
The Modula-2+
User's Manual

DRAFf

18 April 1986

1. Tokens and Comments
1.1. Keywords
1.2. Identifiers
1.3. Literal Numbers
1.4. Strings

Table of Contents

1.5. Operators and Delimiters
1.6. Comments

2. Names and Name Scope
2.1. Name Scope
2.2. Qualified Names
2.3. Declaration
2.4. Forward Reference
2.5. Import
2.6. Declaration versus Import
2.7. WITH Statements
2.8. Nested Modules

3. Constants and Constant Expressions
3.1. Constant Expressions
3.2. Declaring Constants

4. Supplied Types
4.1. Supplied Numeric Types
4.2. Other Supplied Types
4.3. Kinds of Suppljed Types

5. Constructing Types
5.1. The Type Constructors
5.2. Declaring Types
5.3. Subranges
5.4. Enumerations
5.5. Fixed-Size Arrays
5.6. Open Arrays
5.7. Records
5.8. Sets
5.9. Refs
5.10. Pointers
5 .11. Procedure Types
5 .12. Kinds of Types

6. Variables
7. Expressions

7 .1. Operands
7 .2. Operators
7.3. Applicability Charts

3
3
4
4
4
6
6
7
7
7
8

10
11
12
13
14
15
15
16
17
17
18
19
21
21
21
22
22
23
24
25
27
27
28
28
29
31
33
33
33
37

ii

8. The Syntax of Statements
8.1. What Is a Statement?
8.2. A Statement Is Not an Expression

9. Assignments
10. Control Structures

10.1. RETURN
10.2. IF
10.3. CASE
10.4. TYPECASE
10.5. LOOP and EXIT
10.6. FOR
10.7. WHILE
10.8. REPEAT
10.9. TRY FINALLY
10.10. LOCK
10.11. Exceptions
10.12. TRY PASSING

11. Supplied Procedures
11.1. Numbers
11.2. Conversions
11.3. Sets
11.4. Storage Allocation
11.5. Control
11.6. Type Deconstructors

12. Procedures
12.1. Procedure Declarations
12.2. Procedure Calls
12.3. Default Parameters
12.4. Notes

13. Modules
13.1. Definition Modules
13.2. Implementation Modules
13.3. Opaque Types
13.4. Pass-Throughs
13.5. IMPLEMENTS
13.6. Main Modules
13.7. Nested Modules
13.8. Initialization

14. Safety
14.1. Living in Harmony with the Garbage Collector
14.2. Notes

15. Type-Checking
15.1. Same Type
15.2. Basetype
15.3. Types for Constants
15.4. Kinds of Types
15.5. Type-Checking Expressions
15.6. Type-Checking Assignments

39
39
39
41
43
43
43
44
45
46
47
48
49
49
50
50
53
55
56
57
58
59
60
61.
63
63
64
65
66
69
69
69
70
72
73
73
73
74
75
75
78
81
81
81
82
82
83
87

15.7. Type-Checking Procedure Call
16. Representation Issues

16.1. Data Representation
16.2. BITS FOR
16.3. Variable Initialization
16.4. UNSIGNED
16.5. Tagless Variant Records
16.6. LOOPHOLE
16.7. Implementation Restrictions

17. Mixing Modula-2+ with Other Languages
17 .1. C, Pascal, and Unix
17 .2. How Procedure Call Is Implemented

18. Performance and Other Pragmatic Issues
18.1. Notes
18.2. The Optimizer
18.3. Choosing Identifiers
18.4. Very Long Literal Strings
18.5. Dispatch Tables
18.6. Private Allocation for Referents of Pointers
18.7. RAISE for Flow Control

19. Programming Style
19 .1. The . T Convention
19.2. Don't Expon Variables
19.3. Returning Multiple Values
19.4. Qualified Names
19.5. WITH Statements
19.6. Redeclaring
19. 7. Declaring Constants
19.8. ORD and VAL and LOOPHOLE
19.9. Subranges

20. Formatting Conventions
20.1. Pretty-Printer
20.2. Spelling and Capitalization
20.3. Punctuation
20.4. Indentation
20.5. Comments
20.6. Interfaces
20.7. Don't Forget
20.8. Formatting Question

21. Compatibility with Ordinary Modula-2
21.1. Notes
21.2. Syntax Extensions

22. Notes
22.1. Compiling DEF modules
22.2. Operations on Mixed-Operand Expressions

iii

87
89
89
91
93
93
93
95
96
97
97
99

105
105
105
106
107
107
107
108
109
109
109
109
110
110
111
111
111
112
113
113
113
113
114
116
117
117
117
119
119
119
123
123
123

Appendix I. Syntax Cheat Sheet
Appendix II. Railroad Diagrams
Appendix III. The Compiler's Error Messages
Appendix IV. Grot

IV. l. Deprecated Features
IV.2. DIV and MOD are weird
IV.3. Where the compiler accepts too little

Appendix V. Reserved Words and Standard Identifiers
Appendix VI. Wirth's EBNF

VI. l. Notation
Vl.2. Syntax in Wirth's EBNF
VI.3. Alpha Order

References
Index

127
131
143
145
145
148
149
151
155
155
156
159
163
165

Introduction

This is a programmer's reference manual, not a language definition, not a
compiler-writer's manual, not a programmer's tutorial. It's meant to help
you write programs in Modula-2+.

I'm making no attempt to avoid circularity. I do not expect to have any
linear readers, any readers who go from page 1 to page n. Therefore I feel
free to use words and phrases on page 1 that don't get defined till ''later'' in
the manuscript.

*

1

This document doesn't (by any means) contain everything you need to know
about programming in Modula-2+ at SRC.

Lyle is starting to work on putting together the Public Interfaces Manual.
The arbitrary dividing line between this manual and the Public Interfaces
Manual is IMPORT. If you have to impon an object to use it, the central
documentation for that object is not supposed to be here, even if the object is
actually known to the compiler -- even if the interface from which you
impon it is a dummy interface, like System. This manual and the Public
Interfaces Manual can and in the future will refer to each other freely. I talk
about system. Word and Text. T whenever I need to, but I don't take
responsibility for documenting them here.

In this manual, "supplied" means not requiring import.

*
To print the manpage for the compiler, type:

man mp I enscript -Papn

where "n" in "-Papn" is your floor number.

To print the document for Loupe, the Modula-2+ symbolic debugger, type:

printdoc loupe

There's no good overview yet of procedures for releasing public interfaces
and tools, but Sheng-Yang and Dave Redell have staned working on one.

*
I sometimes slip and say M. def for ''definition module M'' and M. mod for
"implementation module M" or "main module M." But it's the module
name, not the file name, that counts. In fact the module name and the file
name can be completely different.

*
Typography: This document is not well typeset. Until somebody invents a
way of doing good typesetting automatically, good typesetting in advance of

2 Introduction

good words is a waste of time. After a while the words may or may not get
good enough to warrant spending time on the typography.

*

Acknowledgements:

It would be folly to contemplate a project of this kind without Scribe to
supply paginated table of contents, automatic maintenance of
cross-reference, automatic updating of index.

Cast of thousands ... This is a joint effon by all the m2+ programmers at
SRC. Paul and Violetta. JDD. Greg. Butler. Roy. Lyle. Jim. JRE.
TomR. Karen. Sheng-Yang. Especially Mark.

And me? Here's a passage from Mr. Scobie' s Riddle, by Elizabeth Jolley.
The speaker is the dotty writer Miss Hailey, who wants to use in her next
book an event from Mr. Scobie's life:

''Ah,'' she put her hands up to her head. ''The endless rewriting, the
linking of events, the approach to drama, the dramatic moment and the
resolution. But," she paused as if at a dramatic moment in her own life,
"it is so rewarding, the rewriting, the choosing of le mot juste, la petite
phrase. You're absooty sure you don't mind?"

Mr. Scobie replied, in spite of some uneasiness, that he did not mind.

1. Tokens and Comments

A "token" is a keyword, an identifier, a literal number, a string, or an
operator or delimiter. [[Why is a comment not a token too?]]

Blanks, tabs, and newlines can't occur within tokens except in quoted literal
strings. There you can use all three, but you have to escape newlines.
Elsewhere, blanks, tabs, and newlines are ignored except to separate two
consecutive tokens.

1.1. Keywords

ABS EXCEPTION LOOP REF
AND EXCL LOOPHOLE REFANY
ARRAY EXIT MAX REPEAT
ASSERT EXPORT MIN RETURN
BEGIN @EXTERNAL MOD SAFE
BITS FALSE MODULE SET
BITSET FINALLY NARROW THEN
BOOLEAN FIRST NEW TO
BY FLOAT NIL TRUE
@C FOR @NOCOUNT TRUNC
CAP FROM NOT TRY
CARDINAL HALT NUMBER TYPE
CASE HIGH ODD TYPECASE
CHAR IF OF UNSIGNED
CHR OR UNTIL
CONST IMPLEMENTS ORD VAL
DEC IMPORT @PASCAL VAR
DEFINITION IN PASSING WHILE
DISPOSE INC POINTER WITH
DIV INCL PROCEDURE
DO INTEGER QUALIAED
ELSE LAST RAISE
ELSIF LOCK RAISES
END LONGFLOAT REAL
EXCEPT LONGREAL RECORD

3

and IMPLEMENTATION, which is so long that it throws the chan off if you put
it in its proper order. Historical information about the origin of these
identifiers appears in Appendix V, page 149.

4 Tokens and Comments

1.2. Identifiers

''Identifiers'' are sequences of letters and digits. The first character of an
identifier must be a letter. Examples:

x scan Modula Apply GetSymbol firstLetter

Case is significant -- jam and Jam and JAM and jAM are different identifiers.
Pragmatic note about choosing identifiers at page 106.

1.3. Literal Numbers

There are no negative literal numbers. Literal numbers represent
nonnegative integers or real numbers.

To construct a literal decimal integer, you use the digits '' O'' through '' 9' '.

To construct a literal octal integer, you use the digits '' 0'' through '' 7'' and
follow them with the letter "B".

To construct a literal hex integer, you use the digits '' 0'' through '' f''
(lower-case only for the alpha digits) and follow them with the letter "H".
To differentiate literal hex numbers from identifiers, no hex number is
allowed to start with an alpha digit; you have to use a dummy zero if your
hex number would have started with "a" through "f ". Examples:

1980 3764B 7bcH 177B 3fH 0ffH

To construct a literal (decimal) real, you must always use a decimal point and
at least one digit to the left of the decimal point. A real number may contain
a decimal scale factor: the letter "E", pronounced either "times ten to the
power of' or (more often) ''E''. Examples:

12.3 45.67E-8 0.8

1.4. Strings

Strings are sequences of characters enclosed in double quotes.

If you want to write a string on several lines, you have to terminate each line
but the last with a"\"; neitherthe "\" nor the newline will be part of the
resulting string. If you want the resulting string to include a newline, you
have to use the escape sequence '' \ n' '.

If you want to use a '' \'' or a '' "'' in a string, you must escape it with a
''\'':

"\ \"
"\""

Strings

Here are all of the escape sequences available to you in strings:

\n newline (linefeed)
\t tab
\ r carriage return
\f fonn feed
\b backspace
\ \ backslash
\" double quote

A "\" followed by up to three octal digits specifies the character whose
ASCII code is that octal value (e.g. \ o 14 for form feed, \ o 3 3 for escape).
The Char interface contains constant definitions for the ASCII control
characters (Char .NP for \014, Char .ESC for \033, and so on).

Examples:

"a"
"Don't Worry!"
"codeword \"Barbarossa\""

Pragmatic note about very long strings in Section 18.4, page 107.

1.4.1. Null Termination

To descend suddenly from the level of the language to the level of
representation:

When you assign (: •) a string to a fixed-length array of CHAR, one null byte
will get tacked on to the end if there's room. Suppose you have a five-byte
buffer:

buf - ARRAY [O .. 4) OF CHAR

Then a four-character string stored in the buffer gets a null byte tacked on:
buf :• "1234";

buf [4] = "\ 0 O o ". But if you store a string that fills up the buffer,
buf :• "12345";

no null byte. buf [4] = "5 ". (1bere is no such thing as assigning to an
open array, so don't worry about that one.)

5

When you pass a string as an actual to an open array of CHAR fonnal, no null
byte gets tacked on. [[What about if I pass a string as an actual to a
fixed-size array of CHAR fonnal? J J

When you assign a string to a Text . T or pass a string as an actual to a
Text . T fonnal, there is a null byte at the end of the representation. But the
Text . Length of the text is the number of characters in the source string, not
counting the tacked-on null.

End of descent.

6 Tokens and Comments

1.5. Operators and Delimiters

The special characters and character pairs are:

+ =

* < ()
I > []
·- <= { } .-

>= I\ I

1.6. Comments

Comments can be inserted between any two tokens in a program. They are
arbitrary character sequences opened by " (*" and closed by "*) ".
Comments can be nested:

(* Like (*this*) *)

and can extend over more than one line.

7

2. Names and Name Scope

The supplied identifiers and keywords of the language are reserved words in
Modula-2+; they are available everywhere and at all times, and you may not
redefine them. See Section 1.1, page 3, for the full list.

2.1. Name Scope

A scope is a section of program text in which a certain set of names is
defined: Each name is bound to an object Wirth designed the syntax of
Modula so that scopes nest: that is, if you have two different scopes, either
one contains the other or the two are disjoint The meaning of a name at any
given point is always determined by the smallest enclosing scope in which
the name is defined.

A good way to think about scope is to picture a name table attached to each
block -- a block is a module or a procedure. A name gets looked up in the
name table of the block in which it occurs; if there's no entry for that name in
the block's own name table, the name gets looked up in the name table of the
block enclosing that block. Etc. The meaning of any name is unambiguous;
usually it is also clear.

A good way to think about procedure declarations is that the enclosing block
includes the name of the procedure and the procedure's own scope starts
right after its name. In other words, you could actually (ugh) name a
procedure and one of its formal parameters the same name:

PROCEDURE P(P: INTEGER);

A procedure's formal parameters are entered in the name table for the
procedure, not the enclosing block. Their scope extends to the end of the
procedure.

An implementation module automatically gets all the declared and imported
names from its definition module.

2.2. Qualified Names

Qualified names look like this:
record.field

or this:
Module.Procedure

In other words, interpret the right-hand name in the context of the object
named by the left-hand name.

Records and modules produce qualified names:

8 Names and Name Scope

1. Suppose you declare a variable of a record type:

TYPE
R • RECORD

fl : INTEGER;
f2: BOOLEAN;

END;
VAR

r: R;

Now you can user. fl.

You can also interpret the name of a record field in the context
of a dereferenced ref or pointer to the record. If, for instance,
those declarations had looked like this:

TYPE
R • RECORD

fl: INTEGER;
f2: BOOLEAN;

END;
P • REF R;

VAR
r: R;
p: P;

you would be able to talk about p". fl.

2. Using the form

IMPORT M;

is quite comparable to defining a variable of a record type. All
the names declared in the definition module M are now
available to you as long as you qualify them with the prefix M
and the dot:

etc.

M.T
M.Proc

2.3. Declaration

One way to get a name into the name table of a block is to declare it When
you declare a name, the scope of the definition extends from the declaration
to the end of the block in which the declaration occurs; you can think of a
declaration as adding a name to the name table for the block in which it
occurs.

There are five kinds of declaration: constant, type, variable, exception, and
procedure declarations. In cheat-sheet notation:

decl • CONST * (id '• const
I TYPE * (id ? (' - type '• REF)
I VAR * (ids , : type ? (' - qi)
I EXCEPTION * (id ? (, (type ,)) ? ('- qi)
I procH ? ('- qi)

, ;
, . ,
, ;
, ;
, ;

Declaration

Each of these kinds of declaration has its own special flavor.

For constants, see
For types, see
For variables, see
For exceptions, see
For procedures, see

Examples:
CONST

A - 613;

Section 3.2, page 16.
Section 5.2, page 21.
Section 6, page 31.
Section· 10.11.1, page 50.
Section 12.1, page 63.

B - {l, 3, 7};
TYPE

Index - [0 .. 15);
Handle - REF Object;
Object - RECORD

key: INTEGER;
left, right: Handle;

END;
VAR

var: Text.T;
x, y, z: INTEGER;

EXCEPTION
HandleError(Handle);
FatalError;

PROCEDURE Halt();

Usually it's an error to declare the same name twice in one block. The only
cases where it's not are vacuous:

CONST
A - 613;
A - 613;

TYPE
Index - CARDINAL;
Index - CARDINAL;

END test.

It is OK to redefine a name from an enclosing block as long as you haven't
yet used it in the current block.

The effect of declaring an enumeration type is to add to the name table for
the block not only the name of the type but also the names of all the
constants. I.e., after you do:

TYPE
Color - (Red, Green, Blue);

the names Red, Green, and Blue are available for the rest of the block (as
well as the name Color). They are not attached to the name Color (as for
instance the names of the fields of a record are attached to the name of the
record). So you cannot do:

TYPE
Color - (Red, Green, Blue);
Feeling - (Sad, Sorry, Blue);

That's seen as an attempt to redefine a constant and produces a fatal error.

9

- ----- --------- --- --- ---------------

10 Names and Name Scope

The effect of declaring a record type is to define a set of field names that are
meaningful in the context of a variable of that type. I.e. after you do:

TYPE
R • RECORD

fl: INTEGER;
f2: BOOLEAN;

END;

you can then do:
VAR

r: R;

and thereafter use the names r. fl and r. f2. (See Section 2.2, page 7.)

2.4. Forward Reference

Generally it's an error to use a name before you've declared it, but there are
two exceptions:

• You can use the name of a type in constructing a new ref or
pointer type to the type and then declare the type .

• You can use a procedure and then declare it

Here's a trivial example of using a type in defining a ref type before you've
defined the original type:

TYPE
ThingRef • REF Thing;
Thing• RECORD

key, entry: Text.T;
END;

There's not much reason to do that. But you do often want to do something
like this:

TYPE
IntList • REF IntListRec;
IntListRec • RECORD

first: INTEGER;
rest: IntList;

END;

The ability to make forward type references is specific to REF and POINTER
TO type constructors. So, for instance, the following is not allowed:

TYPE
FileArray • ARRAY [0 .. 9] OF FileNumber;
FileNumber • CARDINAL;

Forward references to procedures are always allowed. You can call a
procedure, assign it as a procedure variable, or pass it as a procedure
parameter before declaring it. You can arrange the procedures of a module
in any order you wish.

Forward Reference

2.5. Import

Another way to get a name besides declaring it is to import it from some
other module where somebody else has declared it for you. There are two
forms of import:

IMPORT M;

and:
FROM M IMPORT X;

11

M in either case is the definition module M from somewhere out in the great
world. (The manpage for the compiler describes the search rules used to find
it.)

When you use the form:
IMPORT M;

you show that you' re planning to use names from module M. Only the name
Mis inserted in the current scope; to use any of the names declared in M, you
must qualify them:

M.Printit
M.Color

You get access only to names declared at the top-level scope of M, not names
declared inside procedures or inside the module body.

When you use the form:
FROMM IMPORT X;

only the name x from module M is inserted in the current scope; the name Mis
not inserted. Whatever x meant in the context of the definition module M it
now means in your current block. You refer to x simply as x (M. x won't
work.) You must list explicitly every name you wish to use unqualified:

FROM Stdio IMPORT stdin, stdout, stderr;

Style note about qualified names in Section 19.4, page 111.

The scope of the constants of an enumeration type is the same as the scope of
the type. That is, if you do:

FROMM IMPORT E;

and M declared E as an enumeration type that consisted of A, B, and c:
E .. (A, B, C);

then A and B and c get dragged in along with E, and you can say A just as
well as E.

12 Names and Name Scope

When you import the name of a record type, you can then use that name as
context for talking about any of its fields. For instance, the definition of
Timezone in the Time interface says:

TYPE
Timezone - RECORD

rninutesWest: INTEGER;
dstAlgorithm: INTEGER;

END;

If you do:
FROM Time IMPORT Timezone;
VAR

X: Timezone;

you can then talk about x.minutesWest with no further ado.

2.6. Declaration versus Import

When you import somebody else's module, you get only the types and
procedures it declares, not the ones it imports. When somebody else imports
your module, she gets only the types and procedures you have declared, not
the ones you imported.

So when you are writing a definition module, if you want to pass a type or a
procedure on to people who import you, you must use the form:

Or:

IMPORT M;
TYPE

X • M.X;

IMPORT M;
PROCEDURE X • M.X;

For more about pass-through procedures in definition modules, see Section
13.4, page 72.

Declaration versus Import 13

2.7. WITH Statements

WITH statements are useful for filling up records. Suppose for example that I
have:

TYPE

}
R • RECORD

➔ key: INTEGER;
left,right: REFANY;

END;
VAR

r: R;

Then the usual way of talking about the fields of r is to call them r. key,

r. left, and r. right. In a WITH statement, however, I can talk about them
unqualified:

WITH r DO
key:• 0;
left :• NIL;
right :• NIL;

END

Wirth says that the WITH statement:

specifies a record variable and a statement sequence. In these statements
the qualification of field identifiers may be omitted, if they are to refer to
the variable specified in the with clause. If the designator denotes a
component of a structured variable, the selector is evaluated once (before
the statement sequence). The with statement opens a new scope.

The point is that bit about ''the selector is evaluated once.'' Continuing the
example above:

VAR
a: ARRAY [1 .. 10] OF R;

WITH a[i]" DO
Wr.PrintF(Stdio.stdout, "%d\n", key);
INC(i);
Wr.PrintF(Stdio.stdout, "%d\n", key);

The second occurrence of key has the same value as the first; the i got
evaluated at the top of the WITH and no amount of incrementing or
decrementing thereafter makes the slightest bit of difference.

New restriction on use of the WITH statement: To patch around a compiler
bug, the compiler will give an error if a ref-containing (RC) VAR parameter
(or element of same, or field of same) is given as a WITH expression. It's not
clear when this will be fixed, if ever.

For example:
PROCEDURE P (

VAR r: RecordType;
VAR a: ArrayOfRecordType);

BEGIN
WITH r DO ss; END;
WITH r.f DO ss; END;
WITH a[x] DO ss; END;

(* not allowed if RecordType is RC*)
(* not allowed if field f is RC*)
(* not allowed if a's element type is RC*)

WITH <designator>"<etcetera> DO ss; END; (* always allowed*)
END P; 0

See the style note on WITH statements, Section 19.5, page 1 ir

14 Names and Name Scope

2.8. Nested Modules

Any, all, or none of the above may apply to nested modules. See if you like
Section 13.7, page 73. No promises intended or implied.

15

3. Constants and Constant Expressions

For the "types" of constants, see Section 15.3, page 82. For type-checking
involving constants, see Chapter 15, page 81.

3.1. Constant Expressions

Some constructions in Modula require constant expressions, so you need to
know how to construct one. The class of constant expressions is a restricted
set of all expressions, restricted by the requirement that the compiler be able
to evaluate the expression at compile time.

The simplest kinds of constant expressions are constants:

• Literal numbers are constants. See Section 1.3, page 4 .

• Strings are constants. See Section 1.4, page 4 .

• Elements of enumeration types are constants. {CHAR and
BOOLEAN are supplied enumeration types; their elements are
constan~.)

• NIL is a constant.

• Literal sets are constants. You write a literal set by writing the
name of the set type followed by '' { '' followed by a list of set
elements followed by '' } ''. If the set type is the supplied type
BITSET, you can omit its name. You can specify a consecutive
range of set elements by writing the first element of the range,
followed by " .. " (pronounced "dot-dot"), followed by the
last element of the range. Examples:

Char.Set {"0" .. "9"};
{0 .. System.BitsPerWord - l};

You can apply these operators to constant expressions and still come up with
constant expressions:

the relations
= # < > <= >= IN

the unary operators
+ - NOT

the add (binary infix) operators
+ - OR

the mul (binary infix) operators
* I DIV MOD REM AND

16 Constants and Constant Expressions

You can apply these supplied procedures to constant expressions and still
come up with constant expressions:

NUMBER (with fixed-size arrays)
HIGH (with fixed-size arrays)
FIRST
LAST
MIN
MAX
System.Size (with fixed-size arrays)
System.TSize
System. ByteSize (with fixed-size arrays)
System.TByteSize

At the moment, you're not allowed to use any other procedures in making a
constant expression.

Future possibilities: There are some other supplied procedures that are
candidates for use in constant expressions:

FlDAT,LONGFLDAT,andTRUNC
ODD
ORD, CHR, and VAL
CAP

Violetta says: "If you have a strong desire to have any of these made usable
in constant expressions, you should speak up now.''

Here are some consequences of the rules we've just enunciated:

• The only procedure-, ref-, or pointer-valued constant expression
is NIL .

• There are no array-valued or record-valued constant expressions.

3.2. Declaring Constants

A CONST ANT declaration defines a constant:

CONST
HashTableEntries • 200;
Limit • 2*N -1;
Digits • Char.Set {"0" .. "9"};
AllBits • {0 .. System.BitsPerWord - l};
Message• "Hello, world.\n"

The thing on the right-hand side of a constant declaration must itself be either
a constant or a constant expression; see immediately below for constant
expressions.

There's a style note about declaring constants in Section 19.7, page 112.

Declaring an enumeration type also declares the constants that are elements
of the type:

TYPE
Meals• (Breakfast, Lunch, Dinner);

17

4. Supplied Types

The point of a type is to define the structure of variables of that type, to limit
the values that variables of that type can assume, and to limit the operations
that can be applied to variables of that type.

The language supplies some types. (All other types are constructed with
type-constructors, see Chapter 5, page 21.)

Complete list of the supplied types:

INTEGER
CARDINAL
REAL
LONGREAL
UNSIGNED
BITSET
BOOLEAN
CHAR
REFANY

4.1. Supplied Numeric Types

INTEGER

CARDINAL

UNSIGNED

REAL

LONGREAL

For us, FIRST(INTEGER) = -231 = -2147,483,648 and
LAST(INTEGER) = 231 - 1 = 2,147,483,647.

equivalent to the subrange type
[O .. LAST(INTEGER)].

the integers from O to 232- 1.

real numbers. See Section 16.1, page 89, foran
explanation of how real-number types are implemented.

double-precision real numbers. See Section 16.1, page
89, for an explanation of how real-number types are
implemented.

