even infrequently. A system of two-letter abbre­
viations was instituted: print can be abbreviated pr, previousframe can
be abbreviated pf, and so on. All abbreviations are two letters long, for
consistency. Some commands were not abbreviated; set has no reasonable
two-character abbreviation, and although break could have been abbrevi­
ated br, the closely related unbreak could not have received the closely
related ubr, and ub seemed too unpleasant. Similarly, neither the frame
nor the frames command were abbreviated.

In the current version of Loupe, a space at the beginning of a command
line is taken to mean print, set or call; this almost returns to the original
syntax for these common, simple cases. Instead of typing

<4> print x

{Loupe prints numbered command prompts in angle brackets) or

<6> pr X

you can use a leading space and type simply

<6> X

The initial space is very easy to type; it becomes a reflex. In fact, it
becomes so much of a reflex that users often type an initial space before
other commands; this is an error. In correcting for this behavior, they start
leaving off the space in cases when they should have it; this is also an error.
It would be nice if Loupe tried to second-guess such behavior and correct for
it; one simple implementation of this idea, though, turned out to produce
confusing diagnostics for syntax errors not involving extra or missing leading
spaces.

Commands can extend over more than one line. Loupe uses the rule,
borrowed from BCPL, that a new-line ends a command if the command
could syntactically end at the new-line. So, you can say

<7> print 3+4
7
<8> print 3+

4
7

10

In practice, this works quite well. Implementing this mechanism, and the
leading-space mechanism, required close cooperation between Loupe's lexi­
cal scanner and its parser.

In all cases, Loupe treats the command syntax merely as an alternative to
the expression syntax, and turns all commands into applications of built-in
procedures. Commands and expressions therefore differ only syntactically.
As an escape from expression syntax into command syntax, Loupe provides
the ! (and) brackets; enclosing a command in ! (and) allows it to appear
in an expression context. Similarly, the value command, which returns the
value of its argument, allows an expression to appear in a command context.

Why is the ability to switch between syntaxes important? Commands
can take arguments that can be expressions or can be other commands. For
example, Loupe's if command should take its first argument, the predicate,
in expression syntax rather than in command syntax; if's consequent ar­
guments would most naturally appear in command syntax, by analogy to
Modula-2+ 's IF statement. For some arguments to some commands, though,
it is less obvious whether they should by default be in expression syntax or
in command syntax. Loupe's simplistic solution is that all arguments to
all commands appear in expression syntax. This rule is easy to remember,
although it means that you may have to type ! (and) more often than oth­
erwise. (This solution also has the amusing property that the end in if ...
then ... else ... end and in similar constructs is optional since only single
expressions appear as the arguments.) Operators take their arguments in
expression syntax, except for the ; operator, which takes its in command
syntax.

Let's look at some individual commands. The print command has the
form print [expression [format/ [, ... jj. Each expression can be followed
by a format: decimal, octal, hexadecimal, address or roman, or their
three-character abbreviations dee, oct, hex, adr or rom. Since the format is
a single identifier, no syntactic ambiguity results. One print command can
print multiple expressions, separated by commas; this is handy for tabular
output. A trailing comma suppresses the trailing new-line on output.

The syntax of the hexdump command is hexdump {address/ [, count/;
defaults are chosen for the address and the count if they are absent. An
earlier syntax which did not include the comma was syntactically ambiguous;
hexdump ptr (newCount - oldCount) * 4 could be parsed incorrectly. If
Loupe had used a parser mechanically derived from a formal grammar, this
ambiguity could have been detected, but Loupe's syntax would have been
perhaps less capable and harder to change. For backward compatability, the

11

comma was made optional.
The break command's syntax is break loc [line} /when predicate]. Ignore

the predicate for the moment. If loc is a procedure, then a breakpoint is set
at its first instruction or at the specified line. If loc is a module, its initial­
ization procedure is used. If loc's type is compatible with System. Address,
a breakpoint is set at the instruction at that address. This sort of poly­
morphism is common to many commands, and, although cumbersome to
enumerate, seems to work well in practice.

7 Control and Programmability

Loupe provides the typical set of mechanisms for inspecting and controlling
program execution. You can browse the stack and examine stack frames.
You can browse the set of threads and focus on particular threads. The
program can be started and stopped interactively. It can be single-stepped
by instruction or by statement or within a procedure or by procedure call
or by procedure return. Breakpoints can be set at interesting locations.