18 Supplied Types

4.2. Other Supplied Types

BITSET

BOOLEAN

CHAR

REFANY

• SET OF [O .. System.BitsPerWord - 1]

When you're writing a constant bitset, you're allowed to
omit the type name BITSET before the curly bracket.

{3,7,9}

is equivalent to:
BITSET {3,7,9}

the truth values TRUE and FALSE. BOOLEAN is an
enumeration type declared as

So

TYPE
BOOLEAN• (FALSE, TRUE);

ORD(FIRST(BOOLEAN)) • 0
ORD(LAST(BOOLEAN)) • 1

the character set provided by the implementation (which
Wirth calls the "used computer system"; I like the
phrase)-- 256 of them for us. 0 to 127 are the ASCII
character set. CHAR behaves like an enumeration type.
The Char interface contains constant definitions for all of
the ASCII control characters.

is a place-holder type, for holding values of any ref type.
REFANY is not itself a ref type. Any time we mean ''ref
type or REFANY," we have to say so explicitly.

If you have
TYPE

RI• REF INTEGER;
RC• REF CHAR;

VAR
ri: RI;
re: RC;
ra: REFANY;

then you can say
ra :• ri;
ra :• re;

but you can't just say
ri :• ra;

You have to say something like
ri :• NARROW(ra, RI);

or
TYPECASE ra OF
I RI(ri): ...
END;

See Section 10.4, page 45.

Other Supplied Types

4.3. Kinds of Supplied Types

Here are the kinds of the supplied types. Every time we add a type
constructor we'll explain where the types it constructs fit in this
classification:

ordinal

non-ordinal

numeric

INTEGER
CARDINAL
UNSIGNED

REAL
LONGREAL

non-numeric

BOOLEAN
CHAR

BITSET
REFANY

19

20 Supplied Types

5. Constructing Types

5.1. The Type Constructors

To get types other than the supplied types, you use type constructors. In
cheat-sheet notation:

' [const ' . . const ')
' (ids ')
ARRAY **type', OF type
RECORD fields END
SET OF type
REF type
POINTER TO type
PROCEDURE tFormals ?(': ti) ?(RAISES exSet)
BITS const FOR type

21

Opaque types don't show up here; see Section 5.2 (immediately below) and
Section 13.3, page 70. BITS FOR is in the chapter on representation, in
Section 16.2, page 91.

5.2. Declaring Types

Each occurrence of a type constructor produces a new type. For example:
TYPE

TypeA - ARRAY [0 .. 3] OF INTEGER;
TypeB - ARRAY (0 .• 3) OF INTEGER;

VAR
instanceA: TypeA;
instanceB: TypeB;

BEGIN
instanceB :- instanceA; (* illegal *)

The assignment is illegal because TypeA and TypeB are different types. One
feels, "But they're the same." But they're not.

So you have to give a name to any constructed type that you want to use
more than once.

Normally, you define a name for a type with a declaration of the form:

TYPE
name - type;

That thing on the right-hand side of the equals sign can be a previously
defined type or a new type created by using a type constructor.

22 Constructing Types

In a DEFINITION module you can also declare a name for a new type with an
opaque word type declaration:

TYPE
name;

or an opaque ref type declaration:
TYPE

name - REF;

For more about opaque types, see Section 13.3, page 70.

5.3. Subranges

You can make a new type that is a subrange of an ordinal type by specifying
the lowest and the highest value in the subrange:

TYPE
Index - [0 .. N-1];
Cap - ["A" .. "Z"];
Workday - [Monday . . Friday] ;
Showdog • [FIRST(Dog) .. Poodle];

The lower bound must not be greater than the upper bound. Both bounds
must be constant expressions.

The resulting type is an ordinal type, numeric if the basetype is numeric,
non-numeric if the basetype is non-numeric:

ordinal

non-ordinal

numeric

INTEGER
CARDINAL
UNSIGNED
numeric subrange

REAL
LONGREAL

non-numeric

BOOLEAN
CHAR
non-numeric subrange

BITSET
REFANY

In a SAFE module, the compiler checks to be sure that any value assigned to a
variable or passed to a value parameter of a subrange type lies within the
bounds.

Empty subranges are illegal.

Style note in Section 19.9, page 113.

5.4. Enumerations

An enumeration is a list of identifiers. These identifiers are used as
constants. They are numbered from left to right, starting with 0. (See ORD,

Section 11, page 55.)

The resulting type is a non-numeric ordinal type.

Enumerations

Examples of constructing enumeration types:
TYPE

Color• (Red, Blue, Yellow);
Suit • (Club, Diamond, Heart, Spade);

Enumerations behave like thinly disguised numeric types. For instance:
TYPE

Color• (Red, Blue, Yellow);
VAR

c,d: Color;
BEGIN

c :• Blue;
d :• Yellow;

23

IF c • d THEN Wr.PrintF(Stdio.stdout, "Same color.\n");
IF c < d THEN Wr.PrintF(Stdio.stdout, "Earlier color.\n");

Their features -- special scoping rules, ORD, and v AL -- keep the disguise
from getting in your way. Subranges don't need such features because
there's no disguise.

For scope rules, see Section 2.3, page 9. For ORD and VAL, see Section 11,
page 55.

Empty enumerations are illegal.

5.5. Fixed-Size Arrays

A fixed-size array consists of a fixed number of components that are all of
the same type. The declaration of the array type specifies the types of the
components and the indices. Each index type must be an ordinal type.

The resulting type is a non-numeric non-ordinal type.

Examples of constructing fixed-size array types:
TYPE

ChildOfTheWeek • ARRAY Week OF Child;
QueenForADay • ARRAY Weekday OF Housewife;
SRCPhoneList • ARRAY Person, [0 .. 3] OF CHAR;

A declaration of the form:
ARRAY Tl, T2, ... , Tn OFT

with n index types Tl ... Tn is an abbreviation for the construction
ARRAY Tl OF ARRAY T2 OF . . . ARRAY Tn OF T

In other words, an n-dimensional matrix.

To talk about an element of an array, you subscript the name of the array:
You write the name of the array followed by '' ['' followed by the index of
the element followed by "]";i.e. to talk about the ith element of array a,
write:

a[i]

For subscripting to type-check, the index expression must be assignable to a
variable of the index type; see Section 15.6, page 86.

To talk about the fourth element of offset, an instance of array type

- ---- -~--- ------------------------------

24 Constructing Types

Offset defined as ARRAY 8 .. 12 OF INTEGER, you say offset (11], not
offset(4].

Anexpressionoftheforma(el, e2, ... , en] standsfor
a (el] (e2] ... [en].

You can assign to an array as a whole as well as to the individual elements.

5.6. Open Arrays

An open array also consists of components that are all of the same type, but
the number of components is not fixed at compile time. The declaration of
an open array type specifies the type of the components. The type of the
index is always CARDINAL. The lower bound is always O; the upper bound is
determined at runtime.

The resulting type is a non-numeric non-ordinal type.

An open array of System. Byte or System. Word is special. First let's talk
about ordinary open array types.

When you want to write a procedure that operates on arrays of arbitrary
lengths -- for example, a procedure to compute the average of an array of
numbers, or to sort an array of records, or to form the dot product of two
arrays of numbers -- you should declare the formal parameter to be an open
array.

The actual parameter you pass to an open array formal can be either a
fixed-size array or an open array; its element type must be the same as the
element type of the formal parameter. (See Section 15. 7, page 87.) The
procedure can use the supplied procedures HIGH and NUMBER to determine
the size of the array actually passed to it.

If you are calling a procedure with an open array formal and you are passing
it an array that is one-dimensional with an index type starting at 0, then you
and the procedure will agree on how the array is indexed. Otherwise, it's up
to you to see things from the point of view of the procedure you've called.

For instance:

PROCEDURE Swap(a: VAR ARRAY OF INTEGER; i: INTEGER; j: INTEGER);
(* Swap a[i] and a[j] *)

VAR t: INTEGER;
BEGIN

t :- a[i]; a[i] :• a[j]; a[j] :• t;
END Swap;

VAR
a: ARRAY (1 .. 10] OF INTEGER;

With those declarations, what happens if you call Swap (a, 1, 2)? What
happens is that the second and third elements of a get swapped, not the first
and second. The lower bound of an open array parameter is always o.

If the element type of an open array formal is System. Word, then the
corresponding actual parameter may have any type but its size has to be

Open Arrays 25

divisible by 32. If the element type of a formal parameter is System. Byte,
then the corresponding actual parameter may have any type but its size has to
be divisible by 8.

You can construct a ref type whose referent is an open array. The size of the
open array is determined by the number passed as the second parameter to
NEW when the open array variable is created.

That's the end of the story. You can't use an open array type like a
fixed-size array type -- you can't declare a pointer to an open array type, you
can't embed open arrays in arrays or records, you can't return an open array
as the result of a procedure. So in practice there are only two ways that you
ever get an open array variable: Either you declare an open array parameter
to a procedure, or you dereference a value that is a ref to an open array.

There are just three things you can do with an open array variable:

1. subscript it,

2. pass it to one of five supplied procedures HIGH, NUMBER,

System.Adr,System.Size,andsystem.ByteSize,

3. or pass it to a procedure whose corresponding formal parameter
is an open array.

You cannot use an unsubscripted open array variable on either side of an
assignment statement

TYPE
Open• ARRAY [0 .. 2] OF INTEGER;

VAR
open: Open;

PROCEDURE P(a: ARRAY OF INTEGER);
BEGIN

a [0 J : • open [0 J ; (* dandy *)
a :• open; (* illegal *)

END P;

You can use an open array type constructor in a procedure formal; all other
types in procedure formals must have names (identifiers). Therefore this
procedure heading is OK:

PROCEDURE Sum(a: ARRAY OF INTEGER): INTEGER;

while these similar-looking headings are not OK:
PROCEDURE SumlO(a: ARRAY [0 .. 9] OF INTEGER): INTEGER;
PROCEDURE CountChars(s: SET OF CHAR): INTEGER;

5. 7. Records

A record consists of a fixed number of fields of possibly different types. The
declaration of a record type specifies a type and an identifier for each field.

The resulting type is a non-numeric non-ordinal type.

26 Constructing Types

Examples of constructing record types:

TYPE
Date - RECORD

day: (1 .. 31];
month: (1 .. 12];
year: (0 .. 2000];

END;
Employee• RECORD

name, first: ARRAY (0 .. 9) OF CHAR;
age: [0 . . 9 9] ;
salary: REAL;

END;

You use a field-selection dot to talk about the fields of a record instance. For
example (continuing the examples above), if you have:

VAR
inauguration: Date;
president: Employee;

then you talk about the fields of those records this way:

inauguration.day
president.age

(* the day field of the inauguration record*)
(* the age field of the president record*)

(For talking about record fields inside a WITH statement, see Section 2.7,
page 13.)

A record type may have one or more variant sections. The field at the head
of a variant section is called the ''tag field.'' It must be of an ordinal type.
The case labels are constants of the type indicated by the tag field.

TYPE
EmployeeStatus • (Faculty, Staff);
UniversityEmployee - RECORD

name: Text.T;
birthday: INTEGER;
CASE status: EmployeeStatus OF
I Faculty:

almaMater: Text.T;
tenureTrack: BOOLEAN;

Staff:
preferredParking: ARRAY (0 .. 9) OF INTEGER;

END;
END;

In other words, if a record variable of type UniversityEmployee has the
value Faculty in the status field, the record will consist of five fields
(name, birthday, status, almaMater, and tenureTrack); if it has the
value Staff in the status field, it will consist of four fields (name,
birthday, status, and preferredParking).

In the simplest way of using a variant record, you initialize its tag field
shortly after creating it and never touch the tag again. Changing the tag field
leaves the values of the variant fields undefined.

It's also possible to write a variant section without a tag field -- but with
utmost care. If you have a tag field, the compiler and runtime system can
check it for you. If you don't have a tag field, you have to supply the
checking yourself. Tagless variant records are usually for low-level
programming. There are some real-life examples in Section 16.5, page 94.

Records 27

Tagless ref-containing variant records are not supported.

5.8. Sets

You make a set type because you want to be able to talk about any subset of
some ordinal type.

For instance, suppose you have the enumeration type TerminalMode
declared as:

TYPE
TerminalMode - (ReverseVideo, AutoWrap, AutoRepeat);

Because any combination of these modes makes sense, you would represent
the state of a terminal with a variable of type TerminalModeSet:

TYPE
TerminalModeSet - SET OF TerminalMode;

So a variable of type TerminalModeSet can assume any of the following
values:

TerminalModeSet {}
TerminalModeSet {ReverseVideo}
TerminalModeSet {AutoWrap}
TerminalModeSet {AutoRepeat}
TerminalModeSet {ReverseVideo, AutoWrap}
TerminalModeSet {ReverseVideo, AutoRepeat}
TerminalModeSet {AutoWrap, AutoRepeat}
TerminalModeSet {ReverseVideo, AutoWrap, AutoRepeat}

The resulting type is a non-numeric non-ordinal type.

Modula-2+ allows sets that require more than one word to represent
SET OF [0 .. 1023]

is perfectly reasonable. See Section 16.7, page 96, for implementation
restrictions.

5.9. Refs

A ref is the address of a variable in garbage-collected storage. You declare a
ref type as follows:

or:

TYPE
R - REF INTEGER;

TYPE
NodeRep - RECORD

next, prev: Node;
END;
Node - REF NodeRep;

You can construct a ref type that refers to variables of any type. The
resulting type is a non-numeric non-ordinal type.

Variables referenced by refs are created only with the supplied procedure
NEW. If the first parameter to NEW is a variable with a ref type, then a
variable of the referent type is created and a reference to it is assigned to the

28 Constructing Types

ref variable. You can assign the supplied constant NIL to any variable with a
ref type.

(Many people think of variables as named slots for storing values; by
"variable" we mean simply a slot, whether named or allocated by NEW.)

To talk about the variable referenced by a ref, you use the dereferencing
operator ""'", as in:

nodeA.next :- NIL;

5.10. Pointers

A pointer is the address of a variable. You declare a pointer type as follows:
TYPE

KeyboardRecord • RECORD
keys: KeySet;
cursor: Point;

END;
PtrKeyboardRecord - POINTER TO KeyboardRecord;

You can construct a pointer type that points to variables of any type. The
resulting type is a non-numeric non-ordinal type.

You generate a pointer value by calling NEW or by calling System. Adr. If
the first parameter to NEW is a variable with a pointer type, then a variable of
the referent type is created and its address is assigned to the pointer variable.
You can assign the supplied constant NIL to any variable with a pointer type.

If you created a pointer value by calling NEW you can release the storage
with DISPOSE. If you call DISPOSE twice on the same value you can expect
catastrophe. You can also expect catastrophe if you call DISPOSE on a pointer
you created with System.Adr.

To talk about the variable addressed by a pointer, you use the dereferencing
operator ""'", as in:

allKeysUp :- ptrKeyboardStateA.keys - KeySet{};

5 .11. Procedure Types

It's useful to be able to pass procedures as actual parameters to other
procedures and to embed procedures in data structures. So you want to be
able to declare procedure-valued variables, and in order to declare
procedure-valued variables, you need procedure types. For instance:

TYPE
FleaAction - PROCEDURE;
DogAction - PROCEDURE(VAR Breed:• Cur);

The resulting type is a non-numeric non-ordinal type.

Procedure Types

The syntax for the header of a procedure type constructor is very like the
header for a procedure declaration. In cheat-sheet notation:

type
procH

• PROCEDURE tFormals ?(': ti) ?(RAISES exSet)
• PROCEDURE id formals?(': ti) ?(RAISES exSet)

29

formals • ' (**(?VAR ids': ?(ARRAY OF) ti ?default) '; ')
tFormals • ' (**(?VAR ?(ARRAY OF) ti ?default) '; ')

You can assign procedure P to a variable t of procedure type T only if they
match; see Section 15, page 81. And there are some additional restrictions:

1. P must not be declared local to another procedure.
2. P must not be known to the compiler. (Being known to the

compiler is different from what we've been calling being
"supplied," i.e. not requiring import.) [[And how does an
earnest seeker after truth discover what procedures the
compiler knows about?]]

The constant NIL is compatible with procedure types, so procedure variables
can be initialized to NIL, and you can return NIL from a procedure whose
result-type is a procedure type.

5.12. Kinds of Types

Here are the kinds of all the types, supplied and constructed:

ordinal

non-ordinal

numeric

INTEGER
CARDINAL
UNSIGNED

non-numeric

BOOLEAN
CHAR
enumeration

numeric subrange non-numeric subrange

REAL
LONGREAL

BITSET
REFANY
fixed-size array
open array
record
set
ref
pointer
procedure

30 Constructing Types

31

6. Variables

A variable declaration associates an identifier with a type. The type defines
the structure of the variable, limits the values that the variables can assume,
and limits the operations that can be applied to the variable.

For example:
VAR

k: INTEGER;
c: Wr.Consumer;
a: ARRAY Index OF CARDINAL;

Variables whose identifiers appear in the same list all get the same type.
That is to say, this:

VAR
i: CARDINAL;
j: CARDINAL;

is the same as this:
VAR

i,j: CARDINAL;

The other way of creating a variable is by calling NEW. (Many people think
of variables as named slots for storing values; by ''variable'' we mean
simply a slot, whether named or not.)

For rules about identifiers, see Section 1.2, page 4.

Variables of any ref type or of type REFANY are always initialized to NIL.

The conservative assumption to make about all other variables is that their
initial value is undefined. For cases where performance is crucial and you
want to investigate the exact dimensions of that conservative assumption, see
Section 16.3, page 93.

32 Variables

33

7. Expressions

An expression specifies a computation that produces a value. In constructing
an expression you can call procedures and use operators.

Parentheses in expressions group operands with their operator.

The only really tricky thing about expressions is type-checking; see Chapter
15, especially Section 15.5, page 83.

7.1. Operands

If an operand in an expression is not itself an expression, then it is something
simpler:

• a literal number, a string, a literal set, or NIL (see pages 4, 4, 15)
• the name of a constant, an exception, a variable, or a procedure

with any number of syntactically acceptable dots, uparrows, and
square brackets

If the name is the name of a variable, its value is the current value of the
variable. [[Is this a surprise?]]

If the name is the name of a procedure or a procedure-valued variable and is
followed by a (possibly empty) parameter list, the name represents a call on
the procedure with thos~ parameters and the value is the value returned by
the call. If the name is the name of a procedure but is not followed by a
parameter list, then the value is the procedure itself, not a call on the
procedure.

7 .2. Operators

7.2.1. Operator Precedence

There are four classes of operators. From highest to lowest in precedence:

NOT
* I DIV MOD AND
+ - OR
• t < <• > >• IN

Sequences of operators of the same precedence are executed from left to
right.

The operators are overloaded. That is to say, the same operator symbol may
stand for several different operations; the actual operation is identified by the
types of the operands.

34 Expressions

7.2.2. Arithmetic Operators

Addition is adding.
-- Gertrude Stein, '' Arthur a Grammar''

symbol

+

*
I
DIV
MOD

operation

addition
subtraction
multiplication
real division
integer division
integer modulus

When used as prefix unary operators,

+

means identity and

means sign inversion. [[More to come about what sign inversion means
with various kinds of operands. J J

The operators DIV and MOD are defined by the following rules:

• x DIV y is equal to the quotient x/y truncated towards zero .
• X MOD y is equal to X - (x DIV y) * y -- this is the

remainder of the division x DIV y; in a short while this is going
to be the definition for something called REM and MOD is going
to be redefined as the mathematical mod function.

When an overflow occurs in an arithmetic operation, it is ignored. [[
What happens on floating-point overflow? What happens on floating-point
underflow? What happens on divide by zero?]]

7.2.3. Logical Operators

symbol

AND
OR
NOT

The expression
p OR q

means

operation

logical conjunction
logical disjunction
negation

IF p THEN TRUE ELSE q END;

p AND q

means

IF p THEN q ELSE FALSE END;

Operators

Non-Pascal programmers will be surprised (and Pascal programmers once
again disgusted) by the precendence of the operators AND and OR in the
expression syntax. You'd like to write:

IF a< b AND c < d THEN END;
IF a< b OR c < d THEN ... END;

but instead you must write:

IF (a< b) AND (c < d) THEN ... END;
IF (a< b) OR (c < d) THEN ... END;

[[Paul McJones:]]

Another result of operator precedence and the ordering FALSE < TRUE: If
you want to compute

p implies q

(often indicated symbolically as "p => q"), you can write in Modula-2:
p <= q

7.2.4. Set Operators

symbol

+

*
I

x IN (sl + s2)
x IN (sl - s2)
x IN (sl * s2)
x IN (sl / s2)

operation

set union
set difference
set intersection
symmetric set difference

iff (x IN sl) OR (x IN s2)
iff (X IN sl) AND NOT (X IN s2)
iff (x IN sl) AND (x IN s2)
iff (x IN sl) t (x IN s2)

You might expect the operator NOT to apply to sets, but it doesn't.

7.2.5. Relations and Set Relations

symbol relation

- equal
t not equal
< less
<- less or equal
> greater
>• greater or equal

35

Many of the relations also apply to sets, where they have different meanings.
Where s and t are sets and e is an element:

s - t means that s and t have the same elements
s t t means that s and t do not have the same elements
s <- t means that every element of s is an element oft
s >- t- means that every element oft is an element of s
e IN s means that e is an element of s

36 Expressions

The set relations

mean improper inclusion; that is to say, wherever s = t is true, it is also
true that s >• t and s <= t.

Operators 37

7.3. Applicability Charts

See the type-checking chapter, 81, to understand this classification. For
operands of these basetypes, these operators apply. (Of course, you also
need to look at the type-checking chapter to see whether they type-check.)

Binary Operators

INTEGER
CARDINAL
UNSIGNED
numeric subrange
System.Address
BOOLEAN
CHAR
enumeration
non-numeric subrange
REAL
LONGREAL
FLOATING-POINT
BITSET
REFANY
fixed-size array
open array
record

*
*
*
*
*

*
*
*
*

DIV MOD AND +
DIV MOD AND +
DIV MOD AND+
DIV MOD AND+
DIV MOD AND+

AND

I +
I +
I +
I +

- OR• t < <- > >=
- OR• t < <- > >•
- OR• t < <- > >=
- OR• t < <- > >=
- OR• t < <- > >=

OR• t < <- > >=
- t < <- > >=
- t < <- > >•

* < <- > >=
- - t < <- > >=
- - t < <- > >=
- - t < <• > >•
- - t <- >-=

- t

IN
IN
IN
IN
IN
IN
IN
IN
IN

IN

set * I + - <= >= IN
ref
pointer
procedure
STRING
VOID
System.Word
System.Byte

Unary Operators

INTEGER
CARDINAL
UNSIGNED
numeric subrange
System.Address
BOOLEAN
REAL
LONGREAL
FLOATING-POINT

+ -
+ -
+ -
+ -
+ -

NOT
+ -
+ -
+ -

38 Expressions

8. Toe Syntax of Statements

8.1. What Is a Statement?

There are several kinds of statements:

assignments
control structures
WITH statements
procedure calls

Syntactically these are all the same kind of thing: statements.

Assignment, procedure call, RETURN, and EXIT are elementary (simple,
atomic) statements. The other statements (Wirth sometimes calls them
"structured statements") are composed of parts that are themselves
statements.

39

Statements in a statement sequence are separated by semicolons. Since the
empty statement is allowed, you can (and the format note in Section 20, page
113, will tell you you should) end the last statement in a statement sequence
with a semicolon.

For assignments, see
For control structures, see
For WITH statements, see
For procedure calls, see

Chapter 9, page 41.
Chapter 10, page 43.
Section 2.7, page 13.
Chapter 12.2, page 64.

8.2. A Statement Is Not an Expression

I'm not sure that this is the right place to say this, but you'd like to be able to
use statements as expressions, and you can't. For instance, it feels sensible
to say:

x :- IF a THEN b ELSE c END;

and you can't. You have to say:
IF a THEN x :- b ELSE x :- c END;

which doesn't seem as tight and nice.

40 The Syntax of Statements

9. Assignments

You set the value of a variable by doing an assignment. The assignment
operator is written

41

and pronounced "gets." After an assignment is executed, the variable on the
left-hand side has the value obtained by evaluating the expression on the
right-hand-side. The old value of the variable is gone.

The simplest kind of assignment looks like this:
y :• O;

Any expression can serve as the right-hand side of an assignment statement,
just so long as the type of the expression is assignable to the type of the
variable. (See Section 15.6, page 86, for type-checking rules.) For instance:

i :• k;
p :- i - j;
z :• Math.Log(x + y);
s :• Char.Set {"A" .. "Z", "a" .. "z"};
b :• ((i + j) * (1 + m)) • O;

The left-hand side can be a variable name with any number of dots,
uparrows, and square brackets:

array[i] :• (i + j) * (i - j);
table".key :• i;
word[i+l] .char :• "A";

The variable you get to after applying all those operators can have any type
except open array.

You can't (sigh) put a procedure call or anything that looks like a procedure
call (like LOOPHOLE or NARROW} on the left-hand side of an assignment
statement.

Syntactically, assignments are statements; see Section 8, page 39.

[[What does it mean to assign something of one type to a variable of
another type?]]

Weird facts about getting extra tacked-on nulls in assigning strings on page
5.

42 Assignments

43

10. Control Structures

[[Many more examples needed. Contributions welcome.]]

10.1. RETURN

Syntax in cheat-sheet notation:

s -
I RETURN ?e

Executing a RETURN statement terminates the current activation of the
procedure in which it occurs.

If the procedure returns a result, the RETURN statement is the only way to
terminate the procedure and specify the result:

PROCEDURE RadiansFromDegrees(
degrees: INTEGER)
: REAL;

BEGIN
RETURN(2. * 3.14159 * FLOAT(degrees) / 360.);

END RadiansFromDegrees;

If the procedure doesn't return a result, it can terminate normally by
executing a RETURN statement or by falling off the bottom.

PROCEDURE Bump(self: T);
BEGIN

IF selfA.closed THEN RETURN; END;
INC(selfA.count);

END Bump;

(Procedures can also terminate by raising exceptions.)

For more about procedures, see Section 12.1, page 63. [[Style query in
section 20.8, page 117. J J

10.2. IF

Syntax in cheat-sheet notation:

s -
I IF ++(e THEN ?ss) ELSIF ?(ELSE ?ss) END

The expression following an IF or an ELSIF is of type BOOLEAN. The
expressions following the IF and any ELSIFs are evaluated in order till one
yields the value TRUE. Then its associated statement sequence is executed.

If there's an ELSE clause and if all the Booleans following the IF and ELSIFs
evaluate to FALSE, the ELSE statement sequence gets executed.

- -----~------------~---

44

For example:
IF (ch>• "A") AND (ch<• "Z") THEN

ReadID ();
ELSIF (ch>• "0") AND (ch<• "9") THEN

ReadNumber () ;
ELSIF (ch•"\"") OR (ch•"'") THEN

ReadString ();
ELSE

Ignore();
END;

Control Structures

If the Boolean expression after an IF or an ELSIF is a constant expression, the
compiler produces code only if the expression evaluates to TRUE. For
example:

IF FALSE THEN
Wr.PrintF (Stdio. stderr, "Error in framus\n");

END;

will produce no code whatsoever. [[John Ellis says: ''This belongs in the
section on performance, not here.'' Am I the only person at SRC stupid
enough to write a constant expression that evaluates to FALSE and try to use it
in an IF statement? It's OK to say I am; I'm not proud.]]

10.3. CASE

Syntax in cheat-sheet notation:

s - •••
I CASE e ?OF 'I ++(elements': ?ss) 'I ?(ELSE ?ss) END

elements• ++(const I const ' .. const) ',

A CASE statement decides what statement sequence to execute according to

the value of an expression. The case labels are constant expressions or
ranges of constant expressions.

The basetype of the expression must be an ordinal type. The types of the
constant expressions in the case labels must be compatible with that type (see
Section 15.5.1, page 83). No value may occur more than once in the case
labels.

At runtime, the expression is evaluated, its value is matched against the case
labels, and the statement sequence whose label contains the value is
executed. If the value of the expression doesn't occur in any of the labels,
the ELSE statement sequence is selected; if there is no ELSE, you get a fatal
error (so it's fairly common for ELSE to have an empty statement sequence).

CASE

Straightforward example:
CASE v OF
I "a", "e", "i", "o", "u":

Wr.PrintF(Stdio.stdout,
"Always a Vow~l: %c\n", v);

"y":
Wr.PrintF(Stdio.stdout,

"Sometimes a Vowel: %c\n", v);
"w":

Wr.PrintF(Stdio.stdout, "Welsh Vowel: %c\n",
v);

"l" .. "n", "r":
Wr.PrintF(Stdio.stdout, "Liquid: %c\n", v);

ELSE
Wr.PrintF(Stdio.stdout,

END;

"Not a Lower-Case Vowel or Liquid: %c\n",
V);

Pragmatic note in Section 18.5, page 107.

10.4. TYPECASE

Syntax in cheat-sheet notation:

s - •••
I TYPECASE e ?OF' I ++((ti parid I ++ti'

parid • ' (id ')

45

': ?ss) 'I ? (ELSE ?ss) END

A TYPECASE statement decides what statement sequence to execute
according to the runtime type of the value of an expression whose static type
is REFANY.

The type of the expression has to be REFANY and the case labels have to be
the names of ref types. [[No compile-time check about repeated ref types
in labels because of opaque ref types, right?]]

At runtime, the expression is evaluated and the value is of some ref type.
The compiler knew it only as a REFANY. Now your program wants to know
the actual (ref) type. [[John Ellis says, "The mention of 'compiler' here
isn't very good form for a discussion of a language." Please consider the
compiler to be a personification, introduced to make the linguistic
relationships more dramatic.]]

If the value of the expression is NIL, the first case arm is selected. Otherwise
the ref type of the value is matched against the case labels. The first
statement sequence whose case label contains the ref type is executed. If the
type doesn't occur in any of the labels, the ELSE statement sequence is
selected; if there's no ELSE, you get a fatal error.

So far so good. If you want to use the value of the expression in one of the
arms, there's one additional piece of magic. If an arm has only one type in
its label, if the type is followed by a parenthesized variable of that type, and
if that arm is selected, then the value of the original REFANY expression gets
assigned to that variable before the statement sequence gets executed.

46 Control Structures

For instance:
PROCEDURE Print(r: REFANY);

VAR
rb: Ref.Boolean;
ri: Ref.Integer;
rt: Text.T;

BEGIN
TYPECASE r OF
I Ref.Boolean (rb):

IF (rb" - TRUE) THEN
Wr.PrintF(Stdio.stdout,

"Boolean: TRUE\n");
ELSE

Wr.PrintF(Stdio.stdout,
"Boolean: FALSE\n");

END;
Ref.Integer (ri):

Wr. P rintF (Stdio. stdout, "Integer: %d \n",
ri");

Text. T (rt):
Wr.PrintF (Stdio. stdout, "Text: %t\n", rt);

ELSE
(* do nothing *)

END;
END Print;

The supplied procedure NARROW is a shorthand for uses ofTYPECASE that
have only one case arm. See page 57.

10.5. LOOP and EXIT

Syntax in cheat-sheet notation:

s =
LOOP ?ss END
EXIT

The statement sequence between LOOP and END is executed repeatedly. One
way to stop looping is to execute an EXIT statement:

LOOP
Wr.PrintF (Stdio. stdout, "%t",

NARROW(l".first, Text.T));
1 :• l".tail;
IF 1 - NIL THEN EXIT; END;
Wr.PrintF(Stdio.stdout, ", ");

END;

If the LOOP occurs within a procedure, another way to stop looping is to
execute a RETURN.

The third way is to raise an exception that's not handled within the LOOP.

Executing an EXIT terminates the smallest enclosing LOOP. So if you have a
LOOP within a LOOP, you can't terminate the outer LOOP using EXIT. (In case
it ever crossed your mind, you can't use EXIT to terminate WHILE, REPEAT,
and FOR loops.)

When you need to, you can exit from multiple LOOPs by declaring a local
exception and then using TRY EXCEPT; see Section 10.11, page 50.

LOOP and EXIT 47

10.6. FOR

Syntax in cheat-sheet notation:

8 - •••
I FOR id':- e TO e ?(BY const) DO ?ss END

The statement sequence in a FOR statement gets executed repeatedly while a
progression of values is assigned to its ''control variable,'' the variable
whose name appears immediately after the FOR:

FOR i :- 0 TO HIGH(a) DO a[i] :- 0; END;

In this example the control variable is i and the progression of values
assignedtoitiso, 1, 2, 3, ... , HIGH(a).

The control variable must have an ordinal type. It can't be a component of a
structured variable (i.e. can't contain any square brackets or uparrows and
can contain only qualification dots, not record-field dots); it cannot be
imported; it can be a parameter, but it can't be a VAR parameter. The value
of the control variable after the end of the FOR-loop is undefined.

The from-value (there's no explicit FROM) and the TO-value can be arbitrary
expressions as long as their types are the control variable can be assigned to
the from-value and compared to the TO-value. The expressions are evaluated
once before the FOR-loop is entered (so assignment statements in the loop
body can't affect the progression of values assigned to the control variable).
If the from-value is greater thap the TO-value in an incrementing FOR, or
smaller than the TO-value in af decrementing FOR, then the body of the loop
is not executed at all.

There's a more general form of FOR-loop that allows the difference between
successive values of the control variable to be something other than 1,
including negative differences (which let you iterate downwards instead of
upwards). For instance:

FOR i :- HIGH(a) - 1 TOO BY -1 DO
a[i + 1] :- a[i];

END;

The BY-value has to be a nonzero constant expression of basetype INTEGER.

48 Control Structures

A FOR-loop of the form:
FOR i :- low TO high BY step DO ss END

can be considered as an abbreviation for
IF step> 0 THEN

i :- low;
WHILE i <- high DO ss; INC(i, step); END;

ELSIF step< 0 THEN
i :- high;
WHILE i >- low DO ss; DEC(i, step); END;

END;

except that

1. low and high are evaluated only once and in no particular
order (since step is a constant, it's not evaluated at runtime at
all);

2. the value of i after exiting the loop is undefined, whether the
exit comes from falling out or from an exception

3. the last INC or DEC may be omitted if it would cause overflow
(but it's not guaranteed to be)

The comparison used to determine when to stop looping depends on the sign
of the BY-value. If it's positive, the loop body is executed only for values of
the control variable that are less than or equal to the TO-va~ue. If it's
negative, the loop body is executed only for values of the control variable
that are greater than or equal to the TO-value. In other words, you' re never
allowed to get beyond the TO-value.

Do not change the value of the control variable within the body of a
FOR-loop; the behavior of a loop whose control variable has been tampered
with is undefined.

10.7. WHILE

Syntax in cheat-sheet notation:

s - •••
I WHILE e DO ?ss END

The expression after the WHILE in a WHILE statement has to be of type
BOOLEAN. The expression gets evaluated before each execution of the
statement sequence, and the repetition stops as soon as it yields the value
FALSE. So the statement sequence may never be executed.

Example:

WHILE timeToSleep DO
Thread.Wait(lock, somethingChanged);

END;

WHILE

10.8. REPEAT

Syntax in cheat-sheet notation:

s - •••
I REPEAT ?ss UNTIL e

The expression after the UNTIL in a REPEAT statement has to be of type
BOOLEAN. The expression gets evaluated after each execution of the
statement sequence, and the repetition stops as soon as it yields the value
TRUE. So the statement sequence is executed at least once.

Example:

REPEAT
k :• i MOD j;
i :- j;
j :• k;

UNTIL j • O;

10.9. TRY FINALLY

Syntax in cheat-sheet notation:

s - •••
I TRY ?ss FINALLY ?ss END

49

The statement sequence following the TRY keyword in a TRY FINALLY
statement is called the body, and the statement sequence following the
FINALLY keyword is called the cleanup. First the body executes and then the
cleanup. But the point of using TRY FINALLY is that once the body starts
executing the cleanup will always be executed no matter how the body
terminates. There are four ways for the body to terminate:

• falling off the bottom,
• executing an EXIT in a LOOP containing the TRY FINALLY,
• executing a RETURN in a procedure containing the TRY FINALLY,
• and raising an exception whose handler is outside the TRY

FINALLY.

For instance:
PROCEDURE Copy(from: Rd.T; to: Wr.T);

BEGIN
TRY

WHILE NOT Rd.EOF(from) DO
Wr.PutChar(to, Rd.GetChar(from));

END;
FINALLY

Rd.Close(from);
Wr.Close(to);

END;
END Copy;

The reader and writer always get closed no matter what happens inside the
WHILE-loop in the body of the TRY FINALLY.

so Control Structures

10.10. LOCK

Syntax in cheat-sheet notation:

s - ••.
I LOCK var DO ?ss END

In concurrent programming you often need to execute a sequence of
statements while holding a monitor lock (Thread. Mutex). You do so with
the LOCK statement:

LOCK selfA,lock DO
IF NOT selfA.closed THEN

INC(selfA.count);
END;

END;

This is roughly equivalent to but better than the following TRY FINALLY:

TRY
Thread.Acquire(selfA,lock);
IF NOT selfA.closed THEN

INC(selfA.count);
END;

FINALLY
Thread.Release(selfA.lock);

END;

• The LOCK version is better because it saves away the address of the monitor
lock and therefore works even if you accidentally clobber the variable self.
(It's also better because you can't forget to say Thread. Release.) This
might go into the pragmatics section: If you want help from the concurrency
powers-that-be, don't use Thread.Acquire and Thread. Release; use
LOCK.

10.11. Exceptions

You declare an exception in order to have it handled in a TRY EXCEPT
statement. You call the supplied procedure RAISE to raise an exception. You
write a handler in a TRY EXCEPT statement to handle an exception.

10.11.1. Declaring an Exception

You declare an exception by specifying a name and the type of at most one
result. For example:

EXCEPTION Overflow;
EXCEPTION InvalidCharacter (CHAR);

The result type can be anything but an open array type.

Exception names obey normal scope rules; they behave like the names of
constants.

Supplied exceptions: There are none.

Exceptions

10.11.2. TRY EXCEPT and RAISE

Syntax in cheat-sheet notation:
s

I TRY ?ss EXCEPT handlers END

51

handlers•?' I ++(++qi', ?parid ': ?ss) 'I ?(ELSE ?parid ?ss)
I ELSE ?parid ?ss

Exceptions are used in two ways:

• One is to pass control between procedures based on their
dynamic relationship; that is, exceptions allow a procedure to
pass control upward to the procedure that called it, or to the
procedure that called that procedure, etc. An important special
case of this use is to get control to the debugger, which behaves
for this purpose like the originating procedure .

• The second is to perform a forward go-to within a single
procedure. This use is also just a special case of the first, but it
has a static meaning within the individual procedure: You can
look at the source just for that procedure and understand what's
going on.

*

Let's look first at the dynamic case:

At the time when you call RAISE, each procedure activation on the stack has a
well-defined notion of its position in the procedure's code. (This position is
often called the program counter.) The position of the most recent procedure
on the stack is the point at which it called RAISE. The position of the
previous procedure is the point at which it called the most recent procedure;
the position of the procedure before that is the point at which it called that
procedure; and so on.

RAISE examines each procedure activation in tum backwards, starting with
the procedure that called it, looking for a handler for the exception being
raised and tidying up as necessary while it's looking. In full detail:

• Within each procedure activation, RAISE looks for TRY FINALLY
bodies and TRY EXCEPT bodies that contain the current position,
starting with the smallest enclosing body .

• When RAISE finds a TRY FINALLY, it executes the cleanup.
If the cleanup raises another exception, the first exception
is completely forgotten and the whole process begins
again from the new RAISE .

• When RAISE finds a TRY EXCEPT, it looks for a matching
handler, i.e. a handler whose label includes the name of an
exception that is the same as the exception being raised.

52 Control Structures

• When RAISE reaches a procedure boundary without finding a
matching handler, it executes essentially the same cleanup action
that takes place during a procedure return, freeing the storage
allocated by the procedure activation. Then it starts looking at
the procedure activation that called the one just freed.

Once RAISE finds a matching handler, RAISE passes control to the statement
sequence of the handler. If the handler's statement sequence terminates
normally, control passes to the next statement after the END of the TRY
EXCEPT.

Some handlers have a parenthesized variable name between the label and the
statement sequence. An exception can be declared to return a value or not;
see Section 10.11.1, page 50. If the declaration does include a return value,
the RAISE must include as a second argument an expression whose type is
assignable to the type of the return value, and the handler may (or may not)
decide to make use of the return value. If the handler does plan to use the
return value, it includes a parenthesized variable name between the label and
the statement sequence. Before passing control to the statement sequence,
RAISE assigns the exception's return value to the parenthesized variable. So
that's why the type of the exception's return value must be assignable (see
Section 15.6, page 86) to the type of the variable.

Strange restriction: The parenthesized variable cannot be a ref-containing
global variable.

There's nothing unusual about the execution environment of handlers and
cleanups. The only thing that's unusual is that they got invoked by RAISE.

Stylized example:
TRY

sl;
TRY s2; s3; FINALLY s4; END;
sS;

EXCEPT
I e: s6;
END;

If no exceptions are raised, the sequence of execution will be:
sl; s2; s3; s4; s5

If exception e is raised in s 1, the sequence will be:
sl (partially); s6

If exception e is raised in s2, the sequence will be:
sl; s2 (partially); s4; s6.

If RAISE finds no matching handler anywhere in the stack, it calls the
debugger. In this important special case, RAISE preserves the execution
context and refrains from doing any cleanup, so as to give the debugger
access to the context in which the exceception was raised. The original
execution context is also preserved if RAISE finds a matching handler whose
statement sequence consists solely of a single call to RAISE.

If you happen to be writing a debugger or some program that plays a similar

Exceptions 53

role, you will want to know about ELSE-handler, which uses the keyword
ELSE instead of a label and catches all exceptions. If there's a parenthesized
variable in an ELSE-handler, it should have type System. FailArg.

*

So much for the dynamic case. You can also use exceptions to perform
forward go-tos within a single procedure. Using RAISE may seem clumsy for
this purpose, but it can be the best way to achieve your aim:

EXCEPTION ExitForLoop;

TRY
FOR i :• 0 TO HIGH(a) DO

IF a[i] < 0 THEN RAISE(ExitForLoop); END;
END;

EXCEPT
I ExitForLoop:

Wr.PrintF(Stdio.stdout,
"Found negative.\n");

END;

You can also use RAISE to exit nested LOOPs.

10.12. TRY PASSING

Syntax in cheat-sheet notation:
s • TRY ?ss PASSING exSet ?'; END

TRY PASSING is a shorthand for exception handling:
TRY ss; PASSING {exl, ex2}; END;

means
VAR failArg: System.FailArg;

TRY
ss;

EXCEPT
I exl: RAISE(exl);
I ex2: RAISE(ex2);
ELSE (failArg) RAISE(System.Fail, failArg);
END;

This is a way of doing at the block level what a RAISES clause does at the
procedure level (see page 64).

54 Control Structures

11. Supplied Procedures

Here's a classification of the supplied procedures:
Numbers

ABS DEC INC MAX MIN ODD
Conversions

CHR FLOAT LONGFLOAT LOOPHOLE NARROW ORD TRUNC VAL
Sets

EXCL INCL
Storage Allocation

NEW DISPOSE
Control

ASSERT HALT RAISE
Type Deconstructors

FIRST LAST HIGH NUMBER

ss

We're going to try to present these supplied procedures as if they were in a
definition module. But many of the functions can't be expressed in ordinary
Modula-2+. Liberties are taken as necessary when the language is
inadequate to describe a procedure, e.g., for LOOPHOLE, which takes a TYPE
parameter; or NEW, which applies to parameters of any REF type; or ABS,
which returns a value of the same type as its parameter.

[[More work needed on the descriptions to fit in the new stuff on
type-checking.]]

(***)
(*)
(* Notation: *)
(* <> angle brackets enclose informal descriptions *)
(* :• empty means the parameter can be omitted *)
(*)
(***)

S6

11.1. Numbers

PROCEDURE ABS(x: INTEGER): INTEGER;
PROCEDURE ABS (x: REAL) : REAL;
PROCEDURE ABS(x: LONGREAL): LONGREAL;

(* Returns the absolute value of x. *)

PROCEDURE DEC(VAR x: T; n: CARDINAL:• 1); 1

BEGIN
IF BaseType(x) IN {INTEGER, UNSIGNED} THEN

X :- X - n;

Supplied Procedures

ELSIF BaseType(x) • <an enumerated type> THEN
x :• VAL(T, ORD(x) - n);

ELSE
ERROR

END;
END DEC;

PROCEDURE INC(VAR x: T; n: CARDINAL:• 1);
BEGIN

IF BaseType(x) IN {INTEGER, UNSIGNED} THEN
X :• X + n;

ELSIF BaseType(x) • <an enumerated type> THEN
x :• VAL(T, ORD(x) + n);

ELSE
ERROR

END;
END INC;

PROCEDURE MAX(a, b: Numeric): Numeric;
(* Returns the larger of two values. a and b must be compatible;

see Section 15.5.1, page 83. *)

PROCEDURE MIN(a, b: Numeric): Numeric;
(* Returns the smaller of two values. a and b must be compatible;

see Section 15.5.1, page 83. *)

PROCEDURE ODD(x: INTEGER): BOOLEAN;
PROCEDURE ODD(x: UNSIGNED): BOOLEAN;

(* ((x MOD 2) t 0)
Returns TRUE if xis odd, FALSE if xis even. *)

1Bug in DEC and INC: The size in bits of the parameter, as obtained by calling
System.Size(x), must be 8, 16, or 32. Underflow checking is done incompletely, if at
all. The parameter must be byte-aligned; if it isn't, the result is undefined.

Numbers

11.2. Conversions

PROCEDURE CHR(x: INTEGER): CHAR;
PROCEDURE CHR(x: UNSIGNED): CHAR;
PROCEDURE CHR(x: System.Word): CHAR;
PROCEDURE CHR (x: System.-Byte): CHAR;

57

(* Converts a number into a character-with that representation.
CHR is a shorthand for VAL:

CHR(x) - VAL(CHAR,x)
No range checking is done; the result of doing (for instance)
CHR(899) is undefined. *)

PROCEDURE FLOAT(x: Numeric): REAL;
(* Converts a number into a REAL.

If the basetype of the parameter is INTEGER, FLOAT returns
the REAL that most closely approximates that integer -­
some precision may be lost. If the basetype is LONGREAL,
FLOAT simply truncates the extra digits of precision
(rather than rounding). If the basetype is REAL, FLOAT
just returns the parameter value. *)

PROCEDURE LONGFLOAT(x: Numeric): LONGREAL;
(* Converts a number into a LONGREAL.

If the basetype of the parameter is INTEGER, LONGFLOAT
returns the REAL that represents that integer -- no
precision is lost. If the basetype is REAL, LONGFLOAT
simply expands it without changing the number it
represents. If the basetype is LONGREAL, LONGFLOAT just
returns the parameter value. *)

PROCEDURE LOOPHOLE(e: T; X: TYPE): x;
(* Converts a value from one type to another without changing

the representation of the value. Not even the number of
bits in the representation can change, i.e. System.TSize(T)
must equal System.TSize(X).

[[Type-checking information needed.]] LOOPHOLE takes an
expression of any type [[?]] as its first parameter and
the name of a type [[?]] as its second parameter. It
returns the value of type X that has the same bit pattern
as the parameter e. The size of e (i.e., the number of
bits required to represent a value of its type) must be
identical to the size of a value of type x. For more
information, see Section 16.6, page 96. *)

PROCEDURE NARROW(r: REFANY; t: TYPE): t;
(* Converts a value from type REFANY to a ref type.

NARROW is a convenient shorthand for TYPECASE (Section
10.4, page 45). For example:

x :- NARROW(ref, T);
is equivalent to:

TYPECASE ref OF
I T(x): (* empty statement sequence*)
I ELSE RAISE(System.NarrowFault, ref);
END;

If the first parameter to NARROW is NIL, NARROW returns
NIL. *)

58 Supplied Procedures

PROCEDURE ORD(element: T): CARDINAL;
(* Converts an element of an enumeration to its position in the

enumeration order (so that you can do some kind of
arithmetic on the ordinal value and then convert back at
some later point using VAL). The ordinal value of an
enumeration element is determined by the original
declaration and doesn't change through subsequent
application of constructions like subrange or BITS FOR.
All enumerations start from O. *)

PROCEDURE TRUNC(r: RealOrLongreal): INTEGER;
(* Converts a REAL or LONGREAL to the integer obtained by

truncating towards 0. If the truncated value cannot be
represented as an INTEGER, the result will be some
undefined value with no error indication. *)

PROCEDURE VAL(T: Enumeration; e: S): T;
(* Converts an enumeration type and a position into the element

with that position in the enumeration type. If Tis a
subrange, VAL returns the element with position Sin the
original enumeration type, not in the subrange. *)

11.3. Sets

PROCEDURE EXCL(VAR s: S; e: E); 2

(* s :• s - S {e};

Excludes element e in sets. The basetype of S must be a
set type with element type E. *)

PROCEDURE INCL(VAR s: S; e: E);
(* s :• s + S {e};

Includes element e in sets. The basetype of S must be a
set type with element type E. *)

2Bug in INCL and EXCL: The set parameter must be byte-aligned; if it isn't, the
result is undefined.

Sets 59

11.4. Storage Allocation

(* The NEW procedure has three forms:

(1) PROCEDURE NEW(VAR v: RefOrPointer);
(2) PROCEDURE NEW(VAR a: RefOpenArray; nElements: CARDINAL);
(3) PROCEDURE NEW(VAR v: RefVariantRecord; tag: Tag);

NEW allocates storage at runtime for a new variable to which a
ref or a pointer will refer. *)

PROCEDURE NEW(VAR v: RefOrPointer);
(* (1) Use the basic form whenever the type of vis a ref except

when it's a ref to an open array or an immutable variant
record with only one tag field.

Use the basic form also whenever the type of vis a
pointer. You can use NEW of a pointer to allocate
storage from a private storage allocator that you've
built for reasons of your own; see Section
18.6, page 107. *)

PROCEDURE NEW(VAR a: RefOpenArray; nElements: CARDINAL);
(* (2) When the first parameter to NEW is a ref to an open array,

the second parameter gives the number of elements. *)

PROCEDURE NEW(VAR v: RefVariantRecord; tag: Tag);
(* (3) When the first parameter to NEW is a ref to a variant

record, you can supply a tag value as the second
parameter. This value is assigned to the first
top-level tag field of the record. If the value of a
field of a record is itself a variant record, there is
no way to set its tag with NEW; and there's no way to
set anything beyond the first top-level tag with NEW.

NEW allocates enough space to hold the largest variant
no matter what tag you supply. *)

PROCEDURE DISPOSE(VAR v: T);
(* If you used NEW with a pointer, you use DISPOSE to free

the storage allocated by NEW.

If Tis a ref, DISPOSE is a no-op. *)

60 Supplied Procedures

11.5. Control

PROCEDURE ASSERT(condition: BOOLEAN; message: ARRAY OF CHAR:• empty);
(* If the condition is FALSE, ASSERT aborts the program, dumping

core and printing the message, if there is one. ASSERT
generates code even if the condition is a constant
expression that evaluates to TRUE. *)

PROCEDURE HALT(n: CARDINAL:• 0);
(* Terminates an Ultrix process or a Topaz address space and

never returns. Returning from or falling off the bottom of
the main program causes HALT(0).

By convention, n - 0 means that the program completed
normally, n t 0 means that it failed in some way. Most
programs use n • 1 to indicate failure.

HALT first "cleans up", which basically means flushing
stdout and stderr (see Cleanup.def). It then calls an exit
routine. Under Ultrix this is the C library routine exit;
under Topaz, it's OS.Exit. *)

PROCEDURE RAISE(e: EXCEPTION; arg: T);
PROCEDURE RAISE(e: EXCEPTION);

(* You call RAISE to raise an exception. It never returns.
If the exception was declared with a result of type T, you
have to supply the second parameter (passable as a T);
otherwise you're not allowed to use a second parameter.