(One problem with such mechanisms is their use in a concurrent Modula-
2+ environment. If you are inspecting the execution of some particular set
of threads, it should be possible to choose whether the other threads are
stopped or running. The uneven passage of real time is also a problem.
Loupe's current mechanisms in this area are inadequate but have caused no
real problems so far.)

A breakpoint can have an associated predicate; the breakpoint will
fire only when the predicate is true. One can say, for instance, break
Writer. Prin when depth < 0. One can also say break Writer. Prin when
! (print "depth =11 , depth; value FALSE) to print the value of depth
whenever Writer. Prin is entered, but not stop.

The stepping commands can also take predicates. The singlestep com­
mand (not abbreviated ss, since showstack was already abbreviated ss)
steps by one machine instruction; one can say singlestep until AT(8cc04H,
INTEGER) = 0 to solve a low-level core-smash problem before embarking on
a bicycle tour of the Sierras.

It is also possible to call user procedures from Loupe. Saying print
Time.Now() calls Time .Now, which returns <seconds = 509856375, microseconds
= 260000>, which Loupe prints. You can plan ahead and include useful de­
bugging routines into the program, then call them when necessary. It is
interesting to note that user procedures thus called can hit breakpoints or

12

other conditions that cause a return to Loupe, as in

<9> break Time.Now
<Time .Now, line 186 ("PROCEDURE Now(): T; ")>
<10> Time.Now().seconds
running ...
. . . debugger
<Time. Now, line 186 ("PROCEDURE Now() : T; 11) >:
stopped at breakpoint
<11> unbreak Now
<12> stepup
running ...
. . . debugger
returned <seconds= 609866376, microseconds= 260000>
back to <10>
609866376

Here, the stepup command printed the value returned by Time. Now. Loupe
then realized that it could resume command 10, and did so, notifying the
user. Explicit notification is important because multiple procedure calls
could be outstanding, and because, in the presence of coroutines or multiple
threads, they could return in an unexpected order.

Procedure-call is of course dangerous; calling an arbitrary procedure
from an arbitrary situation could violate various invariants. Loupe makes
absolutely no attempt to protect the user from such mistakes. It could
detect some potential problems, but might thereby lull the user into a false
sense of security.

Another dangerous mechanism is provided by the RETURN command
(whose name is upper-case for this reason). RETURN {value] forces a return
from the selected procedure activation (which need not be at the top of the
stack). One might imagine that Loupe would perform any appropriate final­
izations as part of the RETURN operation, by analogy with exception-raising.
It does not; the rationale is that programmers provide finalizations only for
those cases that they believe could happen, based on their knowledge of the
program structure; they would not necessarily have planned for an abnormal
return initiated interactively. Since Loupe cannot solve the whole problem,
it attempts no part of the problem, although its other facilities should allow
the user to solve the problem by hand.

Loupe itself provides a number of programming features. To start, you
can bind global names using the define command; define name = value

13

binds name to value in the global scope. To rebind a global name, DEFINE is
used (upper-case for safety; one can say DEFINE FALSE = TRUE and Loupe
will do it). A similar feature provides a history mechanism; the global name
$ is always bound to the result of the most recent command (that had a
result), and $n is bound to the result of command n (if any).

(Loupe's model of sharing is different from Modula-2+'s, as seen in

<13> X

5
<14> LOCOF(x)
<the 32 bits at <loc 06d740H»
<16> LOCOF($13)
<the 32 bits at <loc 06d740H»
<16> X := 4
<17> $13
4

This model is convenient for interactive use; instead of saying x : = 4, one
could have said $13 := 4. One can also have said AT(5d740h, INTEGER)
: = O, which is often handy. For cases where such sharing is undesirable, the
built-in procedure COPY(z) returns a copy of z that does not share storage
with it.)

Loupe provides a number of commands for interactive programmability.
The lambda command returns a lambda-expression.

<18> define floattime = !(lambda (time)
FLOAT(time.seconds) +
FLOAT(time.microseconds) / 1000000.0)

<19> floattime
<<lambda (<<"time">>)

<<<"+">>(
<<<"FLOAT">>(

<<<".">>(
<<"time">>, <<"seconds">>)>)>,

<<<"/">>(
<<<"FLOAT">>(

<<<".">>(
<<"time">>,
<<"microseconds">>)>)>,

<1000000.000000>)>)>>

14

<20> floattime(Time.Now())
running ...
. . . debugger
609860960.000000

(As a syntactic variation, one can phrase the above as define floattime (time)
=) Similarly, the let and le tree commands provide syntactic sugar
for lambda-binding, and the LET command changes the value in an existing
binding (like Lisp's setq).