See Section 10.11.2, page 51, for a detailed description of the
semantics of RAISE. *)

Control 61

11.6. Type Deconstructors

PROCEDURE FIRST(T: TYPE): t;
(* Returns the first (smallest) value of a type.

After peeling off any
not subrange), T must
or INTEGER, UNSIGNED,
BITS FOR, is the type
the basetype? 11 [[

layers of BITS type declarations (but
be an enumeration or a subrange type
REAL, or LONGREAL. [[If Twas a
of the result the BITS FOR type or

What about System.Address? 11

For an enumeration type, the result is the first (leftmost)
enumeration constant in the list. For a subrange type, the
result is the smallest value in the subrange.

For UNSIGNED, the result is 0. For INTEGER, the result is
-2**31. For REAL, FIRST returns the smallest number
representable as a REAL, which has value approximately
-l.701412E38. For LONGREAL, FIRST returns the smallest
number representable as a LONGREAL, which has value
approximately -l.701411834604692E38. *)

PROCEDURE LAST(t: TYPE): t;
(* Returns the last (largest) value of a type.

After peeling off any layers of BITS type declarations, t
must be an enumeration or a subrange type or INTEGER,
UNSIGNED, REAL, or LONGREAL.

For an enumerated type, the result is the last (rightmost)
enumeration constant in the list. For a subrange type, the
result is the largest value in the subrange.

For UNSIGNED, the result is 2**32 - 1. For INTEGER, the
result is 2**31 - 1. For REAL, FIRST returns the largest
number representable as a REAL, which has value
approximately l.701412E38. For LONGREAL, FIRST returns the
largest number representable as a LONGREAL, which has value
approximately l.701411834604692E38. *)

PROCEDURE HIGH(a: T): CONSTANT;
(* Returns the largest index of array a. The basetype of a

must be an array or open array. The result is a constant
of the index type of the array. *)

PROCEDURE NUMBER(a: T): CARDINAL;
(* The basetype of a must be an array or open array type.

@NOCOUNT open arrays are not allowed.

NUMBER returns the number of elements of a as its result.
This will be a constant if the basetype of a is an array. *)

62 Supplied Procedures

63

12. Procedures

12.1. Procedure Declarations

Remember that the keyword PROCEDURE is used both for procedures and for
procedure types. In cheat-sheet notation:

type

procH
PROCEDURE tFormals ?(ti

• PROCEDURE id formals?(': ti
?(RAISES exSet)
?(RAISES exSet)

In this section we're going to be talking about procedures, not procedure
types.

Some idealized procedure headings:
PROCEDURE P();
PROCEDURE P(param: T; param: T; param, param, param: T);
PROCEDURE P(param: T :• Constant);
PROCEDURE P(VAR param: T);
PROCEDURE P(param: T): T;
PROCEDURE P(): RAISES {Exception, Exception};

The heading of a procedure declaration specifies the procedure's name and
its "formal" parameters; its result, if any; and the limits, if any, on the
exceptions it can raise. The procedure body contains declarations and
statements. The procedure's name is repeated at the end of the·procedure
body.

For instance:
PROCEDURE Fill (

VAR a: Rd. T;
b: INTEGER:• 65)
: Wr.T

RAISES {Rd.ScanFailed};
BEGIN

ss;
END Fill;

If the procedure heading specifies a result, the body of the procedure must
contain one or more RETURN statements; you'll get either a compile-time or a
runtime error if you omit a necessary RETURN statement. The expression you
return must be assignable to the type of the result you declared; see Section
15.6, page 86.

64 Procedures

A formal parameter name stands for the actual parameter specified when the
procedure gets caUed. There are two kinds of formal parameters, • •v AR

parameters" and "value parameters." VAR parameters are indicated by the
symbol v AR, value parameters by the absence of the symbol v AR. For
example:

PROCEDURE Search(
VAR (*in*) str: ARRAY OF CHAR;
text: Text. T)
: INTEGER;

str in this example is a VAR parameter, and text is a value parameter.

VAR parameters do call by reference, not can by value return. [[I don't
know the right way to express that thought.]] There are several reasons
why you might want to make a parameter be a v AR parameter: because you
want to avoid the expense of copying a large value, because you want to pass
a value out by means of the variable, or (least likely) because you're
planning to share information with another thread by means of the variable.
Otherwise you would write a value parameter.

Anything you declare within the procedure body is local to the procedure;
see Section 2.3, page 8.

Procedure declarations can be nested.

Procedures can be recursive or mutuaUy recursive; no special declaration is
required.

You can restrict what exceptions a procedure can raise to a specified set by
attaching a RAISES clause to its declaration. The set is the union of the set
you specify (it's OK to specify an empty set) and System.Fail. At execution
time, if your procedure raises an exception that you didn't mention in your
RAISES clause, the exception is converted to System.Fail. The result passed
by System.Fail identifies the original exception (and its result, if any), so that
no information is actuany lost.

The RAISES clause is part of the type of a procedure, so it affects
type-checking; see page 84.

12.2. Procedure Calls

There are two kinds of procedure call:

• procedure can as a statement, for a procedure that returns no
value;

• and procedure call as part of an expression, for a procedure that
does return a value.

The correspondence between the actual parameters, the ones that you give to
a procedure in calling it, and their matching formals, the ones that appeared
in the declaration, depends entirely on ordering -- the first actual matches the
first formal, the second actual matches the second formal, etc.

Procedure Calls

See Section 15.7, page 87, for what kinds of actuals you can pass to what
kinds of formals.

65

When you call a procedure, the actual parameter you supply to a v AR formal
has to be a variable. The identity of the variable is determined at the time of
the call and does not change during the call. If you use the BITS FOR
constructor to control the layout of variables in memory, you may not be able
to pass those variables by v AR; see Section 16.2, page 92.

The actual parameter you supply to a value formal can be any (passable)
expression. The expression is evaluated at the time of the call and is then
assigned to the formal. The name of the formal behaves like a local variable
inside the procedure.

Example of procedure calls:
ch:• Rd.GetChar(Stdio.stdin);
Wr.PutChar(Stdio.stdout, ch);

12.3. Default Parameters

You can specify constant values as defaults for formal value parameters in
both procedure headings and procedure types.

A formal parameter without a default cannot appear after a formal with a
default

Matching between actuals and formals works as usual, but if there are fewer
actuals than formals and the remaining formals have defaults then the default
values get supplied. That is to say, if you have four formals, all with
defaults, and two actuals, then the first actual matches the first formal, the
second actual matches the second formal, and the third and fourth formal
default There's no way to get the default for the third formal and supply an
actual for the fourth formal.

Supplying default parameters allows you to make upward-compatible
changes that satisfy new clients, while requiring nothing more of your old
clients than recompilation. You can also use default parameters to highlight
the normal-case use of a procedure. And you can sometimes use default
parameters to get the effect of having a variable number of parameters.

Thus you can declare a procedure such as:
PROCEDURE Equal(

tl, t2: Text.T;
ignoreCase: BOOLEAN ·- FALSE)
: BOOLEAN;

or a procedure type such as:

TYPE
CompareProc -

PROCEDURE(
Text.T,
Text.T,
REFANY : • NIL)
: Text.Comparison;

66

Examples of calling such procedures:
VAR

compareProc: CompareProc;
BEGIN

ASSERT(Text.Equal(t, "abed"));
ASSERT(compareProc(t, "abed") • Text.Eq);

Procedures

Defaulting is a very limited mechanism. You can't default arrays and
records (since there aren't any constants available) and you can default
procedures, refs, and pointers only to NIL.

If you specify defaults in an interface you have to specify the same ones in its
implementation. Similarly, if a procedure type specifies defaults, any
procedure assigned to a variable of that type must specify the same defaults.

12.4. Notes

Date: Tue, 7 Jan 86 00:27:55 pst
From: luca (Luca Cardelli)
To: mcvl, rovner, violetta
Subject: More unspecified semantics

I couldn't find any discussion on passing and returning
procedures from other procedures, either in Wirth's book or in
mcvl's manual. Did I miss it?

The modula2+ manual says that "The result of a function
procedure can be of any type, including the structured types,
except open array." This is just too good to be true. My guesses
are:

l) procedures cannot be returned from procedures (ever~ can they be
returned if declared at the top level? or if declared at a level
lower than the level of the procedure which returns them?)

2) procedures can be passed to other procedures only if the former
are declared at the top level (would it be hard to relax this
to allow passing procedures which are declared at a lower level
than the level of the procedure they are given to?)

Note that all the above options respect the stack discipline, hence
they could be implemented without having real closures.

Oh! I just noticed: there is this line which says that "Variables of a
procedure type T may assume as their value a procedure P ... [which]
must not be declared local to another procedure". I assume this
refers to "local variables", not to "formal parameters", otherwise
it would even forbid passing procedures to procedures.

Luca

"Heavens! Why would you want to do THAT??"

Notes 67

From: rovner (Paul Rovner)
Date: 7 Jan 1986 1021-PST (Tuesday)
To: luca (Luca Cardelli)
Cc: mcvl, rovner, violetta
Subject: Re: More unspecified semantics
In-Reply-To: Your message of Tue, 7 Jan 86 00:27:55 pst.

Luca,

Good questions.

"top-level" procedures can be passed as args, returned as results,
assigned to variables, etc. Our reference manual should say this.

Nested procedures cannot be treated as values, only called by name in
an enclosing scope (see the last paragraph on page 82 of Wirth, ed. 3;
you found it, apparently, and quoted it in your last paragraph, which I
do not understand).

Yes, it would be hard to "allow passing procedures which are declared
at a lower level than the level of the procedure they are given to."
Come see me for details if you want ... example: it would be necessary
(and difficult) in the callee to distinguish nested from top-level
actuals.

Paul

68 Procedures

69

13. Modules

There are four kinds of modules: definition, implementation, main, and
nested. We don't often use nested modules, so we'll pretend they don't exist
and then explain their special propenies in a separate section, Section 13. 7,
page 73.

13.1. Definition Modules

The point of a definition module is to make the objects it declares available
to clients, other modules that impon it. Definition modules are also called
interfaces. To find out about impon, see Section 2.5, page 11.

A definition module contains constant, type, variable, and exception
declarations and procedure headings. It does not include complete procedure
declarations or executable statements.

It is an error for a definition module to impon itself. It is also an error for
two or more definition modules to form an impon cycle {A imports B, B

imports A).

13.2. Implementation Modules

An implementation module contains local objects and statements hidden
from the clients of its definition module.

Most definition modules have matching implementation modules. Your
definition module can get away without an implementation module only if
you declare no opaque ref types (page 71) and no procedures or variables
other than pass-throughs (page 72).

An implementation module automatically gets all the declared and imponed
names from its definition module. Opaque types have to be made concrete
and procedure headings need to be repeated and filled out with procedure
bodies, but other types, variables, constants, and exceptions and all impons
are available with no funher ado.

An implementation module is not actually obliged to implement everything
(or for that matter anything) in its matching definition module.

70 Modules

13.3. Opaque Types

In a definition module, you can declare a type without giving the type's
complete definition. Such a type is called "opaque." You declare an.
opaque type to hide the details of the complete definition, called the
"concrete type," from the importers of the definition module.

There are two sorts of opaque types, opaque word types and opaque ref
types. You declare an opaque word type by saying:

TYPE
T;

The importer knows that the concrete type is a one-word non-ref type.
("Word" means a word of storage.) You declare an opaque ref type by
saying:

TYPE
T - REF;

The importer knows that the concrete type is a ref type (but not the type of
the referent).

These declarations provide the importer with enough information so that she
can do an assignment to a variable of the opaque type. But she can't use any
of the other operations normally provided for user-defined types like:

+

[[Not true, you can do "=" on opaque ref. Crumbs. J J

She gets access to the concrete type by calling procedures implemented in
modules that define the concrete type.

She can declare variables of the opaque type and she can create variables of
the opaque type with NEW. In the case of opaque ref types, she cannot create
a variable of the (unknown) referent type because she doesn't know the size.

13.3.1. Opaque Word Types

IfT is an opaque word type declared in definition module D, then the module
implementing D declares the concrete type T using a standard type
declaration. For instance:

TYPE
T • INTEGER;

The concrete definition of an opaque word type is usually a pointer or a
discrete-number type. In any case, the concrete definition of T must not be a
ref type or REFANY and must satisfy:

System.TByteSize(T) • System.TByteSize(System.Word)

Opaque Types

13.3.2. Opaque Ref Types

If T is an opaque ref type declared in definition module D, then the module
implementing D declares the concrete type T using a standard type
declaration. For instance:

TYPE
T • REF INTEGER;

71

The concrete definition of an opaque ref type must be a ref type. It may not
be REFANY.

Here's an example of the common case, in which the concrete type is defined
in the implementation module:

SAFE DEFINITION MODULE Dog;
IMPORT Text;
TYPE

T • REF; (* opaque *l

PROCEDURE Wash(name: Text.Tl: T;
END Dog.

SAFE IMPLEMENTATION MODULE Dog;
TYPE

T • REF DogRec; (* concrete *l
DogRec • RECORD k: [0 .. 9); f: Text.T; END;

PROCEDURE Wash(name: Text.Tl: T;
(* code that implements Wash *l

BEGIN ss; END Wash;

BEGIN ss; END Dog.

But a feature of opaque ref types (not of opaque word types) allows any
module that imports D to make a concrete definition for T, as long as all the
modules making concrete definitions agree about them. (In fact, the
implementation of D doesn't have to include a concrete definition for T if it
doesn't want to.) Since every application of a type constructor (including
REF) produces a unique type, the way for two implementation modules to
make the same concrete definition is to import the type from the same
interface.

You '11 get a error at runtime during module initialization if two modules
make different concrete definitions for the same opaque ref type.

72 Modules

13.4. Pass-Throughs

In a definition module you can specify "pass-through" values for declared
procedures, exceptions, and variables. For instance:

PROCEDURE InitMutex(VAR s: Mutex)
- ThreadsPort.InitializeMutex;

EXCEPTION Alerted• ThreadsPort.Alerted;

VAR
n: CARDINAL• Params.numParameters;

This kind of declaration equates the identifier on the left of the equals sign
with the one on the right

The type-checking for pass-throughs is:

• For the PROCEDURE declaration, the right-hand side must be the
name of a procedure and the types of the two sides must not just
match (page 84) but have the same names for corresponding
parameters .

• For the EXCEPTION declaration, the right-hand side must be the
name of an EXCEPTION. Either both sides have no parameter or
both sides have a parameter and the parameter types are the
same .

• For the VAR declaration, the right-hand side must be the name of
a variable and the types of the variables on both sides must be
the same.

The pass-throughs make it possible for you to implement a single interface
with multiple modules:

SAFE DEFINITION MODULE Umbrella;
IMPORT Partl, Part2, Text;

TYPE
T • Partl.T;

PROCEDURE Create(name: Text.T): T • Partl.Create;

PROCEDURE Print(t: T) • Part2.0utput;
END Umbrella.

Unfortunately, your client is compilation-dependent on the interfaces to those
multiple definition modules, l?artl and Part2, which have more of the
flavor of implementation than most public interfaces and are fairly likely to
change.

Pass-Th roughs 73

13.5. IMPLEMENTS

Sometimes you want to export more than one interface from one
implementation module, for instance because most of your clients use only a
small fraction of the types and procedures you're making available.
Providing a smaller interface to those clients allows them to reduce their
compilation dependencies.

If you're writing an implementation module that uses IMPLEMENTS, you get
the names from all the definitions modules you're implementing in the order
in which you name them:

SAFE MODULE M IMPLEMENTS A, B, C;

It's up to you to avoid name conflicts. Vacuous redefinitions are OK (page
9).

If you're using the IMPLEMENTS feature, implementation module M no longer
automatically implements definition module M. If in implementation module
M you want to implement definition module M, you have to name it explicitly:

SAFE MODULE M IMPLEMENTS M, N;

As usual, only one implementation module is allowed to implement a given
definition module.

13.6. Main Modules

A main module is essentially an implementation module with no definition
module. All you can do with a main module is run it.

[[This seems like the place to talk about linking ... also maybe the imc?
]]

13.7. Nested Modules

Nested modules are a technique for structuring large implementation or main
modules without introducing separate interfaces.

A nested module can import things only from its containing module. In other
words, if a nested module wants to use Rd, its containing module has to
import Rd; the nested module has no way of reaching outside its containing
module to other modules.

The EXPORTS list in a nested module header makes names from within the
nested module available to its containing module. If EXPORTS is followed by
QUALIAED, these names must be qualified in the containing module with the
name of the nested module.

If a procedure is declared in an interface, its implementation can't be in a
nested module; it has to be at the outer level of its implementation module.

74 Modules

13.8. Initialization

The statement sequence before the END of a module is its body. Every main
module contains a body; its body is its reason for being. The typical
implementation module contains a body too; the purpose of an
implementation module's body is to initialize module variables.

A module expects its body to execute before its procedures are called from
outside. There is an invisible Boolean variable, "initialized," that's
associated with each implementation module. Suppose you have an
implementation module D; the compiler generates code for the body of D
that looks something like this:

PROCEDURE init();
BEGIN -

IF initialized THEN RETURN; END;
initialized:• TRUE;
FOREACH Module IN <imports> DO

Module. init ();
END; -
<explicitly programmed statements of body, if any>

END _init;

Now suppose you take a group of modules that use this scheme for
initialization and you link them together and run them. If they have no
import cycles and if within each module no threads are forked until the first
explicit statement of that module body is executed, then the body of each
module will execute before any of its procedures are called from outside. [[
Hard to follow; needs another pass.]]

If a module uses a constant from another module or declares a variable to
have a type that's imported from another module, that alone will not trigger
initialization of the other module unless the type of the variable is an opaque
ref type.

An import cycle is a chain of imports of the form implementation module A
imports definition module B and implementation module B imports definition
module A (with as many steps in between as you need to disguise this effect).
Guarding against import cycles is your responsibility.

A cyclic import structure may result in unpleasant surprises at runtime. For
example, suppose module A contains procedure P, which relies on the
initialization of module A to execute correctly; module A imports module B,
and B calls A. P as part of B's initialization. When A's initialization
procedure is called, the first thing it does is to call the initialization procedure
of B. That calls A. P. A. P executes incorrectly because A has not yet been
completely initialized.

If multiple threads of control exist during initialization, other dangers arise.
A scenario similar to the one above can occur even if imports are not cyclic.
In addition, it would be possible for a module body to execute twice if one
thread begins executing the body at almost the same time as another does,
and before either has had a chance to set" initialized" TRUE.

14. Safety

14.1. Living in Harmony with the Garbage Collector

From: rovner (Paul Rovner)
Date: 13 Mar 1986 1749-PST (Thursday)
To: src (Modula-2+ programmers)
Subject: Guidelines for programming with garbage collection

75

Ignore this (long) message if you never write code that either
uses or rubs shoulders with REFs. Remember that Wr.T's, Rd.T's and
Text.T's are REFs.

Thanks to Tom Rodeheffer for suggestions on the presentation.

The collector is almost ready to be released (this is NOT a release
message). This means that our consciousness needs to be raised anew
about "storage safety" ... what it means, why you care, and how you can
continue appearing to live cleanly even with the Garbage Collector
watching your every move.

A program is "storage safe" if it does nothing that could break
the collector. This is a good property for a program that lives
with other programs in an address space managed by the collector
to have.

A broken collector is not satisfied to sit there quietly. Misery
loves company. The collector makes it a point when broken to go
around and break as many other programs as it can find.
Sometimes including yours. And usually in mysterious and
wondrous ways to ensure that suitable penance is paid by its
master (me) to figure out what happened.

Storage safety is much less of an issue when the collector is
turned off, as it has been until very recently in Taos. Programs
that do things that would break the collector often run just
fine in its absence. You have often found it easy, no doubt, to
forget when defining modules to declare them SAFE.

The SAFE declaration enables compile-time checks that point out
potential safety violations in your code. The action of a module
declared SAFE is extremely unlikely to break the collector. The
more SAFE modules, the more reliable our systems will be. Warm
feelings accompany compiler acceptance of SAFE modules.

But not all modules can be declared SAFE. Ones that provide
low-level facilities or have critical performance requirements
often require the use of unsafe features. This does not mean
that such code will break the collector, only that the compiler
is not smart enough to "prove" that it won't. Generally, there
should be few unsafe modules, and the reasons for their
existence should be both good and well-understood.

Exhortation

Accordingly, I hereby exhort you not only to cease forgetting to
declare your modules SAFE, but also to work as necessary to

76 Safety

understand clearly why a module that cannot be declared SAFE
must remain in such a sinful state. I would be happy (anxious,
even) to help in such matters. And if language or compiler
changes are shown to be necessary as we proceed, we will make
them.

Generally, we should be willing to pay up to. (say) a 15\
performance penalty for new code to be declared SAFE, and we
should be willing to cause modest disruption as necessary to
make interface changes that enable client modules to be declared
SAFE.

Technical stuff

Current known safety holes

(All but the last item below will be removed from this list
eventually)

(*) Thread stack overflow is not detected.

(*) Bogus procedure descriptors can be created and called, even in
SAFE modules.

(*) There is inadequate checking for the use of unsafe procedures
imported from the System module by SAFE modules, e.g., System.Copy.

(*) Changing a variable upon which an active VAR parameter or WITH
head is based can break the collector. Examples:

Passing a VAR actual parameter that addresses a field of a
collectible object, then while the callee is active deleting the
last accessible REF to the object (e.g. in a concurrent thread,
or via the callee's use of an alias) and triggering a collection
that reclaims the object, then storing through the (dangling)
VAR parameter in the callee. Smash.

Deleting the last REF to an object by the action of (e.g.) the
body of a WITH statement when a field of the object is
referenced by the WITH head. If a collection is triggered and
reclaims the object before code in the WITH body stores through
the address computed for the WITH head, such a store will smash
memory.

(*) There are many ways to break the collector by making concurrent
access to REFs in counted storage outside the protection of a
Mutex when at least one of the threads is making changes. Don't
do it without seeing me first.

If your programs are all declared SAFE, you can stop reading here.

Unfortunately, a deep understanding of all that follows requires knowledge
of some messy implementation details. Think of this as the price for
not using SAFE.

Terminology: "RC" means "REF-containing." "Counted storage"
includes only global variables and storage allocated by NEW for
a REF variable.

Assignment of an RC value is "reference-counted" only if the
left-hand side names a global variable, or a dereferenced REF,
or a VAR parameter that addresses the low segment (bit 30 - 0).
Notice that I did not say" ... if the left-hand side addresses
counted storage" because the left-hand side may name a

Living in Harmony with the Garbage Collector

dereferenced POINTER that happens to address counted storage;
such an assignment will not be counted.

77

A reference-counted assignment causes the count in the header of
the object referenced by the old contents of the target cell to
be decremented, and the count in the header of the object
referenced by the new contents to be incremented. NIL is not
counted.

As it turns out, the code doing the reference-counted assignment does
not itself change the object headers, instead, it drops an
inc-this/dee-that entry int_o a queue for the collector to process when
it gets around to it.

The list below itemizes "unsafe" language features, with notes
for each explaining why it is unsafe. It is OK to use these
features IF you understand fully what the dangers are in each
specific case AND you have arranged to avoid them somehow. Most
of you should not use these features; if you must, please speak
with me before you do.

Storing a value through a POINTER.
This will smash memory if the pointer is bogus.
RC values stored through a pointer are not counted and will
not be traced by the (not yet implemented) trace and sweep collector.

Passing a dereferenced pointer as a VAR parameter.
Assignment in the callee will smash memory if the pointer is
bogus. RC assignment in the callee may or may not be counted.
If it is counted, and a bogus old RC value resides in the
target, decrementing it will smash memory. The SAFE callee
might read a bogus RC value thru the ptr. Bogus RC values are
bad because memory will get smashed by count maintenance or
store-thru' s .

Reading an RC value through a POINTER.
Might pick up a bogus RC value, e.g., thru a bogus pointer.

Loopholing a value to an RC value.
Might get a bogus RC value.

Changing the tag of a variant record which (record) has RC arms.
Might pick up a bogus RC value, either to use or to decrement.
Might lose track of an RC value, leaving a dangling reference.

Running without NIL or subscript-bounds checking.
Might smash memory. Might pick up a bogus RC value.

Calling a procedure imported from an unsafe interface.
The callee might break the collector.

Passing an RC variable as a VAR parameter of a different type,
e.g., open array of System.Word.

Might lose track of an RC value. Callee might write a bogus
value, to be picked up later by the caller.

Additional notes for programmers who live on the edge

All REFs in RC local variables are initially NIL.

If you want to guarante~ that an object will not be collected
when there are no references to it in counted storage that are
accessible to the program, arrange to leave a 32-bit pattern
identical to the REF value in a quad-byte aligned cell on the
active stack of some "alive" thread.

78 Safety

BEWARE of passing a dereferenced pointer to an RC value as a VAR
parameter. Come see me if you have code or plan to have code
that does this.

Come see me if you have questions.

Paul

14.2. Notes

A nested module is automatically considered safe if the module it is nested in
is SAFE.

Imports in a SAFE DEFINITION module must now really be safe
(i.e. no variable or procedure imports from unsafe modules),
even if the corresponding IMPLEMENTATION module is not safe.

If a SAFE IMPLEMENTATION module has a corresponding unsafe
DEFINITION module, the imports in the DEFINITION module must be
safe because it is a part of a SAFE module.

Another way of thinking about this is as follows. Let

defisSafe :• (definition is safe)
implisSafe :• (implementation is safe)

SAFE checking is turned on while processing an IMPLEMENTATION
module if implisSafe is TRUE. Safe checking is turned on while
processing a DEFINITION module if either implisSafe or defisSafe
is TRUE.

It is no longer an error to declare a ref-containing variant record ty~ with no
variant tag, e.g.

RECORD
CASE BOOLEAN OF
I TRUE: ref: REFANY;
I FALSE: adr: System.Address;
END;

END;

in SAFE module. However, accessing the fields of such a variant is an error
and trying to assign wholesale to any structure containing such a record is
unSAFE.

The compiler ensures that an implementation marked SAFE is actually safe by
enforcing the following rules:

• Array bounds checking is enabled in SAFE modules .
• NIL checking (detecting attempts to dereference a REF whose

value is NIL) is enabled in SAFE modules .
• VAR and PROCEDURE imports to SAFE modules must come from

SAFE interfaces. [[PMcJ: Except System? To be fixed?]]
• A SAFE module may not dereference a POINTER to an RC

structure.
• A SAFE module may not perform any assignment through a

POINTER or pass a POINTER dereference as a v AR parameter.

Notes

• A SAFE module may not apply LOOPHOLE or a type-transfer
function to obtain an RC type.

• The types System.Address and System. Word are not
compatible with ref types. [[Roy says that this contradicts
System.def.]]

• A variant record with RC arms has its variant tags set at the time
it is allocated (via extra parameters to NEW). A variant with RC
arms must have a tag field. The tag field of a variant with RC
arms cannot be subsequently assigned to or passed as a v AR
parameter .

• Variant tag checking for RC fields is always enabled in safe
modules. It is an error to access a field in a variant arm not
corresponding to the value of the tag field .

• An assignment statement whose left-hand side contains a record
with RC variants is not allowed unless the record, or the
structure it is a component of, is a local variable or a value
parameter. [[There must be some less tortured way to say
this. I have a record with ref-containing variant fields. If I want
my module to be a SAFE module, I'm not allowed to assign to
that field, that record, or anything containing that record unless
the record or the thing containing the record is a local variable or
a value parameter. Needs lots more work.]]

• An RC structure may be passed as actual to a v AR formal
parameter only if the type of the RC structure and the parameter
are equal .

• RC local variables and procedure variables are set to NIL upon
entry to a procedure. Global RC variables are set to NIL by the
linker.

79

[[Two different sections on safety now jammed together here but not yet
combined. This marks the seam.]]

We define a safe program as one that will not violate the invariants of the
storage allocator, i.e., it will not cause memory to be smashed.
Operationally, this means that a safe program will not alter storage that has
not been properly allocated (e.g., by accessing off the end of an array or
storing through an invalid pointer). A safe program can still get the wrong
answer, but it will not cause an independent program sharing the same
address space to do so.

Implementations [[everything, not just implementations, yes?]] should
be safe whenever possible. It is best to consider unsafe constructs as akin to
type system breaches.

Static checking for safety is enabled in an implementation or program
module via use of the keyword SAFE. For example,

SAFE IMPLEMENTATION MODULE Thread;
SAFE MODULE ThreadClient;

Definition modules can also be marked SAFE, e.g.,

80 Safety

SAFE DEFINITION MODULE Thread;

This indicates that the corresponding implementation module is safe, hence it
is safe to import procedures and variables from the interface. If the
corresponding implementation module begins with the keyword SAFE then it
is guaranteed safe by the compiler; otherwise, it is safe on the assumption
that the implementor knows what she is doing. If a memory-smashing bug
occurs, implementation modules not checked by the compiler are the prime
candidates for scrutiny.

81

15. Type-Checking

The idea of this chapter is to put most things about type-checking in one spot
so that you have a fighting chance of seeing patterns in the information.

15.1. Sarne Type

Two expressions have the same type only if they have the same supplied type
or if they have a constructed type resulting from the same occurrence of a
type constructor. Two different occurrences of the same type constructor
produce two different types. Refer to Section 5.2, page 21, if you'd like to
worry about this point some more.

Obviously we need to say something about renaming:
TYI?E

Dog• ARRAY [0 .. 99] OF INTEGER;
Canine• Dog;

Canine is the same type (not just the same basetype) as Dog.

15.2. Basetype

Throughout this chapter we're going to use the idea of basetype, the type
arrived at by stripping off layers of subrange and BITS FOR. Look at this
example:

TYI?E

A• (Red,Blue,Yellow);
B • [Red .. Blue];
C • [Blue .. Yellow];

M • SET OF A;
N • BITS 32 FORM;

X • SET OF A;
Y • BITS 32 FORM;

s • same basetype
d • different basetype

A B C M

s s d
s d

d

N X y z

d d d d
d d d d
d d d d

s d s d
d s d

d d
d

A and B have the same basetype because B is merely a subrange of A. B and
C have the same basetype because they are both subranges of the same type.
A and M do not have the same basetype.

M and N have the same basetype because N is merely a BITS FOR of M. M
and X do not have the same basetype. N and Y have the same basetype
because both are BITS FORS of the same type.

Since CARDINAL is a subrange of INTEGER, the basetype of a CARDINAL

-- --- -----------~

82 Type-Checking

variable is INTEGER, and CARDINAL itself never appears in the typechecking_
rules. Non-negative subranges of INTEGER are treated specially in several
places whether declared as CARDINALs or not

15.3. Types for Constants

It makes life simpler to think of constants as having types, just the way
variables do.

We're going to consider a constant number without a decimal point in the
range

FIRST(INTEGER) .. LAST(INTEGER)

to be a subrange of INTEGER. For instance, we '11 consider the constant s to
be the subrange of INTEGER

[5 •. SJ

Similarly, we're going to consider a constant number without a decimal point
in the range

LAST(INTEGER) + 1 .. LAST(UNSIGNED)

to be a subrange of UNSIGNED. For instance, we'll consider the constant
3 o o o o o o o o o to be the subrange of UNSIGNED

[3000000000 .. 3000000000]

For constant numbers with decimal points we actually need to invent a new
"type," which we'll call FLOATING-POINT.

For strings we'll invent the new type STRING, and we'll sometimes need to
distinguish between one-character and multi-character strings.
Multi-character strings can have zero, one, or more characters.
One-character strings can have only one character.

And for NIL we need a type that we'll call VOID.

Enumeration constants have the enumeration type. So for instance TRUE and
FALSE have type BOOLEAN.

The type of a user-declared constant is the type of the constant expression on
the right-hand side of the declaration.

(These constant types are what we need to understand type-checking and
have nothing to do with the way the compiler actually implements constants.)

15.4. Kinds of Types

Here are the kinds of all the types, supplied and constructed, plus all the
"types" we've supplied for the constants, plus System.Address,

Kinds of Types 83

System.Word, and System.Byte:3

numeric non-numeric

ordinal BOOLEAN
CHAR

INTEGER
CARDINAL
UNSIGNED
numeric subrange
System.Address

enumeration
non-numeric subrange

non-ordinal REAL
LONGREAL
FLOATING-POINT

15.5. Type-Checking Expressions

BITSET
REFANY
fixed-size array
open array
record
set
ref
pointer
procedure
STRING
VOID
System.Word
System.Byte

At the bottom of an expression there are variables and constants.
Expressions have types that depend on the types of their operands. For
example x + y has a type, which depends on the types of x and y.
Variables are declared to have types. And now you see the good of giving
those fake "types" to constants too, so that when an expression mixes
constants with variables we can talk about the types of the operands. This
section is about the various operators, the rules for what types they accept,
and the types of the results they return.

15.5.1. Compatibility

OK, now we've going to gather a whole lot of stuff together so that we can
use the notion of compatibility over and over. Compatibility is symmetric -­
if xis compatible with y, then y is compatible with x.

If two expressions are of the same type, they're compatible.

If two expressions are of the same basetype, they're compatible.

And there are a few other compatible types:

3The System types are covered in the soon forthcoming Public Interfaces Manual.
I have been badgered into saying that System.Address is signed. Any other
information you glean about Sy stem. Address in this manual is a byproduct of my
trying to explain something else, like type-checking.

84 Type-Checking

• Non-negative subranges of INTEGER.are compatible with
• UNSIGNED. (Therefore CARDINAL, which is the entire
non-negative subrange of INTEGER, is compatible with
UNSIGNED .

. System.Address is compatible with INTEGER, UNSIGNED, and all
pointer (but not ref) types .

• The fake FLOATING-POINT constant type is compatible with both
REAL and LONGREAL .

• A one-character STRING constant is compatible both with CHAR

and fixed-size arrays of CHAR. A multi-character STRING
constant is compatible with fixed-size arrays (not open arrays) of
CHAR .

• REFANY is compatible with all ref types .
• Procedure types are compatible if they ''match'': They must

have the same number of formal parameters. If there are
parameters, corresponding parameters must either be of the same
type or be open arrays of the same element type; they need not
have the same names. If there are defaults, corresponding
parameters must have the same default values. If there are
results, the result types must be the same. If there are RAISES

clauses, the same exceptions must be named; they need not be
named in the same order .

• The VOID type, whose only representative is NIL, is compatible
with System.Address, any pointer type, any ref type, REFANY,

and any procedure type.

Laid out longways, the things that are compatible even though they don't
have the same basetype are:

CHAR
fixed-size array of CHAR
FLOATING-POINT
INTEGER:

any INTEGER
non-negative subrange of INTEGER

LONGREAL
pointer
procedure
REAL
ref
REFANY
STRING:

one-character STRING
multi-character STRING

System.Address
UNSIGNED

VOID

one-character STRING
STRING
REAL, LONGREAL

System.Address
UNSIGNED
FLOATING-POINT
System.Address, VOID
matching procedure, VOID
FLOATING-POINT
REFANY, VOID
ref, VOID

CHAR, fixed-size array of CHAR
fixed-size array of CHAR
INTEGER, UNSIGNED, pointer, VOID
non-negative subrange of INTEGER,

System.Address
pointer, ref, REFANY, procedure,

System.Address

Type-Checking Expressions

15.5.2. Relations and Set Relations

The operators in the expressions:

X • y
X f y

both apply unless either x or y is

an array
a record
a System. Word
a System. Byte

and type-check if they are compatible.4

The operators in the expressions:
X < y
X <• y
X > y
X >• y

85

all apply if x and y are either ordinal or numeric expressions and type-check
if they are compatible.

The operators in the expressions:

s - t
s t t
s <- t
s >•.t

all apply if s and t are sets and type-check if they have the same basetype.

e IN s

applies ifs is a set and e is an ordinal expression, and it type-checks if e is
compatible with the element type of s.

The operators are overloaded -- they mean different things for different kinds
of operands. See Chapter 7, page 33, for semantics. See also Section 16.4,
page 93, for the semantics of UNSIGNED.

They all return BOOLEANS.

15.5.3. Arithmetic and Set Operations

4At the moment the compiler won't let you use - and t on two strings or on two
NILs; this is a bug. And the compiler will let you use - and t on procedure variables
of two different (albeit matching) types; that's a design error.

86 Type-Checking

The operators in the expressions:

X + y
X - y
X * y
x DIV y
x MOD y

all apply if x and y are ordinal numeric types and type-check if they are
compatible.5

The rules for what they return are as follows:

. If the basetype of either operand is System.Address, the result is
a System.Address .

• Else if the basetype of either operand is an UNSIGNED, the result
is an UNSIGNED .

• Otherwise the basetype of both operands is an INTEGER, and the
result is an INTEGER.

The operators in the expressions:

X + y
X - y
X * y
X / y

all apply if x and y are non-ordinal numeric types and type-check if they are
compatible.

The rules for what they return are as follows:

• If the basetype of either operand is a REAL, the result is a REAL .

• If the basetype of either operand is a LONGREAL, the result is a
LONGREAL .

• Otherwise the operands are both FLOATING-POINT, and the result
is a FLOATING-POINT.

The operators in the expressions:
X + y
X - y
X * y
X / y

all apply if x and y are sets and type-check if they have the same basetype.

The rule for what they return is:

• The result is the same basetype as the operands.

Again, the operators are overloaded -- they mean different things for
different kinds of operands. See Chapter 7, page 33, for semantics. See also
Section 16.4, page 93, for the semantics of UNSIGNED. (Strings are also
"compatible" with variables of type Text.T by means of procedures declared

s At the moment, the compiler won't let you apply * to System.Address, but that's
a bug.

Type-Checking Expressions

in the Text interface.)

15.6. Type-Checking Assignments

Assignable is nearly like compatible, with the following exceptions:

• REFANY and all ref types are compatible, but you can't assign a
REFANY to a ref. (You can assign a ref to a REFANY.)

• INTEGER and UNSIGNED are not compatible, but you can assign
an INTEGER to an UNSIGNED and vice versa .

• You can assign a string to a Text . T .

• The left-hand side can't be a constant.

Laid out longways, the things that typecheck for assignment even though
they don't have the same basetype are:

left-hand side

CHAR
fixed-size array of CHAR
fixed-size array of CHAR
INTEGER
INTEGER
LONGREAL
pointer
pointer
procedure
procedure
REAL
ref
REFANY
REFANY
System.Address
System.Address
System.Address
System.Address
Text.T
UNSIGNED
UNSIGNED

right-hand side

one-character STRING
one-character STRING
multi-character STRING
System.Address
UNSIGNED
FLOATING-POINT
System.Address
VOID
matching procedure
VOID
FLOATING-POINT
VOID
any ref
VOID
any pointer
INTEGER
UNSIGNED
VOID
STRING
INTEGER
System.Address

For the semantics of assignment see Chapter 9, page 41. See Section 16.4,
page 93, for the semantics of UNSIGNED. See Section 1.4, page 4, for the
semantics of strings. See Section 5.11, page 28, for special restrictions on
assigning procedure variables.

15.7. Type-Checking Procedure Call

Passable by value is very different from passable by VAR.

Let's first do passable by value. Here are the things you can pass by value
even if the actual and the formal have different basetypes. First you get
everything from assignable, then a bunch of additional stuff:

87

88

actual

FLOATING-POINT
FLOATING-POINT
INTEGER
INTEGER
pointer
procedure
ref
STRING
STRING
one-character STRING
System.Address
System.Address
System.Address
UNSIGNED
UNSIGNED
VOID

open array of T
fixed-size array of T
STRING
anything
anything
anything
anything

8 bits
• 32 bits
divisible by 8
divisible by 32

Type-Checking

formal

LONGREAL
REAL
System.Address
UNSIGNED
System.Address
matching procedure
REFANY
fixed-size array of CHAR
Text.T
CHAR
INTEGER
UNSIGNED
pointer
INTEGER
System.Address
pointer, ref, REFANY, procedure,

System.Address

open array of T
open array of T
open array of CHAR
System.Byte
System.Word
array of System.Byte
array of System.Word

And now let's do passable by VAR. Here are the only things you can pass by
v AR if the actual and the fonnal have different types -- not different
basetypes, different types:

actual

open array of T
fixed-size array of T
System.Address
pointer
anything
anything
anything
anything

• 8 bits
• 32 bits
divisible
divisible

15.7.1. Notes

by 8
by 32

formal

open array of T
open array of T
pointer
System.Address
System.Byte
System.Word
array of System.Byte
array of System.Word

Supplied Procedures: Be sure everything works out OK with passable.

16. Representation Issues

Reasons to be interested in representation:

• The innocent reason: You'd like to understand roughly how
much storage your program is going to require .

• The reason of the Tree of the Knowledge of Good and Evil: You
have to deal with some real thing that isn't under your control,
like a device register or a packet format defined by some
protocol.

• The squeezing-it-out reason: You have something you're going
to optimize to the hilt You therefore design a representation
that will allow the most important operations to go as fast as
possible. This representation won't always be the one the
compiler would choose by default; when it's not, you have to tell
the compiler what to do instead.

16.1. Data Representation

The VAX supports a number of data types but it's fundamentally a 32-bit
machine.

89

Addresses are 4 bytes (32 bits) and therefore Modula-2+ pointers, refs,
REFANYs, and System.Addresses are all 4 bytes. A procedure is an address;
so it's represented as 4 bytes. The discrete-number types are all 4 bytes too:
INTEGER, CARDINAL, UNSIGNED, and System.Word. A 4-byte quantity on
the VAX is called a Longword; a 2-byte quantity is called a Word. So a
Modula-2+ System.Word is (alas) a VAX Longword.

Not everything is 4 bytes. BOOLEANS, CHARs, and System.Bytes are 1 byte.
(Only the low-order bit of a BOOLEAN is actually significant.)

Negative discrete numbers are represented using 2's complement.

REAL uses the VAX single-precision floating-point format ("F _floating"),
which is 4 bytes. LONGREAL uses one of the two VAX double-precision
floating point formats ("D _ floating"), which is 8 bytes. The absolute value
of a nonzero REAL value R is in the approximate range

.29 * 10**-38 < IRI < 1.7 * 10**38

The precision is approximately 7 decimal digits. The L0NGREAL values have
approximately the same range as REAL values but have approximately 16
decimal digits of precision. •

A VAX address is a 4-byte number that names a byte. If what you want to
name is a multi-byte quantity, you give the smallest address. If the quantity

90 Representation.Issues

is a discrete number, then the byte with the smallest address is the least
significant byte of the number (Little-Endian). [1] The constant NIL is
represented as address 0.

Longwords
Bytes
Bits

Most Significant ... Least Significant
11 01
41 31 21 11 01

321 241 161 81 01

A set is represented as a bit vector indexed by the element type of the set.
Bit i of the vector is 1 if i is a member of the set, 0 if i is not. In our
compiler, the size of the bit vector is unconstrained, even though the Silver
Book would limit them to 32 bits on the VAX.

Each data type has an alignment, and what the alignment means is that any
variable of that type is stored at an address that is a multiple of the alignment.
So for instance if the alignment of a type is 2, then a variable of that type
could be stored starting at address O or address 2 or address 4 or address 6 ...
The only normal alignments are 1, 2, and 4.

The alignments of the supplied types are all equal to their sizes in bytes
(System.TByteSize). So for instance the alignment of an INTEGER is 4,
which means that INTEGER variables always appear on VAX Longword
boundaries.

The alignment of enumerations and subranges is always 4 too. The
alignment of a set is always the smallest legal alignment that is as big as or
bigger than the domain of the set -- the maximum number of elements the set
could contain.

In laying out records, bytes of padding are used to make the fields fall where
their alignments say they have to. The minimal amount of padding is used.
The fields are laid out in the order in which they were declared. The
alignment of the whole record is equal to the largest of the alignments of its
fields.

For instance, I have a record of type CiRecord:

TYPE
CiRecord • RECORD

c: CHAR;
i: INTEGER;

END;

3 bytes of padding would be used in front of i. If the declaration had been:

TYPE
IcRecord • RECORD

i: INTEGER;
c: CHAR;

END;

no padding would be needed.

When the system lays out a variant section of a record, the tag field, if any, is
laid out like an ordinary field. Each arm of a variant section is laid out like
an ordinary record, but all of them start at the same location. The next field

Data Representation 91

after a variant section starts wherever it would have if the longest ann of the
section had been there all by itself.

An array with n elements of type T is laid out just like a record with n fields,
all of type T, except that if the elements required padding to fall on alignment
boundaries then there's padding after the last element as well as all the
others.

For instance, suppose we have an array of type IcArray:

TYPE
IcArray • ARRAY [0 .. 99) OF IcRecord;

(where IcRecord is the IcRecord from above). The number of bytes in
this array is 800, not 797 or 500, since each record including the last is
followed by 3 bytes of padding.

So: All variables of these types appear on byte boundaries. Only variables
on byte boundaries can be passed by VAR in Modula-2+ -- that's for
efficiency; things on byte boundaries can be referred to with VAX addresses.

Better yet, with these alignments most things end up on VAX Longword
boundaries, and that pennits the VAX to process them in the most efficient
way it can.

16.2. BITS FOR

You can get finer-grained control over data representation by constructing
types with the BITS FOR constructor. When you have finer control, you must
think in tenns of a bit-addressable memory even though the VAX is only
byte-addressable. In this section we'll talk about alignment in tenns of bits,
not bytes.

The general form of this type constructor is:
BITS n FORT

where n is a constant and T is a type. It creates a new type whose
representation takes n bits and whose alignment is either 1 bit or 8 bits. The
alignment is 1 bit if n < 32 and 8 bits if n >= 32.

For instance, the declarations:
TYPE

T • BITS 4 FOR [0 .. 15);
B • BITS 1 FOR BOOLEAN;

specify that each variable of type T occupies 4 bits and has an alignment of 1
bit; each variable of type B occupies 1 bit and has an alignment of 1 bit.
Operations that apply to the subrange [0 .. 15] also apply to type T; ones that
apply to BOOLEAN also apply to type B.

BITS n FOR Tis illegal for n <= o. It's also illegal if n is smaller than the
"natural" size of T. The natural size of a type in bits is system. TSize for
most types -- all but subranges and enumerations. For those, the natural size
is the minimum number of bits required to represent all the values.

92 Representation Issues

You cannot say BITS n FOR T when Tis:
ref
REFANY
open array
System.Word
System.Byte

Whenever a type-checking rule depends on the structure of the types, BITS
FOR is transparent. See Section 15.2, page 81.

The usual reason for doing BITS FOR is either to pack fields into a record or to
make a subrange or an enumeration take up less space (or both). The
secondary reason is to pad out a field.

BITS FOR allows you to create variables that do not reside on byte boundaries
and therefore cannot be addressed with VAX addresses. The practical
consequence is that you cannot apply System. Adr to such variables or pass
them by VAR.

The code generated for accessing unaligned variables is less efficient than the
code for accessing aligned variables.

16.2.1. Data Representation Including BITS FOR

If you say BITS n FOR T and n is bigger than the natural size of T, the
extra bits go on the ''left,'' i.e. at higher bit addresses.

Usually the alignment of a record or an array is the largest alignment of its
fields or elements; but if 1 bit is the largest alignment and the size of the
whole record or array is 32 bits or more, then the alignment of the whole is 8,
not 1.

If you're going to make an array of BITS FOR elements, there are some
restrictions imposed on you:

1. If the sum of the element and the padding is less than 8 bits,
you have to adjust the size of the element to make the sum a
power of two (i.e., 1, 2, 4, or 8).

2. If the element (without padding) or any field of the element has
a size between 9 and 16 bits, then you have to adjust the size of
the element to make the padded-out length be a multiple of 16.

3. If the element (without padding) or any field of the element has
a size between 17 and 32 bits, then you have to adjust the size
of the element to make the padded-out length be a multiple of
32.

Danger: If you violate one of these, you get bad code, not a message from the
compiler.

BITS FOR 93

16.3. Variable Initialization

Variables of any ref type or of type REFANY are always initialized to NIL.

If you create a variable either by saying NEW of a ref (not pointer) type or by
declaring a variable that's not contained within a procedure, then you can
assume that the initial value of the variable is whatever value is represented
by the appropriate number of zeros. Occasionally, when performance is
crucial and that value happens to be the value that you want, you can avoid
doing an assignment by using it.

You can't make any assumption about the initial value of a non-ref variable
you declare within a procedure.

16.4. UNSIGNED

Values of type UNSIGNED are non-negative integers. You use the type
UNSIGNED if you need to deal in integers larger than LAST(INTEGER).

LAST(INTEGER) • 231-1 • 2,147,483,647
LAST(UNSIGNED) • 232-1 • 4,294,967,295

You can declare types that are subranges of UNSIGNED. The FIRST value of
such a type must be greater than or equal to 0, and the LAST value must be
less than or equal to LAST(UNSIGNED).

The comparison operators:

have different implementations for INTEGER and UNSIGNED operands. The
implementations have to be different since, for instance, OffffffffH is the
representation of -1 in the type INTEGER and of LAST(UNSIGNED) in the type
UNSIGNED, while OH is the representation of O in both types. The DIV and
MOD operators are a1so different for the two types.

As described in the type-checking section, you can assign an UNSIGNED
value to an INTEGER variable and an INTEGER value to an UNSIGNED variable;
the assignment just copies the bits across with no checking. [[Surely we
should either fix this or be prepared to hand back our Strongly Typed
Language Merit Badge?]]

What is the result of -n when n has type UNSIGNED? Paul says:

Compile-time error. Or 2's complement, maybe. We'll decide.

16.5. Tagless Variant Records

A tagless variant record allows a client program to view the same piece of
storage in two or more different ways. The client has complete control over
the choice of the view in use at any instant; when the client uses one of the
field names to access part of a record, it gets the effect of loopholing that
record into the particular variant containing the named field before

94 Representation Issues

performing the access. Since the loophole is implicit, this language feature
should be used with great care.

Here is an example from Hardware.def. A virtual address is always a virtual
address, but sometimes we want to deal with it as a unit and sometimes we'd
rather view it as a byte-page-region triple. We say:

TYPE
VirtualAddress • RECORD

CASE VARep OF
I FALSE:

addr: Address;
TRUE:
byte: BITS LogBytesPerPage FOR PageBytes;
page: BITS LogPagesPerRegion FOR VirtualPage;
region: BITS 2 FOR Region;

END;
END;

If va is a variable of type VirtualAddress, then va. addr is the whole
address, and va. region is the most significant two bits of the address.

Sometimes we use a tagless variant record to describe the fact that a
particular piece of data has two (or more) completely different
interpretations. We choose an interpretation based on some externally
supplied information. For instance, the interpretation of part of one of the
VAX internal processor registers depends upon whether or not the VAX is a
MicroVAX-II:

CASE UVAXII OF
I TRUE: (* KA630 13.2.2 *)

fill33A: Bits3;
breakReceived: PackedBoolean;
fill33B: Bitsl;
framingError: PackedBoolean;
overrunError: PackedBoolean;
FALSE:
inputSource: Bits4;
fill33C: Bits3;

END;

Once a program had determined that it was running on a MicroVAX-II, it
might go on to access the overrunError field.

In the first example there was no way for the programmer to do the wrong
thing, since both views of a virtual address are valid. In the second example,
the programmer definitely can do the wrong thing by accessing the
overrunError field (say) while running on a VAX that is not a MicroVAX-II.
There is nothing that Modula-2+ can do to prevent this sort of programming
error.

[[mrb: I'm still not sure I understand how to explain the general
significance of this example. I did cut it down but I'm quite sure nothing
essential was lost]]

A final example: We have a server and a client who pass messages back and
forth. For simplicity, there is a single type T, which can hold either a request
or a reply; these share some storage but mostly have different structure. We
want a request and a reply to be the same type so that we can share

Tagless Variant Records 95

operations on them (e.g., al1ocate one from a pool, or transmit one over a
network, or whatever). It is unnecessary to say whether a given instance is a
request or a reply since it is obvious from context.