Lambda-bindings are lexically scoped and take precedence over Modula-
2+ bindings. (Getting such a feature right can be tricky. Loupe once
happened not to allow let oldDepth = COPY (Writer . depth) in ! (break
Writer. Prin when depth # oldDepth) because the when predicate was
not properly closed in the lexical context.) Loupe's provision of lambda­
evaluation guarantees tail-recursion, eliminating the need for other control
structures.

Even so, Loupe also provides the more conventional for, while, and
repeat commands, which are more familiar to Modula-2+ programmers.
(In the for command, the controlled variable is lexically bound; its type is
deduced from the types of the bounds. As a result of the Modula-2+ type
system, UNSIGNED iteration cannot be supported in this way.)

8 Interaction with the Compiler

Loupe's model of the program being debugged, and of the Modula-2+ lan­
guage, should be as close as possible to the compiler's.

Loupe bases its model of the program being debugged on symbol-table
information received from the compiler. The compiler produces a Unix-style
object file for each module compiled, and passes symbolic information to
the debugger by encoding it in cryptic ASCII strings in the object file. The
loader coalesces these strings, uninterpreted, into the symbol table of the
executable program. Unix defines standard ASCII encodings for symbolic
information from C and Pascal programs; DEC's Western Research Labora­
tory's Modula-2 compiler implemented additional encodings for Modula-2;
we improved and extended these for Modula-2+.

The amount of symbol-table information present in the executable file is
quite large; each module's object file contains, for example, the definitions of
all the types defined there, plus all the types imported directly or indirectly.
Popular types are thus defined in each module that imports them, and the

15

loader preserves all definitions. (Naturally, the definitions are represented in
such a way as to allow Loupe to realize that they are all for the same type.)
Since Loupe parses the symbol table into an internal form, this mechanism
has proved cumbersome. Early versions of Loupe parsed the entire symbol
table at once, but this was far too slow on large programs. Loupe now uses
a complicated lazy-parsing scheme to help achieve adequate performance.

Since Loupe's only information about the static structure of the program
comes from the symbol table, it is important that it be as complete and ac­
curate as possible. Unfortunately, the complex symbol-table structures have
become difficult to extend. For example, we recently improved our optimizer
to perform lifetime analysis of local variables and common subexpressions;
the optimizer can detect variables with disjoint lifetimes and place them
in the same registers or locations. Unfortunately, there is no current way
for the optimizer to pass this information along to Loupe, and there are
practical obstacles to providing one. Since programs compiled with lifetime
analysis could not be reliably debugged, much less easily, lifetime analysis
has not been released to users.

As a smaller example, the symbol-table syntax for compile-time con­
stants defined by CONST is based on the various types such constants can
take on. A compiler change had the effect of increasing the range of types
to include System. Address, but the symbol table syntax could not easily
be extended. As a result, System. Address constants seem to Loupe to have
INTEGER type.

Our ultimate plan is to implement symbol tables using a highly efficient
persistent-data mechanism now under development. This will allow compiler
data structures, defined using the Modula-2+ type system, to be passed (in
a suitably edited form) straight to Loupe, and should better allow for future
extensions while eliminating the need for the compiler to generate and for
Loupe to parse ASCII representations.

Implementing Loupe has also helped to refine the compiler and the lan­
guage. In the early days of Modula-2+, it was the compiler that best defined
the language. A language change required a compiler change, but a compiler
change was a language change. Since implementing Loupe required reim­
plementing a large part of Modula-2+, this helped to refine the definition of
the language.

For example, it was nowhere documented exactly which types the var­
ious Modula-2+ operators and built-in procedures would take, and what
types they would return. Exhaustive testing provided the results, some of
which were surprising; for example, the constant NIL was considered type-

16

compatible with INTEGER. The non-surprising results were implemented in
Loupe; the surprising ones were marked to be fixed in the compiler and
implemented correctly in Loupe.

9 Interaction with the Runtime System

Loupe also needs to understand the runtime environment presented by
Modula-2+ and by the commonly used packages. Loupe does a poorer job
here than elsewhere.

Modula-2+ 's runtime system provides support for language constructs
as well as a rich and evolving set of commonly-used packages. The run­
time system, for example, provides reference counting as a mechanism for
garbage collection. Loupe ought to interact well with reference counting,
but does not yet. Setting the value of a reference-counted variable, for ex­
ample, should update the reference counts of the old and new referents.
Such updating is delicate since the program may be in the middle of making
such an update itself. Similarly, if Loupe makes a copy or discards a copy
of a reference-counted variable, it should update the reference count of the
referent.