The declaration is:
TYPE

T • RECORD
server: ServerType;
seq: Seq;
target: Target;
CASE RequestOrReply OF
I Request:

request: RECORD
CASE operation: Operation OF
I ProbeServer:
I ReadFromAddressSpace:

readFromAddressSpace: RECORD
space: AddressSpace;
start: Address;
count: CARDINAL;

END;
DisconnectFromTarget:
ReadFromTarget:

readFromTarget: RECORD start: Address; count: CARDINAL; END;
END;

END;

Reply:

END;
END;

reply: RECORD
result: Result;
CASE operation: Operation OF
I ProbeServer:

probeServer: RECORD
order: ByteOrder;

END;
ReadFromAddressSpace:

readFromAddressSpace: RECORD
count: CARDINAL;
data: ARRAY [O .. MaxBlockSize - l) OF System.Byte;

END;
DisconnectFromTarget:
ReadFromTarget:

readFromTarget: RECORD
count: CARDINAL;
data: ARRAY [O .. MaxBlockSize - 1) OF System.Byte;

END;
END;

END;

16.6. LOOPHOLE

The supplied procedure LOOPHOLE provides a way to circumvent the
Modula-2+ type system, while making the breach easy to notice. You should
use it with care after you are familiar with the representation of the values of
both types (T and x) on the VAX.

You can only loophole a value of one type into another type if the two types
have the same size. LOOPHOLE never changes the representation of anything.

Typical uses of LOOPHOLE are conversion from INTEGER to UNSIGNED and

------ -- ---- -------i--- --

96 Representation Issues

back and arithmetic on System.Address. [[And inside things like RPC
runtime, pickles ... expand ...]]

It is illegal to specify an open array type as the target type of a loophole. The
magic types ARRAY OF System. Byte and ARRAY OF system. Word in
formal parameter lists are implicit loopholes that, unfortunately, don't show
up at the point of call.

16. 7. Implementation Restrictions

identifiers:
Front end imposes length limit on a line of 5800 characters.
Since an identifier cannot cross line boundaries, that's the
limit.

string constants:
no limit imposed by front end or new code generator, but see
below.

set constants:
set constants of user-defined set types, with a maximum of
1025 elements, i.e. ranging from low-bound of subrange type on
which set is based to INC(low-bound, 1024).

e.g. TYPE SetType • SET OF (100 .. 2000];
CONST SetConstl • Set Type{ 100, 1124}; .
CONST SetConst2 • SetType{l00,1125};

(* okay *)
(* not okay *)

set constants of type BITSET with a maximum of 32 elements
(limit is defined by the language: a BITSET type fits in the
same space occupied by an integer)

e.g. CONST BitSetConst • {0 .. 31};

Expect bad code rather than compiler complaints if you exceed these limits.

97

17. Mixing Modula-2+ with Other Languages

17.1. C, Pascal, and Unix

[[Need to winkle out references to Unix42 and replace with references to
... OS.def, right? l l

17.1.1. Modula-2+ Calling Sequence

[[These words (slated for rewriting anyway) are Mike Powell's.]]

The Modula-2+ calling sequence is compatible with the calling sequences of
Powell's Modula-2, Unix C, and Berkeley Pascal. You can call procedures,
pass parameters, and share variables with programs in those languages.

The major difference between the calling sequences relates to the passing of
multiword value parameters. Both Modula-2+ and Pascal VAR parameters are
passed by reference; since C doesn't have VAR parameters, the program must
specify the address of the variable, which works out to be the same thing.
All three languages pass single-word value parameters by pushing the values
onto the stack. Double-precision floating point value parameters are passed
by pushing two words onto the stack. (In Pascal, reals are double-precision;
in C, both floats and doubles are passed as doubles; Modula-2+ reals are not
passed as double-precision automatically; therefore, for communication
between Modula-2+ and Pascal or C, use longreals.)

In Pascal, multiword value parameters (arrays, records, sets, etc.) are all
pushed onto the stack. In C, although struct parameters are passed by
pushing the value onto the stack, array parameters are passed by pushing the
address onto the stack. In Modula-2+, multiword parameters (except
longreals) are passed by reference (the called procedure makes a copy of the
parameter). Pascal procedures called by Modula-2+ should thus declare
multiword parameters to be VAR parameters. In the (unlikely) case that the
Pascal procedure wishes to change a multiword parameter that Modula-2+
thinks is a value parameter, the Pascal procedure must make a copy of the
parameter in a local variable. C procedures called by Modula-2+ should
always expect pointers, as they usually do anyhow. A Modula-2+ procedure
called by Pascal should be declared in Pascal to accept VAR parameters for
multiword values.

A Modula-2+ open array parameter is passed as two parameters: a pointer to
the stan of the array followed by the number of elements in the array. Two
special cases of interest are open arrays of Byte and Word. In these cases, the
number of elements is the size of the variable, which may be of any type, in
bytes and words (rounded up), respectively. For example, it would be
possible to define the Unix read system call to have two parameters: the first,

98 Mixing Modula-2+ with Other Languages

a file number, and the second, an open array of bytes for the buffer.

For low-level access to C procedures, there is an "uncounted" open array
type; a parameter of this type will be passed only the address of the array:

TYPE NoCountArray = ARRAY @NOCOUNT OF ElementType.

See Unix42.def and Unix42lib.def for examples of the use of this feature.

17 .1.2. Pointers

The Modula-2+ runtime allocates storage from a heap using its own
allocation and deallocation procedures. Generally, these are different from
(and much better than) the Pascal NEW and DISPOSE procedures or the C
malloc and free procedures. However, it is possible to generate and use
pointers that are compatible with other languages.

Pointers may be allocated and deallocated using the Pascal (NEW/DISPOSE)
or C (malloc/mfree) storage allocation procedures by declaring them as
follows:

PascalPtr • POINTER @PASCAL TO Rec;
CPtr - POINTER @C TO Rec;

@PASCAL pointers have the Berkeley Pascal validity check applied to them;
@c pointers are not checked.

17.1.3. Names

The external names of Modula-2+ procedures and statically allocated
variables are generated by qualifying the local name with the names of the
enclosing modules and procedures. A procedure called NextToken in a
module Parse will be called _Parse_NextToken. The leading_ is appended to
names by both the C and Pascal compilers, so C or Pascal would call this
procedure Parse _NextToken. (The Berkeley Pascal compiler can easily be
modified to accept _ in the middle of variable names by adding

II C == '_'

to the identifier while loop in yylex.c.)

Each level of nesting inside a procedure or module adds qualifiers. E.g., the
procedure SkipBlanks nested inside NextToken is called
_Parse_NextToken_SkipBlanks. However, because of differences in the
displays, it is unlikely that you can successfully call nested procedures
between languages.

Although this scheme works well for programs that use modules, current
Pascal and C programs expect to have global, unqualified names. To make a
procedure or variable have a global name (from the point of view of C or
Pascal programs), add the @EXTERNAL attribute before the name in the
procedure or variable declaration. E.g.,

VAR @EXTERNAL errno : INTEGER;
PROCEDURE @EXTERNAL perror(msg: CString);

It is possible to create modules with Modula-2+ definitions that are

C, Pascal, and Unix 99

implemented in some other language. The Unix42 library module is an
example. Notice that errno is specified @EXTERNAL above, because its name
is unqualified.

Each module that exports v ARs, or PROCEDURES, or opaque ref types must
have an initialization procedure. The initialization procedure for module X is
called X_init (X, two underscores, init) and has no parameters. These
procedures are called when the program stans up, and may be called more
than once (e.g., if several modules impon X). The Modula-2+ compiler
generates code for its initialization procedures to execute the body only once,
even though it is called more than once. If you implement an initialization
procedure in C or Pascal, you will need to do the same thing.

The initialization procedure for a program module (one that is neither a
definition module nor an implementation module) is the main program. It is
always called main, no matter what the module is called, so Unix can execute
it.

If you impon a Modula-2+ procedure or variable to a C or Pascal or
assembly language program (for example, if your main program is not a
Modula-2+ program), you must ensure that the Modula-2+ runtime system
gets staned and then that the initialization procedures of the imponed
modules get invoked before procedures within are called. To initialize the
Modula-2+ runtime system, invoke

runtirne_init(argc,argv,envp)

where
int argc; char *argv[], *envp[];

are the arguments passed to the main program by Unix.

17.1.4. Interfacing with Unix

[[OUT OF DATE]]

The recommended interface to Unix is through the srclib module called
Unix42. For the location of Unix42.def, do

man mp

17 .2. How Procedure Call Is Implemented

This section describes how M2+ procedure call is implemented using VAX
instructions. It is necessary to know this if you need to write assembly
language procedures that either call or are called by M2+ procedures. This
can be necessary in order to get the best possible performance for a
frequently-executed procedure. This section assumes that you are familiar
with the VAX, as you would need to be in order to write an assembly
language program.

Someday it may become desirable to change the implementation of M2+
procedure call, based on our experience. The less code you have written that

------ --------- ------- ~-----

100 Mixing Modula-2+ with Other Languages

takes advantage of the information in this section, the less work you'll be
faced with when that happens. One prudent technique is to maintain an
equivalent (but slower) M2+ version of each assembly language module that
you write, both as documentation and as a fallback implementation that can
be used in a pinch.

17 .2.1. Calling M2+ from Assembly Language

The general scheme for calling an M2+ procedure Int.Proc with N
parameters is

1. <code to save values of rO - r5 as required>

2. <code to push the Nth actual parameter>

<code to push the 1st actual parameter>

3. calls $ParmLongwords, _Int_Proc

4. <code to take the result, if any, from r0>

Explanations:

How Procedure Call Is Implemented

1. The called procedure is allowed to modify rO - r5. Therefore
the calling procedure must be prepared for the values in these
registers to be different after the call.

2. The parameters are pushed in reverse order. The motivation for
this convention in VAX Ultrix languages such as C is to
support procedures that take a variable number of parameters.
By pushing the required parameters last, they can be addressed
with constant offsets from ap. You cannot write an M2+
procedure taking a variable number of parameters, but M2+
pushes the parameters in reverse order to make it easier to call
C procedures from M2+.

The meaning of "pushing a paraJlleter" depends upon the type
of the parameter. Three examples: If the fonnal parameter is
an INTEGER passed by value, and the actual parameter is the
constant 1, then

pushl $1

does it. If the fonnal parameter is an INTEGER passed by VAR,
and the variable is the only local variable of the calling
procedure, then

pushal -4(fp)

does it If the formal parameter is a VAR ARRAY OF CHAR and
the actual parameter is a 10-character array that is the only
local variable of the calling procedure, then

pushl $10
pushab -4(fp)

does it (first push the number of array elements, then push the
address of the first element). You should check the code
generated by the compiler (using the -k switch) for other
parameter types.

3. The calls instruction transfers control to the procedure being
called. PannLongwords is at least N, but may be greater
because some parameters require more than one longword of
stack. For instance, open array parameters require two
longwords.

The identifier "_Int_Proc" should be "imported" at the
beginning of the assembly code module using the directive

.globl _Int_Proc

101

102 Mixing Modula-2+ with Other Languages

4. The called procedure pops all parameters off the stack, so the
calling procedure should assume that sp has the value it had
before it started pushing parameters.

The result is either a one-longword value or a pointer to a
larger value allocated on the stack. In the latter case, the
calling program must use or copy the value before calling any
more procedures. •

17.2.2. Calling Assembly Code from M2+

To call assembly code from M2+, you declare each assembly code procedure
in an interface, and make sure that each assembly-coded procedure matches
its interface declaration. The following is the general scheme for
implementing a procedure Int.Proc:

1. .align 2
Int Proc:

- ~word <entry mask>
2. moval -LocalBytes(sp),sp
3. <code for body of procedure>
4. ret

1. The ".align 2" directive word-aligns the entry mask; this is not
required, but improves performance.

The identifier "_lnt_Proc" should be "exported" at the
beginning of the assembly code module using the directive

.globl _lnt_Proc

The ".word" directive creates the VAX entry mask. The entry
mask specifies what registers are to be saved and what traps are
to be enabled when the procedure is called; it is fully described
in the section "procedure call instructions" of the VAX
architecture handbook. For a procedure to be callable from
M2+, it must save every register in r6 to rl 1 that it will modify.
The entry mask must not enable integer or numeric overflow
traps. Hence the entry mask may be

.word 0x0fc0

or any value obtainable by clearing bits in this word.
2. The moval instruction allocates space for LocalVarBytes bytes

of local variables. LocalVarBytes should be a multiple of 4
(i.e. the stack should stay longword aligned). If the procedure
uses no local variables then this instruction is clearly a no-op
and should be omitted.

At present, there is no way to extend a thread's stack if it runs
out of room.

How Procedure Call Is Implemented

3. Actual parameters are addressed using positive offsets from ap.
If each parameter takes a single longword then parameter i is
located at sp+(4*i).

It is generally most convenient to address local variables using
negative negative offsets from fp rather than positive offsets
from sp.

4. The ret insouction returns to the caller.

If an interface is implemented entirely by assembly code (rather
than by a mixture of assembly code and M2+ code), then the
assembly code program must include an initialization
procedure:

.align 2
Int init:

- :Word 0
<code to initialize the module>
ret

The program must include this procedure even if there is no
initialization work to do.

103

104 Mixing Modula-2+ with Other Languages

105

18. Performance and Other Pragmatic Issues

18.1. Notes

CASE statements are compiled in the straightforward way, since Winh gives
the compiler writer a license to do so. A jump table is used to dispatch the
case index, hence the set of case selectors should be relatively dense. If they
aren't, an IF-THEN-ELSIF structure is generally preferable. Obviously, this is
a space-time tradeoff and thus depends on the individual situation. [[Note
from Andy: '' The new code generator is much smarter about CASE; it
attempts to make this tradeoff itself.]]

Storage allocation through NEW(x), where x is a ref type, is intended to be
inexpensive. For the implementation that we envision, NEW will require
about 15-20 usec on a M68010. [[and on a VAX Firefly? J J

Some other timings for comparison purposes:
MODULE Timings;

PROCEDURE P;
BEGIN
END P;

PROCEDURE Q(i, j: INTEGER);
BEGIN
END Q;

PROCEDURE Test;.
VAR x, y: INTEGER;
BEGIN

P;
O(x, y);

END Test;

END Timings.

From Violetta:

(* about 5 usec *)
(* about 12 usec *)

More to come eventually, including: constructs that implicitly invoke
out-of-line code, supplied procedures that expand in-line, cost of thread
and synchronization operations.

18.2. The Optimizer

The Modula-2+ optimizer, invoked through the -0 compiler switch, performs
optimization on the tree structure used by the front end of the compiler. It
attempts to perform the following program transformations to produce more
efficient code:

• Common subexpressions (CSEs) that exceed a built-in, heuristic
measure of complexity are evaluated only once. Lifetime
information for such CSEs is computed and used to control

106 Performance and Other Pragmatic Issues

storage allocation, including assignment of registers .

• The assignment of local variables and CSEs to registers is done
using a prioritized scheme, with priority based on a built-in,
heuristic measure of access frequency .

• Evaluation of sufficiently expensive loop-invariant expressions
is performed before entry to the loop .

• Assignment statements of the form

<designator> :=- <designator> (+ I * I -) <expression>

are transformed to a more efficient code sequence .

• Some tail-recursive procedure calls are detected and transformed
to jumps. In more detail, the optimizer looks at the last
statement in the procedure body. If it is a conditional (IF, CASE),
it looks at the last statement in each arm, and so on recursively.
Each such last statement is treated as follows:

• If the procedure returns a value and the last statement is a
RETURN statement and the RETURN expression is an
acceptable recursive call, that call qualifies .

• If the procedure does not return a value and the last
statement is an acceptable recursive call, that call
qualifies.

A compiler wizard should be consulted before using the optimizer in the
following situations:

1. The program LOOPHOLES a pointer or a ref of one type into a
pointer or ref of a different type, or uses System.Address for
similar purposes, and then dereferences the result

2. The program accesses shared data in a concurrent program
outside a LOCK statement

18.3. Choosing Identifiers

The supplied identifiers and keywords of the language use all upper-case
letters, so you can avoid name conflicts if you never declare a new identifier
that uses all upper-case.

The keywords that you're most likely to stumble over are the short ones,
since the moment when you're looking for an abbreviation for Northward
Oriented Termination is precisely the moment when you forget that NOT is
already reserved. Here, then, is a list of the short keywords of the language:

Choosing Identifiers 107

ABS ELSE LOCK REAL
AND END LOOP REF
BITS EXCL MAX SAFE
BY EXIT MIN SET
@C FOR MOD THEN
CAP FROM NEW TO
CASE HALT NIL TRUE
CHAR HIGH NOT TRY
CHR IF ODD TYPE
CONST IN OF VAL
DEC INC OR VAR
DIV INCL ORD WITH
DO LAST PRoc6

18.4. Very Long Literal Strings

Weird, but every once in a while you need an enormous literal string. The
longest that one can be is [[find out; might not be any problem any more
]] ; if you want one longer than that, use Text . Cat to build it up.

Of course, if it happens to be a Wr. PrintF format string, you can't build it
up with Text. Cat ...

18.5. Dispatch Tables

CASE statements get you the most simple-minded kind of dispatch table you
can imagine. This:

CASE e OF
I l:

Wr.PrintF (Stdio. stdout, "One\n");
I 1000:

Wr. PrintF (Stdio. stdout, "Many\n");
END;

gives you a dispatch table with a thousand cells. Think hard about using an
IF statement instead.

18.6. Private Allocation for Referents of Pointers

Normally, if the first parameter to form (1) of NEW is a pointer,
storage. ALLOCATE is called; similarly, if DISPOSE is given a pointer, it
calls Storage .DEALLOCATE. But the user can specify other routines for
non-collectible storage allocation and deallocation by placing them in a
scope that is visible from the point where this form of NEW is called and
naming them ALLOCATE and DEALLOCATE.

6Deprecated.

108 Performance and Other Pragmatic Issues

For example:
SAFE IMPLEMENTATION MODULE Mine;
FROM MyStorage IMPORT ALLOCATE, DEALLOCATE;
TYPE T - Type;
VAR v: POINTER TOT;
BEGIN

NEW(v); (* calls MyStorage.ALLOCATE(v,System.TSize(T)); *)
DISPOSE(v); (* calls MyStorage.DEALLOCATE(v,System.TSize(T)): *)

END Mine.

18. 7. RAISE for Flow Control

Under certain circumstances a RAISE statement is compiled to a go-to and
consequently executes much faster. This optimization is performed only
when all of the following conditions are true:

1. the exception raised doesn't have an argument

2. a non-pass-through handler for the exception, that is, a handler
that doesn't simply raise the same exception, appears in the
scope statically enclosing the RAISE statement

3. any TRY statements defining intervening scopes between the
RAISE and the non-passthrough handler are of the TRY ...
EXCEPT kind with no ELSE clauses.

Under these conditions, any pass-through handlers that appear in the
intervening TRY ... EXCEPT statements are ignored, and the RAISE statement
compiles to a go-to to the innermost statically enclosing real handler for the
exception.

Notes:

A RAISE for an exception that has a handler in a statically enclosing scope
executes considerably faster than the general RAISE because it compiles to
a go-to. But if finalization is required because there is a TRY FINALLY
statement enclosing the RAISE then this optimization is not used.

109

19. Programming Style

19.1. The . T Convention

In Modula-2+, it is common for an interface to define either one type or a
small number of related types, plus the public procedures operating on this
type or types. The name of the interface should be chosen to describe the
type, or the "primary type" if the interface defines more than one.
Specifically, interfaces should be named, wherever it makes sense to do so,
for a single instance of the objects they manage. For example, we have the
Thread and the Text interfaces. The primary type defined by an interface
will simply be called T and should be referred to by its qualified name in
importing programs, e.g. Thread. T and Text. T.

This naming convention is designed to lead to acceptably understandable and
short names. It does not apply to interfaces that do not manage particular
objects, e.g. the definition module Pipeline, which exports only
procedures, or to interfaces where the name of the objects doesn't describe
particularly well the function of the interface. For example, in a virtual
memory interface, the primary type seems to be PageRun, but PageRun is
not a good name for the interface, nor is VM. T a very descriptive alternative
to VM. PageRun.

19.2. Don't Export Variables

There is no way to specify that a variable in a definition module is meant to
be read but not written by clients. Furthermore, client access to such a
variable is unsynchronized with actions of the implementation. For these
reasons, definition modules should contain variables only when
synchronization is not an issue; otherwise the variables should be declared in
the corresponding implementation, and accessed by clients through
procedures that read, change, or return their values.

19.3. Returning Multiple Values

VAR parameters are intended to enable procedures to return multiple values.
They also can be used to reduce the overhead of passing large value •
parameters. However, since the language provides no syntax to distinguish
these conceptually different applications of VAR parameters, a clarifying
comment will help the reader to understand the procedure's semantics.

----- -------------

110 Programming Style

Examples:
PROCEDURE Sum(

VAR a (*in*), b (*in*): Matrix;
VAR result (*out*): Matrix);

PROCEDURE Transpose(VAR a (*inout*): Matrix);

Message from William Stoye:

I've been reading your M2+ stuff, and there's one thing I thought I might
mention, even though it's not very important, because other people might
not bother ... There appears to be a rival standard emerging for this, mainly
from Andrew (whose RPC generator would like to know about purely IN
or OUT VAR parameters, without having to look inside comments). Andrew
uses v AR parameters with names like INx, OUTy instead, e.g.

PROCEDURE Snapshot(
valueOesc: ValueDesc;
VAR OUTlimitSkulk: LimitSkulk;
VAR OUTmark: Mark;
VAR OUTlabelTSeq: LabelTSeq);

It seems likely that this form will be in common use in the future and so it
might be worth mentioning alongside the (*IN*) form.

19.4. Qualified Names

In an implementation module, imponed names should generally be qualified.
Qualification makes code explicit about its non-local dependencies, hence
easier to read. For example, you would use Rea lFns . Sqrt and
RealFns .ArcTan like this:

IMPORT RealFns;
x :• RealFns.ArcTan(RealFns.Sqrt(3.0));

rather than
FROM RealFns IMPORT Sqrt, ArcTan;
x :• ArcTan(Sqrt(3.0));

In a program dominated by REAI..s, the unqualified form might be easier on
the reader, since the function names are unlikely to be confused with
functions from other interfaces. Similarly, heavily used procedures from the
Rd, Wr, and Stdio interfaces might be used unqualified. If the program text
would become greatly cluttered with a repeated interface name, use the
unqualified form to eliminate the repeated name.

If you have any doubt, however, use the qualified name.

19.5. WITH Statements

The WITH statement makes record field names accessible without
qualification and can therefore mask variables in enclosing scopes. Since the
masking is implicit (the field names do not appear locally to remind the
reader what is happening), subtle errors can occur if a significant amount of
code appears inside a WITH statement.

We find it best to use the WITH statement only for replacing all or most of the

WITH Statements 111

fields of a record. In essence, this facility should be treated as a Mesa-style
record constructor [2] combined with an assignment statement.

19.6. Redeclaring

The implementation module M automatically gets all the declared and
imported names from its definition module M. Some people redeclare and
reimport all the names anyway to make implementation modules easier to
read.

19.7. Declaring Constants

A constant declaration lets you define in a single place a constant value to be
used several places in a program. Even if you're going to use the value only
once, declaring it as a constant provides you with a way of highlighting the
values that you've compiled into your program. If the number is part of the
logic of the program, it's OK to use it as a number, but if it is in some sense a
parameter compiled in as a constant rather than a variable for efficiency's
sake, declare it as a constant and give it a good name.

For instance:
CONST

HashTableEntries • 200;
TYPE

HashTableindex • (0 .. 2 * HashTableEntries - l];
HashTable • ARRAY HashTableindex OF HashRecord;

19.8. ORD and VAL and LOOPHOLE

The supplied procedures ORD and VAL provide implementation-independent
mappings between ordered types and non-negative integers. They should
always be used in preference to LOOPHOLE. E.g.,

LOOPHOLE(x, INTEGER)
INTEGER(x)
ORD (x)

(* bad *)
(* worse *)
(* good *)

ORD (x) and VAL (T, x) return X if Xis of type UNSIGNED, INTEGER, or
CARDINAL and T is the type of x. This fact has some rather surprising effects
on the value of VAL (INTEGER, x) for values of x larger than
LAST (INTEGER) but seems to be needed to avoid other problems.

112 Programming Style

19.9. Subranges

Whenever you can, you should use explicit subranges of INTEGER (rather
than plain INTEGER) to make it clear what semantics you intend.

113

20. Formatting Conventions

20.1. Pretty-Printer

Given the existence of ppmp, much of this chapter is merely historical, for
keeping the Greg and Mark honest. Use ppmp. It's not perfect yet, but it
will improve if we all use it.

20.2. Spelling and Capitalization

Identifiers are written entirely in lower case except as follows:

The initial letter of each embedded word except the first is capitalized. For
the purposes of this rule, an embedded acronym is a sequence of one-letter
words. To avoid possible conflicts with keywords (see below}, do not use
identifiers of length greater than one that contain only capital letters.

Identifiers that name modules, procedures, exceptions, types, and constants
start with an upper-case letter. All of these are compile-time constants. All
variables, including procedure variables, start with a lower-case letter.

Thus, for example,

variableName
fieldName
ModuleName
P rocedureName
TypeName
AnException
ConstantName
EnumerationElement

thisCPU
status
Parser
Insert
VMCache
Overflow
WordSize
Off line

Note that the elements of an enumeration type are semantically similar to
constants and are therefore capitalized.

Reserved words are written entirely in upper case. Other capitalizations of
the same word are available to the programmer for other purposes (for
example, set and lock are perfectly good variable names).

20.3. Punctuation

A space appears before and after a vertical bar and before and after equal
signs in definitions and declarations. Spaces usually appear before and after
binary operators (including assignment) when the statement containing them
is long, but they may be omitted when the statement is short (e.g., i :=i+l).

A newline sometimes appears in place of the space after these characters.

A space appears after colon, comma, and semicolon, but none before. A

114 Formatting Conventions

newline often follows semicolon (and sometimes comma) instead.

Except as required by adjacent tokens, no spaces appear before or after left
and right parentheses, left and right square brackets, left and right curly
brackets, caret (up-arrow), dot-dot, and period. (A newline follows, the period
at the end of a module.) If the token on the left (or right) of these characters
requires a space after (or before) it, one should appear. For example,
consider the left parentheses in

PROCEDURE Positive(x: INTEqER): BOOLEAN;

and
TYPE Color• (Red, Green, Blue);

A space appears after left-comment and before right-comment.

A semicolon follows the last statement in a statement sequence and the last
field in a field list; this makes insertions and deletions somewhat easier.

20.4. Indentation

Indenting is used to emphasize program structure. Each nesting level is the
same width, either two spaces or four spaces wide. The following illustrates
the recommended form of each Modula-2+ construct ('ss' represents a
statement sequence):

Indentation

CASE expr OF
I cl:

88
c2:

88
ELSE

88

END

CONST
A - 613;
B - {l, 3, 7};

IF bool THEN
88

ELSIF bool THEN
88

ELSE
88

END

FOR i :- l TO 10 DO
88

END

LOCK d DO
58

END

LOOP

END
88

MODULE impl;
IMPORT Il, 12;
CONST C - 47;
VAR v: INTEGER;
PROCEDURE P;

BEGIN
END P;

BEGIN
88

END impl.

PROCEDURE P;
VAR

b: BOOLEAN;
i: INTEGER;

BEGIN
88

END P

REPEAT
88

UNTIL bool

TRY
88

EXCEPT
I el(vl):

55l
e2 (v2) :

552
ELSE

55n
END

TRY
58

FINALLY
88

END

115

TRY
88

PASSING {el,e2}
END

TYPE
Index - [0 .. 15);
Object - RECORD

fl: Typel;
£2, £3: Type2;

END;
Handle= REF Object;

TYPECASE ra OF
I tl (vl):

55l
t2 (v2) :

582
ELSE

5sn
END

VAR
var: Typel;
x, y, z: Type2;

WHILE bool DO
85

END

WITH d DO
55

END

A statement sequence is indented under the construct that introduces it,
which lines up vertically with its corresponding END. Note also the similarity
of the case discriminations in CASE, TYPECASE, and TRY ... EXCEPT.

Declarations are indented one level, including declarations of nested
procedures. (Exception: the declarations in the outermost module are not
indented; in a nested module, they would be.) If the declaration requires
more than one line, its components are indented another level, with at most
one type per line.

The forms above only apply to constructs that do not fit on a single line. For
example, if the statement sequence following a THEN, ELSE, or case label is
short (e.g., a single statement or a few short statements), it can appear on the
same line with the tokens that introduce and terminate it. Similarly, if the
statement sequence of a loop body is short (even non-existent), it can be

116 Formatting Conventions

moved up to the line that introduces the loop, along with the trailing END.

Thus,
IF bool THEN x :• y; y :• z END;

FOR i :• 1 TO 10 DO a[i) :• 0 END;

CASE x OF
I l. .3: y :• O;
I 4: y :• -1;
I ELSE y :• z;
END

are all acceptable fonns. Put the whole construct on one line if it fits.

Long statements that require more than one line are broken where white
space would nonnally appear, with the continuation lines indented two
levels.

20.5. Comments

The text of a multiline comment begins on the same line as the opening
left-comment. Subsequent lines are indented the same as the opening
left-comment. The tenninating right-comment appears on the last line of the
comment.

(* A comment that fits entirely on one line by itself. *)

(*Along comment that does not fit on one line, and
the filler necessary to make it do so, and the filler
necessary to make it do so. *)

By convention, comments that refer to a group of items appear before the
group. Comment boxes are often used to set off what is logically a section
heading; they are constructed as follows:

(******************)
(* Section Name *)
(******************)

Comments associated with a single definition or declaration appear
immediately after the definition or declaration (not before) and at the same
level of indentation. In modules and in procedure implementations, they
immediately follow the module (procedure) heading, which includes the
import and export clauses. Comments in running code follow the nonnal
flow of control.

When comment brackets are used to comment out a section of code, the
tenninating right-comment appears on a line by itself, lined up vertically
with the opening left-comment.

Comments

20.6. Interfaces

A few additional guidelines make interfaces, which represent the most
heavily read code, a bit more uniform from one to the next.

117

Procedures with more than two parameters of different types should have
their parameters listed on separate lines; items should be grouped logically
on each line. Each procedure should be immediately followed by a comment
describing its operation (if it is not evident from the procedure's name). A
blank line separates procedure declarations.

PROCEDURE ProcName(
parml: Typel;
parm2, parm3: Type3;
VAR (*in*) parm4: Type4)
: ReturnType
RAISES {El, E2};
(* Short, one-line description of the procedure.

More information, if necessary, appears here, in
multiline comment format. *)

PROCEDURE NextProc ...

A general comment describing the interface as a whole should appear
immediately following the module header, before any definitions.

20.7. Don't Forget

() for procedure call with no arguments.

Need to add format for EXCEPTION, ARRAY.

Statements in a statement sequence are separated by semicolons. Since the
empty statement is allowed, end the last statement in a statement sequence
with a semicolon.

20.8. Formatting Question

I tend to write RETURN statements as if RETURN were a procedure call:
RETURN (3);

Of course, the other way is OK too, and perhaps less confusing to readers:
RETURN 3;

I feel uncomfortable that RETURN didn't get mentioned in this chapter before.

118 Formatting Conventions

119

21. Compatibility with Ordinary Modula-2

21.1. Notes

Jorge says of the next paragraph .. Needs motivation":

In Modula-2+ CARDINAL has been redefined to be the non-negative subrange
of INTEGER. Modula-2's original CARDINAL type, which takes on the values
[0 .. 2"32-1], has been renamed UNSIGNED in Modula-2+. Use ppmp(l) to
conven ordinary Modula-2 programs that make use of the ordinary meaning
of CARDINAL.

Paul McJones says also we need to talk about:

• MIN, MAX applied to type not allowed .

• old-style opaques don't allow - or:= (compare third edition
page 169)

• expon rules?

Somebody (not me) needs to son out the differences between m2+ and
third-edition Modula-2.

21.2. Syntax Extensions

Below are the categories in which we made extensions to Modula-2 as
described in Appendix 1 of"Programming in Modula-2, Third Edition" by
Niklaus Winh [3]. The numbers at the left margin refer to the numbers in
that Appendix {not to the numbers in our own rendering ofWirth's EBNF,
Appendix VI, page 151).

21.2.1. Exceptions and Finalization

120 Compatibility with Ordinary Modula-2

32+ ProcedureType "" PROCEDURE [FormalTypeList]
[RAISES raisees].

49 statement,. [... I
52+ ... 1

TryStatement I ...].

TryStatement ... TRY StatementSequence TryTail END.
TryTail ... FINALLY StatementSequence I PASSING raisees I

PASSING raisees ";" I
EXCEPT [HandlerArm {"I" HandlerAnn}]
[ELSE["(" ident ")"] StatementSequence].

HandlerArm = [Qualid.List ["(" ident ")"] ":"
StatementSequence].

raisees • "{" [Qualid.List] "}".
Qualid.List = qualident {"," qualident}.

69+ ProcedureHeading - PROCEDURE ident [FormalParameters]
[RAISES raisees].

71 declaration "" ... I
74+ ... 1

EXCEPTION {ldentList ["(" qualident ")") ";"}.

86 definition = ... I
89+ ... 1

EXCEPTION {IdentList ["(" qualident ")"]
["=" qualident] ";"}.

21.2.2. Safety

15 type= ... 1
16+ ... 1

REF ident I REF type I

91+ CompilationUnit .. [SAFE] DefinitionModule I
[SAFE] [IMPLEMENT A TIONJ ProgramModule.

21.2.3. Runtime Types

49 statement= [...
52+ ... 1

... I TypecaseStatement I ...].

TypecaseStatement = TYPECASE expression OF tease
{"I" tease} [ELSE StatementSequence] END.

tease= [Qualid.List ":" StatementSequence] I
qualident ["(" ident ")"] ":" StatementSequence.

Syntax Extensions

21.2.4. Opaque Types

86 definition = ... I
87+ TYPE {ident ["=" type I"=" REF]";"} I

21.2.5. Open Arrays

21+ ArrayType =ARRAY [SimpleType {"," SimpleType}] OF type.

21.2.6. Concurrency

49 statement = [... I
52+ ... I LockStatement].

LockStatement = LOCK designator DO StatementSequence END.

21.2.7. Interface Extensions

86 definition = ... I
88+ VAR {ident ":"type["=" qualident] ";"} I
89+ ProcedureHeading ["=" qualident] ";" I

EXCEPTION
{IdentList ["(" qualident ")"] ["=" qualident] ";"}.

21.2.8. Default Parameters

33+ FormalTypeList = "(" [[VAR] Ffype
34+ {"," [VAR] FType}] ")" [":" qualident].

Ffype = FormalType I (qualident ":=" ConstExpression).

75 FormalParameters =
76+ "(" [FPSect {";" FPSect}] ")" [":" qualident].

FPSect = FPSection I
(identlist ":" qualident ":=" ConstExpression).

21.2.9. Miscellaneous Extensions

7 [[Do we need to note our extension to strings?]]

15 type= ...
16+ ... I BITS ConstExpression FOR type.

27 variant= [CaseLabelList ":" Field.ListSequence].

61 case= [CaseLabeIList ":" StatementSequence].

121

7Lines 27 and 61 were extensions with regard to second-edition Modula-2. Wirth
has included these same extensions in third-edition Modula-2.

122 Compatibility with Ordinary Modula-2

22.1. Compiling DEF modules

We used to say (somewhere):

22. Notes

DEFINITION modules, which serve as interfaces to IMPLEMENTATION
modules, are not compiled in Modula-2+.

123

I don't want to say much about the current (temporary) way of getting what
we hope someday to get more smoothly. Perhaps a pointer to the example
directories ...

22.2. Operations on Mixed-Operand Expressions

Is a signed or unsigned comparison used when a CARDINAL variable is
compared to an UNSIGNED constant? Signed.

Is a signed or unsigned comparison used when a System. Address variable
is compared to_ an UNSIGNED constant? Signed.

124 Notes

Notes about System.Address:

If System.Address is mixed in arithmetic expressions with
INTEGER, UNSIGNED, or a POINTER type, the result of the
expression has type System.Address and signed arithmetic is
used.

The following arithmetic operations are legal on
(address-unsigned, address-integer, address-pointer)
mixed operand pairs:+, -, DIV and MOD.

The code generator cannot handle multiplication with
variable addresses. This check will be moved to the front end.

System.Address can be combined with INTEGER, UNSIGNED, and
POINTER types using any of•, t, <, >, <•,>•.The type
of the result is BOOLEAN. Signed comparison is used.

(The key to combining Address with other pointers, unsigned,
and integers lies in the typechecking predicate compatible,
which given address and one of the other types returns address
as the result type).

MIN and MAX take 2 operands of the same type and so are
not valid for mixed address-other type.

Binary operator chart (shows instructions used)

<

>

<-

>-

lt

+

*

DIV

MOD

MIN

MAX

int-int

jneq

jgeq

jleq

jgtr

jlss

jeql

addl3

subl3

mull3

divl3

divl3
mull2
subl2

jleq

jgeq

uns-uns adr-adr

jneq jneq

jgequ jgeq

jlequ jleq

jgtru jgtr

jlssu jlss

jeql jeql

addl3 movl
op2,rl

movl
opl,r2

addl2
rl,r2

subl3 subl3

mull3

pushl divl3
pushl
calls

runtime udiv

pushl divl3
pushl mull2
calls subl2

runtime umod

jleq (?)

jgeq (?)

adr-int adr-uns adr-ptr

jneq jneq jneq

jgeq jgeq jgeq

jleq jleq jleq

jgtr jgtr jgtr

jlss jlss jlss

jeql jeql jeql

movl movl movl
op2,rl op2,rl op2,rl

movl movl movl
opl,r2 opl,r2 opl,r2

addl2 addl2 addl2
rl, r2 rl,r2 rl, r2

subl3 subl3 subl3

divl3 divl3 divl3

divl3 divl3 divl3
mul12 mull2 mull2
subl2 subl2 subl2

Operations on Mixed-Operand Expressions

(?) this is a bug, jlequ and jgequ should be used.
predictably the results are wrong. Another bug to fix.

125

126 Syntax Cheat Sheet

Appendix I
Syntax Cheat Sheet

127

It is a great advantage for a system of
philosophy to be substantially true.
-- George Santayana

This cheat sheet covers only the recommended grammar of Modula-2+ as of
6 January 1986 plus IMPLEMENTS. For help in reading other people's
programs (perhaps in order to translate them into the recommended
grammar) see Appendix IV, page 143.

This is a cheat sheet, not a language definition. Where something is too
ridiculously difficult to show, we don't show it. For instance, the tokens of
the language include a literal \ character followed by a literal newline
character; we don't try to show that. Nor do we expand letter out to A I a
I B I b ... It's a cheat sheet, for people who like cheat sheets. If you don't
like cheat sheets, you're not going to like this one.

Tutorial on how to read the notation:

X I y
?x
+x
*x

++x y

**x Y

either x or y
empty I X

XIX XIX XX I ...
? (+x)
empty IX IX XIX XX I ...
X *(y X)
XIX y XIX y X y XI ...
?(++x y)
empty IX IX y XIX y X y XI ...

x and y stand for single grammar symbols or
things in parentheses.

A grammar symbol is either a word, with whitespace on either end,
or the characters from a ' up to the next whitespace.

Symbols in all caps or starting with ' are terminals.

There are five prefix operators:
? + * ++ **

Prefix operators with ? or * generate the empty string; prefix operators with
+ never generate the empty string. Prefix operators with one character are
unary; prefix operators with two characters are binary.

For instance:
?('+ I '-) term • term I '+ term I '- term

dig +hex • dig hex I dig hex hex I dig hex hex hex I
*dig • empty I dig I dig dig I dig dig dig I ...

++id' • id I id', id I id', id', id I ...
**id ' • empty I id I id ', id I id ', id ', id I ...

128 Syntax Cheat Sheet

Notation:

?x
+x
*x
++x y
**x Y

empty I x
XIX XIX XX I ...
emptylxlxxlxxxl .. .
XIX y XIX y X y XI .. .

• empty Ix I x y x I x y x y x I ...

In the grammar, a non-terminal never generates an empty string.

Abbreviated non-terminals used widely in the grammar:
id • identifier
ids • identifiers
qi • qualified identifier
ti • type identifier
e • expression
ss • statement sequence

TOKENS

id
ids
number

• letter *(letter I digit)
• ++id ',
• +digit

+octalDig ('B I 'b)
digit *hexDig ('H I 'h
+digit '. *digit ?(('E 'e) ?('+ I '-) +digit)

digit
octalDig
hexDig

string
strChar

• octalDig I '8 I '9
• '0 I 'l I '2 I '3 I '4 '5 I '6 I '7
• digit

'A I 'B 'C 'D 'E 'F
'a I 'b 'c 'd 'e 'f

• '" *strChar '"
• letter I digit I blank

'! I'@ l't 1'$ I'% '(, ,. , & , *
'- I'+ I'• I'- I'' '[, , , { , }

'< I'> I' I', I': 'I I• , ? , I ,
'\n I '\t I '\r I '\f I '\b I
'\ octalDig octalDig octalDig

I\\ I\"

I , >
I 'l
I ,

129

EXPRESSIONS e - sum

STATEMENTS

~

PROGRAMS

sum
term
factor

elements
var
args
qi
const

sum (' - I ' t I '< I '<- '> I '>- I IN) sum
• ? ('+ I ' -) ++term (' + ' - I OR)
- ++factor ('* I '/ I DIV MOD I AND)
- number I string I var I var args I ' (e ')

NOT factor I ?ti'{ ?elements'}
- ++(const I const' const) ',
• qi * (' . id I ' [++e ' , 'l I ' "')
• , (**e , , ,)

++id'
• e

s • var ':• e I var args I EXIT I RETURN ?e
IF
CASE e OF
TYPECASE e OF
LOOP ?ss END

++(e
?' I ++(elements
?' I ++((ti parid

THEN ?ss) ELSIF ?(ELSE ?ss) END
'· ?ss) 'I ? (ELSE ?ss) END

I ++ti ',) ': ?ss) ' I ? (ELSE ?ss) END

REPEAT ?ss UNTIL e
WHILE e DO ?ss END
FOR id':• e TO e ?(BY constJ DO ?ss END
WITH var DO ?ss END
LOCK var DO ?ss END
TRY ?ss (EXCEPT handlers I FINALLY ?ss I

ss • ++s , . ?' .
I • I

PASSING exSet ?':

handlers•?' I ++(++qi', ?parid ': ?ss) 'I ?(ELSE ?parid ?ss)
ELSE ?parid ?ss

parid - ' (id ')

type

ti

- ti I ' (ids') I ' [const ' .. const 'I
POINTER TO type I REF type
PROCEDURE tFormals ?(':ti) ?(RAISES exSet)
ARRAY **type', OF type I SET OF type
RECORD fields END
BITS const FOR type

- qi

fields • ++ ((ids ': type) I variants) '; ?';

) END

variants• CASE?(id':) ti OF?' I **(elements': fields) 'I ?(ELSE fields) END

block - *blockDecl ? (BEGIN ?ss) END id
blockDecl- decl I procH , . block , ; I moduleH ?export block , ;

I

decl - CONST *(id ,_ const
TYPE * (id ? ('- type I '• REF)
VAR * (ids , : type ? (, _ qi)
EXCEPTION * (id ? (, (type ,) ? (, - qi)
procH ? ('= qi)

procH - PROCEDURE id formals?(': ti ?(RAISES exSet)
formals • ' (**(?VAR ids': ?(ARRAY OF) ti ?default) '; ')
tFormals • ' (**(?VAR ?(ARRAY OF) ti ?default) '; ')
default • •:- const
exSet •'{**qi', '}
moduleH • MODULE id'; *import
impsH - MODULE id IMPLEMENTS ids'; *import
import - IMPORT ids'; I FROM id IMPORT ids';
export • EXPORT ?QUALIFIED ids';

def
impl

main

• ?SAFE
• ?SAFE

?SAFE
• ?SAFE

DEFINITION moduleH
IMPLEMENTATION moduleH

impsH
moduleH

*decl
block
block
block

END id '

----- --------------

, .
I

I ;

, .
I

, ;
, .

I

130 Railroad Diagrams

i 1

Appendix II
Railroad Diagrams

131

132 Railroad Diagrams

133

134 Railroad Diagrams

135

..
i

"' _.
C:
Q.)

E
~
ro

ci5

136 Railroad Diagrams

137

r

138 Railroad Diagrams

139

I ..

140 Railroad Diagrams

'f~~ l"{I __;_ l"il­

c:le.A; \)-._T.,'-, ~+t~

Appendix III
The Compiler's Error Messages

To be supplied by Paul and Violetta.

143

144 Grot

IV.l. Deprecated Features

Appendix IV
Grot

A sunburnt bloody stockman stood.
And in a dismal, bloody mood
Apostrophized his bloody cuddy:
"This bloody moke's no bloody

good.''

-- World War I soldiers' song

145

[[Citation wanted so as to be able to credit the FORTRAN folks for this
wonderful expression.]]

Why deprecate things?

1. Modula-2+ gives you several ways to say the same thing in
ways that are syntactically different. Klaus put in some, and
our extensions produced more. Programs will be easier to read
in our community if we agree on one way to say these things.
(It would be great to teach the pretty-printer to enforce these
rules.)

2. Some Modula-2 constructs are really obsolete in our
environment (e.g. PROCESS is dominated by Thread. T). In
such cases it's not just a matter of syntax -- you should not use
the obsolete constructs because they'll lead to an inferior
program.

3. There are some uses of the language that are very difficult to
prohibit (e.g. assignment to FOR loop index) yet are clearly bad
practice.

4. There are bugs in today's compiler that allow programs that
aren't really written in Modula-2+ to compile and execute. But
you shouldn't depend upon these bugs; we'd like to see them
fixed.

The following are classified not by the why, but the what (roughly): tokens,
constants, types, statements, and naming.

Don't write the operator"<>"; use"*" instead.

Don't write the operator '' & '' ; use AND instead.

Don't write the operator"~" ; use NOT instead.

Don't write a character literal consisting of an octal number followed by

146 Grot

'• C' '. You can express any such literal as a single character string containing
the '' \'' escape followed by three octal digits. Or, better yet, use the
constants defined in the Char interface.

Don't write a string containing the '' \'' escape followed by fewer than three
octal digits. The compiler accepts it, but this is a bug. Supply leading zeros
so that the "\" escape is followed by three digits.

Don't write a string containing the "\" escape followed by something other
than one of the designated escape sequences. The compiler accepts the '' \''
escape followed by anything, but this is a bug.

Don't write a string surrounded by single quotes. Use double quotes around
all strings.

Don't write a string containing two consecutive double-quote characters to
denote a single double-quote character. Use the '' \'' escape followed by
double-quote to signify a double-quote within a string.

Don't use the constants System.Maxint, System.MaxUnsigned, and
System.MaxCard. Use LAST (INTEGER) and LAST (UNSIGNED) and
LAST (CARDINAL) instead.

In the following peculiar example, the compiler accepts a constant expression
that (syntactically) contains a call to a user-defined proced~re:

TYPE
FixedSizeArrayType - ARRAY [1 .. 4] OF INTEGER;

PROCEDURE P(): FixedSizeArrayType;
VAR j: FixedSizeArrayType;
BEGIN

RETURN j;
END P;

CONST
C - HIGH (P ()); (* same as HIGH (FixedSizeArrayType) *)

Don't rely on this.

Don't write a type declaration for a procedure type without a formal
parameter list (for declaring a parameterless procedure type). Write the
keyword PROCEDURE followed by an empty argument list

Don't write a procedure declaration without a formal parameter list (for
declaring a parameterless procedure). Write the procedure name followed by
an empty argument list.

Don't use the supplied type PROC = PROCEDURE () ;

Don't write a module header in which the module name is followed by a
number enclosed in square brackets (the interrupt priority level of the
module). Don't use the Modula-2 type PROCESS. Use the Thread interface
and the LOCK statement to express concurrent programs.

Don't write a type name followed by an expression in parentheses (the
Modula-2 type transfer function). Use LOOPHOLE instead. This makes the
type breach easier to notice.

Don't write ORD (i) where i is an INTEGER or ORD (u) where u is an

Deprecated Features

UNSIGNED. The results are peculiar (this is not simply a type-casting
operation, the representation also changes). Use LOOPHOLE instead.

Similarly, don't write any of these:

VAL (INTEGER, e)
VAL(UNSIGNEO, e)
VAL(System.Byte, e)
VAL(System.Word, e)

Use LOOPHOLE instead.

Don't write a type constructor of the form BITS n FOR T, where n is
smaller than the "natural" size of type T. For instance, BITS 15 FOR

CARDINAL is deprecated. Write BITS 15 FOR [0 .. 7fffH] instead.

147

Don't write a type constructor of the form BITS n FOR System. Word or
BITS n FOR System.Byte.

Don't write a type constructor of the form ARRAY Index OF T, where
Index is INTEGER, CARDINAL, or UNSIGNED.

Don't pass a value whose size is less than 8 bits to a (value) System.Byte
parameter, or pass a value whose size is not evenly divisible by 8 bits to a
(value) System.Byte parameter.

Similarly, don't pass a value whose size is less than 32 bits to a (value)
System. Word parameter, or pass a value whose size is not evenly divisible
by 32 bits to a (value) System. Word parameter.

Don't write a procedure call statement without an argument list (for calling a
parameterless procedure that returns no results). Write the procedure name
(or procedure variable) followed by an empty argument list.

Don't make assignments to the control variable of a FOR-loop within the
loop. In simple cases the compiler could detect and disallow this, but it does
not. Use a WHILE-, UNTIL-, or LOOP-loop instead.

Don't write a RETURN statement in the body of a main module (meaning
normal termination of the main program). Use the supplied procedure HALT
instead (Chapter 11, page 55), since it expresses your intent more clearly.

Don't use the supplied procedure CAP. Use Char. Upper (there's also
Char. Lower, but no supplied procedure UNCAP).

This one's complicated. Suppose that some name N is defined in a module
because you've imported N, or is defined in a procedure because N is defined
earlier in the containing module or procedure. If you're going to make a
declaration that defines N, thereby overriding the existing definition, then
make this declaration before using the name N in this module or procedure.
If you use N before re-defining it, you won't be able to predict which
definition of N is used.

148

For instance,
MODULE Silly;
TYPE

T - INTEGER;
PROCEDURE P();

VAR
t: T;

TYPE
T - BOOLEAN;

BEGIN
END P;

END Silly.

Grot

The compiler won't complain (it would be nice if it would), but the type of
variable t is not well-defined (different Modula-2+ compilers might well
give different answers). Don't provoke this!

There's a similar name scope issue in record declarations. Avoid doing
obscure things like the following:

CONST
Month - 12;

TYPE
Foo - RECORD

Month: [l. .Month];
END;

IV.2. DIV and MOD are weird

DIV and MOD with INTEGER arguments are weird. MOD is not the
mathematical mod, but it's worse than that. If the value of
the divisor can be computed at compile time, is positive,
and is a power of 2, different instructionse used. This causes
different results when the dividend is negative and the divisor
is positive.

divisor is constant, positive and power of 2, uses instructions:
i DIV 4 •> divl3 $4, (_test_i+O), rl
i MOD 4 •> movl (_test_i+O),rl

bicl2 $-4,rl
otherwise uses instructions:

i DIV j -> divl3 (_test_j+O), (_test_i+O),rl
i MOD j •> movl (_test_ i+O), rl

divl3 (_test_j+O),rl,r2
mull2 (_test_j+O), r2
subl2 r2,rl

results:
i :- 11; j :- 4; -> i DIV j -2 i MOD j -3
i :- -11; j :- 4; •> i DIV j --2 i MOD j --3 (**)
i :- 11; j :- -4; -> i DIV j --2 i MOD j -3
i :• -11; j :• -4; -> i DIV j -2 i MOD j --3

i :- 11; -> i DIV 4 - 2 i MOD 4 -3
i :- - 11; -> i DIV 4 -2 i MOD 4 -1 (**)
i :- 11; -> i DIV -4 --2 i MOD -4 "' 3
i :- -11; =-> i DIV -4 -2 i MOD -4 --3

i :- 11; j :- 5; -> i DIV j "' 2 i MOD j "' 1
i =- -11; j :- 5; -> i DIV j --2 i MOD j --1
i :- 11; j :• -5; -> i DIV j --2 i MOD j .. 1
i :- -11; j :- -5; -> i DIV j -2 i MOD j .. -1

DIV and MOD are weird 149

DIV and MOD applied to UNSIGNED variable arguments seem to do the
right thing. As for INTEGER, different instructions are generated
if the divisor can be computed at compile time and is a power of 2,
but since the dividend and the divisor are both nonnegative, the
results are the same.

divisor is
u DIV 4

u MOD 4

constant, positive and power of
-> movl • (test u+0) , rl

bicl2 $3,rl -
rotl $-2,rl,rl

-> movl (test u+0),rl
bicl2 s=4,rl-

otherwise uses instructions:
u DIV v -> pushl (test v+0)

pushl (-test-u+0)
calls $2, runtime udiv

u MOD v -> pushl (test v+O)­
pushl (-test-u+0)
calls $2,_runtime_umod

results:
u :- LAST(INTEGER) + 1;
v :- LAST(INTEGER) - 1; -> u DIV v - 1

U :- 11; V :- 4;
u DIV 4 - 2 u MOD 4 - 3

IV.3. Where ~e compiler accepts too little

2, uses instructions:

u MOD v - 2

Bugs where the compiler accepts too much are reported as deprecated
features.