In general, any Loupe mechanism involving detailed, automatic manip­
ulation of the program state is difficult to provide. Loupe does not provide
the built-in procedure NEW, since the program's runtime allocator could be
in an arbitrary state when Loupe's NEW was called. Providing NEW in Loupe
would require tighter coupling with the runtime allocator, and would make
it more difficult to experiment with different allocators.

Loupe does not understand Modula-2+ exceptions as well as it should.
For example, the stepup command steps up from the selected procedure
activation by setting a special breakpoint at the point of return, then running
the program until the breakpoint fires, then removing the breakpoint. If an
exception causes the procedure to return abnormally, the breakpoint will not
fire and the program will continue to run. Of course, a clever user could set
a breakpoint on the procedure Signaller. Raise, which implements RAISE,
but Loupe should be clever instead.

Similarly, the multi-threaded runtime environment contains a wealth of
information available raw to the experienced user, but confusing to others.
Loupe provides some information directly in a friendly way (e.g., whenever
Loupe gains control from a thread different from the previous thread, Loupe
notifies you of the new thread); it could do more.

17

Loupe also incorporates some knowledge of commonly-used packages.
An example is the Text package, which provides operations on garbage­
collected byte strings. Most Modula-2+ programs use Text objects at some
level, but only the implementers of the Text package should be expected to
understand its implementation. Loupe therefore prints a Text object (which
is a REF to a variant record) as a character string; the internal representation
of a Text object can be examined by dereferencing it. Although Modula-2+
allows Text literals, Loupe cannot, since this would involve calling NEW.

As the number of widely used types grows, Loupe will have a harder
time keeping up. One long-term solution would be for Loupe to provide
mechanisms to allow the implementors of the various types to provide the
necessary debugging support themselves. For example, the Cedar system
developed at Xerox PARC allowed a PrintProc ("print procedure") to be
associated with a type; the PrintProc was called to print a value of that
type. Until such systematic facilities are provided, Loupe's users can call
such procedures manually if they exist.

10 Retargetability

Loupe is used to debug programs under Unix and under the Topaz software
system on the Firefly multi-microprocessor computer. Different versions of
the Firefly have used different processor families.

Loupe is therefore retargetable, both across software environments and
across processor architectures. Most of Loupe is independent of the target
environment; a target-specific part is provided for each target.

On Unix, Loupe allows debugging a subprocess (using Unix's ptrace
mechanism) or post-mortem debugging from a core file. Loupe also sup­
ports teledebugging a Topaz program from another machine, either Unix or
Topaz, or from the same machine. In the teledebugging case, the program
need not have been started from under Loupe. Topaz core files can also be
debugged.

The Topaz software structure provides multiple address spaces, each with
multiple threads of control. As a special case, the lowest-level Nub, which
provides address spaces and threads of control, can also be teledebugged
(from another machine, of course). Loupe's unit of debugging is a single
address space, which is a convenient unit in practice and happens to be the
unit across which Modula-2+ names are consistent. If you wish to debug
multiple address spaces, you must use a separate instantiation of Loupe for

18

each. Since these Loupes cannot communicate, you cannot automatically
manage data or events across the address spaces, but this lack has not yet
proved a practical problem.

There are obvious major differences in Loupe support for the various
targets, and many small ones. For example, Loupe often invisibly derefer­
ences POINTER values to check their validity; it does this by attempting to
fetch the first and last bytes of the referents. This is quite dangerous if the
referent is a device register. Loupe's rules for POINTER validation are thus
different for the different targets.

Loupe's support for different processor families centers on their differing
data representations. Loupe models memory as being bit-addressed, and
has per-processor rules for mapping data items onto bit addresses; these
rules correct for different byte orders. A very small amount of code that
perform actual data access translates between bit addresses and machine
addresses; this allows easy, centralized support for teledebugging between
different processor families. (Early implementations of this mechanism were
quite inefficient but general; the inefficiency was unimportant since the rate
of memory access was ultimately limited by the user's speed of typing. With
the addition of programmability to Loupe, it was necessary to speed up this
mechanism; this speedup was achieved without loss of generality.)

11 Acknowledgements

Loupe was implemented by the author and David Redell. The Modula-2+
compiler was provided by Paul Rovner, Violetta Cavalli-Sforza and Christine
Hanna; it was based on the Modula-2 compiler written by Michael Powell
at DEC's Western Research Laboratory.

Loupe was written in Modula-2+ and debugged using Loupe.

19