Bugs where the compiler accepts too little can't be called features.

This won't work:

PROCEDURE A(); END A;
PROCEDURE B(); END B;
CONST

X - (A - B);

You also can't write
CONST

X - (A - NIL)

or even
CONST

X - (NIL - NIL)

which are strange things to disallow, though you seldom want to write them
(!)

You should be able to write a vertical bar before the ELSE in a TRY EXCEPT

that has only an ELSE, but you cannot.

150 Reserved Words and Standard Identifiers

Appendix V
Reserved Words and Standard Identifiers

Notation:

const means constant
proc means procedure
type means type
word means reserved word

no suffix means ordinary Modula-2
-WRL means WRL extension
-SRC means SRC extension

M2+ includes both WRL and SRC exensions.

151

Note that MAX and MIN are different procedures in vanilla Modula-2 and the
WRL/SRC dialect.

[[Some question about who gets credit for UNSIGNED, WRL or us. J J

152 Reserved Words and Standard Identifiers

ABS proc-WRL LOOP word
AND word LOOPHOLE proc-SRC
ARRAY word MAX proc-WRL
ASSERT proc-WRL MIN proc-WRL
BEGIN word MOD word

BITS word-SRC MODULE word
BITSET type NARROW proc-SRC
BOOLEAN type NEW proc
BY word NIL const
@C word-WRL @NOCOUNT word-WRL

CAP proc NOT word
CARDINAL type NUMBER proc-WRL
CASE word ODD proc
CHAR type OF word
CHR proc OR word

CONST word ORD proc
DEC proc @PASCAL word-WRL
DEFINITION word PASSING word-SRC
DISPOSE proc POINTER word
DIV word PROC types

DO word PROCEDURE word
ELSE word QUALIFIED word
ELSIF word RAISE proc-SRC
END word RAISES word-SRC
EXCEPT word-SRC REAL type

EXCEPTION word-SRC RECORD word
EXCL proc REF word-SRC
EXIT word REFANY type-SRC
EXPORT word REPEAT word
@EXTERNAL word-WRL RETURN word

FALSE const SAFE word-SRC
FINALLY word-SRC SET word
FIRST proc-WRL THEN word
FLOAT proc TO word
FOR word TRUE const

FROM word TRUNC proc
HALT proc TRY word-SRC
HIGH proc TYPE word
IF word TYPECASE word-SRC
IMPLEMENTATION word UNSIGNED type-WRL

IMPLEMENTS word UNTIL word
IMPORT word VAL proc
IN word VAR word
INC proc WHILE word
INCL proc WITH word

INTEGER type

8deprecated

LAST
LOCK
LONGFLOAT
LONGREAL

proc-WRL
word-SRC
proc-WRL
type-WRL

153

154 Wirtb's EBNF

VI.1. Notation

Appendix VI
-Wirth's EBNF

155

Wirth's notation is an extended Backus-Naur formalism called EBNF. [4]
Square brackets [] mean that the enclosed form is optional, and curly
brackets {} mean that the enclosed form is repeated (possibly O times).
Non-terminals have names that are meant to express their intuitive meaning
and written in uppers and lowers. Terminal symbols, symbols of the
language vocabulary, are either strings enclosed in quotes or reserved words,
written in capital letters.

[[All you people who love EBNF are invited to come up with a volunteer
from among yourselves to maintain this representation of the grammar. So
far I've heard lots of testimonials but no offers of assistance.]]

,

156

Vl.2. Syntax in Wirth's EBNF

These numbers are production numbers, not line numbers.

1 ident = letter {letter I digit}.
2 number = integer I real.
3 integer-

digit {digit}
I octalDigit {octalDigit} ("B" I "C")
I digit {hexDigit} "H".

4 real= digit {digit}"." {digit} [ScaleFactor].
5 ScaleFactor = "E" ["+"I"-"] digit {digit}.
6 hexDigit= digit I "A" I "B" I "C" I "D" 1 "E" I "F".
7 digit .. octalDigit I "8" I "9".
8 octalDigit• "0" I "l" I "2" 1 "3" I "4" I "5" I "6" I "7".
9 string='"" {character}"'" I'"' {character}'"'.
10 qualident = ident {" ." ident}.
11 ConstantDeclaration = ident "." ConstExpression.
12 ConstExpression ... expression.
13 TypeDeclaration • ident "=" type.
14 type,.

SimpleType I ArrayType I RecordType I SetType
I PointerType I ProcedureType I REF ident I REF type
I BITS ConstExpression FOR type.

15 SimpleType = qualident I enumeration I SubrangeType.
16 enumeration•"(" IdentList ")".
17 IdentList = ident {"," ident}.
18 SubrangeType"'

[qualident] "[" ConstExpression " .. " ConstExpression "]".
19 ArrayType = ARRAY [SimpleType {"," SimpleType}] OF type.
20 RecordType = RECORD FieldListSequence END.
21 FieldListSequence"' FieldList {";" FieldList}.
22 FieldList =

[IdentList ":" type
I CASE [ident] ":" qualident OF variant {"I" variant}

[ELSE FieldListSequence] END
].

23 variant .. [CaseLabelList ":" FieldListSequence].
24 CaseLabelList • CaseLabels {"," CaseLabels}.
25 CaseLabels = ConstExpression [" .. " ConstExpression].
26 SetType = SET OF SimpleType.
27 PointerType • POIN1ER TO type.

Wirth's EBNF

28 ProcedureType = PROCEDURE [FormalTypeList] [RAISES raisees].
29 FormalTypeList ..

"(" [[VAR] FType {"," [VAR] FType}] ")" [":" qualident].
30 FType = FormalType I (qualident ":=" ConstExpression).
31 VariableDeclaration = IdentList ":" type.
32 designator • qualident {"." ident I "[" ExpList "]" I """}.
33 ExpList =expression{"," expression}.
34 expression = SimpleExpression [relation SimpleExpression].
35 relation .. "•" I"#" I"<" I"<=" I">" I">=" I IN.
36 SimpleExpression = [" +" I " -"] term { AddOperator term}.
37 AddOperator ... "+"I"-" I OR.
38 term= factor {MulOperator factor}.
39 MulOperator = "•" I "/" I DIV I MOD I AND.
40 factor=

number I string I set I designator [ActualParameters]
I "(" expression")" I NOT factor.

41 set= [qualident] "{"[element{"," element}]"}".

Syntax in Wirth's EBNF

42 element= expression[" .. " expression].
43 ActualParameters - "(" [ExpList] ")".
44 statement =

[assignment I ProcedureCall I lfStatement
I CaseStatement I WhileStatement I RepeatStatement
I LoopStatement I ForStatement I WithStatement I EXIT
I RETURN [expression] I TryStatement
I TypecaseStatement I LockStatement

].
45 assignment• designator":•" expression.
46 ProcedureCall =- designator [ActualParameters].
47 StatementSequence - statement{";" statement}.
48 IfStatement =

IF expression nmN StatementSequence
{ELSIF expression TIIEN StatementSequence}
[ELSE StatementSequence]
END.

49 CaseStatement -
CASE expression OF case {"I" case}
[ELSE StatementSequence]
END.

50 case - [CaseLabelList ":" StatementSequence].
51 WhileStatement ..

WHILE expression DO StatementSequence END.
52 RepeatStatement =

REPEAT StatementSequence UNTIL expression.
53 ForStatement •

FOR ident ":=" expression TO expression
[BY ConstExpression] DO StatementSequence END.

54 LoopStatement = LOOP StatementSequence END.
55 WithStatement = WITH designator DO StatementSequence END.
56 TryStatement .. 'IRY StatementSequence TryTail END.
57 TryTail =

FINALLY StatementSequence I PASSING raisees
I PASSING raisees ";"
I EXCEPT [HandlerArm {"I" HandlerArm}J

[ELSE ["(" ident ")"] StatementSequence].
58 HandlerArm -

[Qualid.List ["(" ident ")"] ":" StatementSequence].
59 raisees = "{" [Qualid.List] "}".
60 Qualid.List = qualident {"," qualident}.
61 TypecaseStatement =

TYPECASE expression OF tease {"I" tease}
[ELSE StatementSequence]
END.

62 tease=
[Qualid.List ":" StatementSequence]

I qualident ["(" ident ")"] ":" StatementSequence.
63 LockStatement = LOCK designator DO StatementSequence END.
64 ProcedureDeclaration .. ProcedureHeading ";" block ident.
65 ProcedureHeading ..,

PROCEDURE ident [FormalParameters] [RAISES raisees].
66 block ... {declaration} [BEGIN StatementSequence] END.
67 declaration •

CONST {ConstantDeclaration ";"}
I TYPE {TypeDeclaration ";"}
IV AR {VariableDeclaration ";"}
I ProcedureDeclaration ";"
I ModuleDeclaration ";"

157

158

I EXCEPTION {IdentList ["(" qualident ")"] ";"}.
68 ForrnalParameters ..

"(" [FPSect {";" FPSect}] ")" [":" qualident].
69 FPSection • [VAR] ldentList ":" FormalType.
70 FPSect•

FPSection
I (idendist ":" qualident ":=" ConstExpression).

71 FormalType = [ARRAY OF] qualident.
72 ModuleDeclaration =

MODULE ident [priority] ";" {import} [export] block ident.
73 priority• "[" ConstExpression "]".
74 export- EXPORT [QUALIFIED] ldentList ";".
75 import= [FROM ident] IMPORT IdentList ";".
76 DefinitionModule =

DEFINmON MODULE ident ";" {import}
{definition} END ident ".".

77 definition =
CONST {ConstantDeclaration ";"}

I TYPE {ident r=" type I"=" REF] ";"}
IV AR {ident ":"typer ... " qualident] ";"}
I ProcedureHeading [" =" qualident] ";"
!EXCEPTION

{ldentList ["(" qualident ")"] ["=" qualident] ";"}.
78 ProgramModule =

MODULE ident [priority]";" {import} block ident ".".
79 CompilationUnit ..

[SAFE] DefinitionModule
I [SAFE] [IMPLEMENTATION] ProgramModule.

Wirth's EBNF

Syntax in Wirth's EBNF

VI.3. Alpha Order

The numbers refer to the production numbers above.

43 ActualPararneters • "(" [ExpList] ")".
37 AddOperator = "+" I " -" I OR.
19 ArrayType = ARRAY [Simple Type {" ," Simple Type}] OF type.
45 assignment= designator":=" expression.
66 block- {declaration} [BEGIN Stat.ementSequence] END.
50 case• [CaseLabelList ":" StatementSequence].
24 CaseLabelList = CaseLabels {"," CaseLabels}.
25 CaseLabels = ConstExpression [" .. " ConstExpression].
49 CaseStatement =

CASE expression OF case {"I" case}
[ELSE StatementSequence]
END.

79 CompilationUnit •
[SAFE] DefinitionModule

I [SAFE] [IMPLEMENTATION] ProgramModule.
11 ConstantDeclaration = ident "=" ConstExpression.
12 ConstExpression = expression.
67 declaration ..

CONST {ConstantDeclaration ";"}
I TYPE {TypeDeclaration ";"}
I VAR {VariableDeclaration ";"}
I ProcedureDeclaration ";"
I ModuleDeclaration ";"
I EXCEPTION {ldentList ["(" qualident ")"] ";"}.

77 definition =
CONST {ConstantDeclaration ";"}

I TYPE {ident ["=" type I"•" REF]";"}
IV AR {ident ":"type["=" qualident] ";"}
I ProcedureHeading (" .. " qualident] ";"
I EXCEPTION

{ldentList ["(" qualident ")"] (" ... " qualident] ";"}.
76 DefinitionModule =

DEFINmON MODULE ident ";" {import}
{ defmition} END ident ".".

32 designator= qualident {" ." ident I"[" ExpList "]" I ""''}.
7 digit = octaIDigit I "8" I "9".
42 element= expression[" .. " expression].
16 enumeration="(" ldentList ")".
33 ExpList =expression{"," expression}.
74 export-= EXPORT [QUALIFIED] IdentList ";".
34 expression = SimpleExpression [relation SimpleExpression].
40 factor=

number I string I set I designator [ActualParameters]
I"(" expression")" I NOT factor.

22 Field.List =
[IdentList ":" type
I CASE [ident] ":" qualident OF variant {"I" variant}

[ELSE FieldListSequenceJ END
].

21 FieldListSequence = FieldList {";" FieldList}.
68 FormalParameters =

"(" [FPSect {";" FPSect}] ")" [":" qualident].
71 FormalType = [ARRAY OF] qualident.
29 FormalTypeList =

"(" [[VAR] FType {"," [VAR] FType}] ")" [":" qualident].

159

160

53 ForStatement =
FOR ident ":=" expression TO expression
[BY ConstExpression] DO StatementSequence END.

70 FPSect=-
FPSection

I (identlist ":" qualident ":=" ConstExpression).
69 FPSection"" [VAR] IdentList ":" FormalType.
30 FType .. FormalType I (qualident ": .. " ConstExpression).
58 HandlerArrn =

[Qualid.List ["(" ident ")"] ":" StatementSequence].
6 hexDigit = digit I "A" I "B" I "C" I "D" I "E" I "F".
1 ident = letter {letter I digit}.
17 IdentList = ident {"," ident}.
48 IfStatement =

IF expression THEN StatementSequence
{ELSIF expression THEN StatementSequence}
[ELSE StatementSequence]
END.

75 import= [FROM ident] IMPORT IdentList ";".
3 integer=

digit {digit}
I octalDigit {octalDigit} ("B" 1 "C")
I digit {hexDigit} "H".

Wirth's EBNF

63 LockStatement = LOCK designator DO StatementSequence END.
54 LoopStatement = LOOP StatementSequence END.

• 72 ModuleDeclaration =
MODULE ident [priority]";" {import} [export] block ident.

39 MulOperator = "*" I"/" I DIV I MOD I AND.
2 number = integer I real.
8 octalDigit = "0" I "1" I "2" I "3" I "4" I "5" I "6" I "7".
27 PointerType = POINTER TO type.
73 priority = "[" ConstExpression "]".
46 ProcedureCall = designator [ActualParameters].
64 ProcedureDeclaration = ProcedureHeading ";" block ident.
65 ProcedureHeading =

PROCEDURE ident [FormalParameters] [RAISES raisees].
28 ProcedureType = PROCEDURE [FormalTypeList] [RAISES raisees].
78 ProgramModule =

MODULE ident [priority]";" {import} block ident ".".
10 qualident = ident {" ." ident}.
60 Qualid.List = qualident {"," qualident}.
59 raisees = "{" [Qualid.List] "}".
4 real= digit { digit} "." { digit} [ScaleFactor].
20 RecordType = RECORD Field.ListSequence END.
35 relation="=" I"#" I"<" I"<=" I">" I">=" I IN.
52 RepeatStatement = REPEAT StatementSequence UNTIL expression.
5 ScaleFactor = "E" ["+"I"-"] digit {digit}.

41 set= [qualident] "{"[element{"," element}]"}".
26 SetType = SET OF SimpleType.
36 SimpleExpression = [" +" I "-"] term {AddOperator term}.
15 SimpleType = qualident I enumeration I SubrangeType.
44 statement ..

[assignment I ProcedureCall I IfStatement

].

I CaseStatement I WhileStatement I RepeatStatement
I LoopStatement I ForStatement I WithStatement I EXIT
I RETURN [expression] I TryStatement
I TypecaseStatement I LockStatement

47 StatementSequence =statement{";" statement}.

Alpha Order

9 string=""' {character}"'" I'"' {character}'"'.
18 SubrangeType ..

[qualident) "[" ConstExpression " .. " ConstExpression ")".
62 tease-

[QualidList ":" StatementSequence)
I qualident ["(" ident ")"] ":" StatementSequence.

38 term= factor {MulOperator factor}.
56 TryStatement = TRY StatementSequence TryTail END.
57 TryTail ..

FINALLY StatementSequence I PASSING raisees
I PASSING raisees ";"
I EXCEPT [HandlerArm {"I" HandlerArm}J

[ELSE["(" ident ")"] StatementSequence).
14 type=

SimpleType I ArrayType I RecordType I SetType
I PointerType I ProcedureType I REF ident I REF type
I BITS ConstExpression FOR type.

61 TypecaseStatement =
TYPECASE expression OF tease {"I" tease}
[ELSE StatementSequence)
END.

13 TypeDeclaration = ident "=" type.
31 VariableDeclaration = IdentList ":" type.
23 variant= [CaseLabelList ":" FieldListSequence).
51 WhileStatement =

WHILE expression DO StatementSequence END.
55 WithStatement = WITH designator DO StatementSequence END.

161

162 References

References

[1] Danny Cohen.
Blah Blah Blah Blah ... On Holy Wars and a Plea for Peace.
XXXX XX(X), XXXX.

[2] J. G. Mitchell et al.
Mesa Language Manual.
Technical Report Report CSL-79-3, Xerox PARC, 1979.

[3] N. Winh.
Programming in Modula-2.
Springer-Verlag, Third Edition, 1985.

[4] N. Winh.

163

What Can We Do about the Unnecessary Diversity of Notation etc.
CACM 20(11):822-823, November 1977.

164 Index

Index

. T convention 109

ABS procedure 56

Index

Actual parameters 64, 65
default 6S

AND 34, 35
Arithmetic

See also numbers, numeric
Arithmetic operators 33
ARRAY type constructor 23, 24
Arrays

constant 16
elements 23, 24
type-checking subscripts 23
See also fixed-size arrays, open arrays

Arrays of CHAR
string 5

ASSERT procedure 60
Assignments 41

NIL 29
fixed-size arrays 24
left-hand side 41
open arrays 25
procedure call 41
procedure variables 29
right-hand side 41
type-checking 87

Base type of a set
See instead domain

Basetype 81
BITS FOR type constructor 6S, 91
BITSET type 18
Blanks 3
Bodies

modules 74
procedures 63, 64

Built-in
See instead supplied, or Public Interfaces

Manual
BY-value 47, 48

CAP procedure 16
CARDINAL type 17, 81
Case labels

CASE 44
TYPECASE 45

CASE statement 44, 10S, 107
Case-sensitivity 4
Char interface S
CHAR type 18
CHR procedure 16, 57

165

Cleanup 49, 51
Comments 6
Compatibility 83, 84
Concrete types 70
Constant expressions

defined 15
operators 15
procedures 15, 16

Constants 111
NIL 15
declarations 8, 16
defined 15
enumerations 15, 16,82
numbers 15
sets 15
strings 15
type-checking 82, 84
user-declared 82

Control structures 41
ASSERT 60
CASE 44
ELSE-handler 52
EXIT 46,49
FOR 46, 47, 48
HALT 60
IF 43
LOCK 49, 50
LOOP 46,49
RAISE 50, 51, 52, 53, 60
REPEAT 48,49
RETURN 43, 46, 49
TRY EXCEPT 46, 50, 51, 52, 53
TRY FINALLY 49, 51
TRY PASSING 53
TYPECASE 45
WHILE 48
cleanup 49, 51
exceptions 43,46,49,50,51,52,53
handlers 51, 52
supplied procedures 60

Control variable 47, 48
Conversions

CHR 57
FLOAT 57
LONGFLOAT 57
LOOPHOLE 57
NARROW 57
ORD 57
TRUNC 58
VAL 58
supplied procedures 57

166

Debugger 52
DEC procedure 56
Declarations 8

classified 8
constants 16
enumerations 9
exceptions 50
local 64
motivated 21
nested procedures 64
procedures 63, 64, 65
re-declarations 9
records 9
types 21
variables 31
versus import 12

Default parameters 65
limitations 66
motivated 65

Definition modules 69
contents 69
implementations 69
imports 69
imports in I 2
motivated 69

Delimiters
complete list 6

Dereference 28
DISPOSE procedure 28, 59
DIV 34

Elements
arrays 23, 24
open arrays 24

ELSE-handler 52
Enumerations 22

constants 15, 16, 82
declarations 9
empty 23
import 11

Escape sequences 4
Exceptions 43,46,49,50

ELSE-handler 52
RAISE 50, 51, 52, 53
RAISES 64
TRY EXCEPT 50, 51, 52, 53
TRYFINALLY 51
TRY PASSING 53
cleanup 51
debugger 52
declarations 8, 50
handlers 51, 52
motivated 51
scope 50

EXCL procedure 58
EXIT statement 46, 49
EXPORTS keyword 73
Expressions 33

operands 33

Index

procedure call 33, 64
procedure variables 33
type-checking 83
variables 33
versus statements 39

Fields 26
naming 7, 8

FIRST procedure 16, 61
Fixed-size arrays 23

assignments 24
FLOAT procedure 16, 57
FOR statement 46, 47, 48
Formal parameters 63, 64, 65

default 65
Format 112
Forward reference 10

Garbage collection 74

HALT procedure 60
Handlers 51, 52

ELSE-handler 52
Headings

procedures 63
Hex numbers 4
HIGH procedure 16, 61

Identifiers 4, 106
implementation restrictions 96

IF statement 43
Implementation modules 69

IMPLEMENTS 73
bodies 74
imports 69
missing 69
motivated 69
scope 7, 69

IMPLEMENTS keyword 73
Imports 11

FROM .. IMPORT .. 11
IMPORT 11
cyclic 69, 74
definition modules 12, 69
enumerations 11
implementation modules 69
initialization 74
naming 8
nested modules 73
records 11
versus declarations 12

INC procedure 56
INCL procedure 58
Increment

See instead BY-value
Indexes

See instead subscripts
Initialization 74

variables 92

Index

INTEGER 87
INTEGER type 17, 84
Integers

literal 4
Interfaces

See instead definition modules

Keywords
complete list 3

LAST procedure 16
Lexemes (of the language)

See instead tokens
Local declarations 64
LOCK statement 49, SO
Logical operators 34
LONGFLOAT procedure 16, 57
LONGREAL type 17
LOOP statement 46, 49
Loophole 24

See also System.Byte, System.Word
LOOPHOLE procedure 57, 95, 111

Main modules 69, 73
bodies 74

Matching 84
Matrix

declarations 23
MAX procedure 16, 56
MIN procedure 16, 56
MOD 34
Modula-2

versus Modula-2+ 117
Modules

classified 69

Name scope
See instead scope

Name-lookup context
See instead scope

NARROW 46
NARROW procedure 57
Nested modules 69, 73

EXPORTS 73
impon 73
procedures 73
scope 14

Nested procedure declarations 64
NEW 70
NEW procedure 25, 27, 28, 31, 59
Newlines 3

in strings 4
NIL IS, 16, 27, 28, 29, 82, 84
Non-numeric types 29, 82

supplied types 19
Non-ordinal types 29, 82

supplied types 19
NOT 35
Nulls

167

terminating strings 5
NUMBER procedure 16, 61
Numbers

ABS 56
DEC 56
INC 56
MAX 56
MIN 56
ODD 56
constants 15
literal 4
supplied procedures 56
type-checking 82
See also arithmetic, numeric

Numeric
See also arithmetic, numbers

Numeric types 29, 82
supplied types 19

Octal numbers 4
in strings 5

ODD procedure 16, 56
Opaque types 70

opaque ref 70, 71
opaque word 70
variables 70

Opaque types:·opaque ref 21
Opaque types: opaque word 21
Open arrays 24, 25

System.Byte 24
System. Word 24
NEW 59
assignments 25
elements 24
procedure formals 24
refs to 25
type-checking 24

Operands 33
Operators

applicability 37
arithmetic 33
binary 37
complete list 6
constant expressions 15
logical 34
precedence 33
return types 86
set 35
type-checking 85, 86
unary 34, 37

Optimizer 105
OR 34, 35
ORD procedure 16, 57, 111
Ordinal types 29, 82

supplied types 19
Overflow 34

Painting 21, 81
Parameters

168

VAR 63, 64, 65
actual 64, 65
default 65
formal 63, 64, 65
value 63, 64, 65

Parentheses
in expressions 33

Pass-throughs 72
motivated 72
type-checking 72

Passing by v AR
type-checking 88

Passing by value
type-checking 87

Perfonnance 103
POINTER TO type constructor 28
Pointers 28

System.Adr 28
DISPOSE 28, 59
NEW 28, 59
NIL 28
constant 16
dereference 28
forward reference 10

Precedence 33
Procedure call

v AR parameters 65
actual parameters 65
actuals 64
assignments 41
classified 64
default parameters 65
expressions 33
formal parameters 65
formals 64
type-checking 87, 88
value parameters 65

PROCEDURE type constructor 28
Procedure types 28

NIL 29
assigning procedure variables 29
type-checking 84
versus procedure declarations 28

Procedure variables
expressions 33

Procedures 61
RAISES 64
RETURN 43, 63
v AR parameters 63, 64
actual parameters 64
bodies 63, 64
constant 16
constant expressions 15, 16
declarations 8, 63, 64, 65
default parameters 65
exceptions 43, 64
formal parameters 63, 64, 65
formals 25
forward reference 10

Index

headings 63
local declarations 64
nested declarations 64
nested modules 73
open array formals 24
procedure types 28
recursive 64
results 63
return 66
scope 7
type-checking call 24
types 63
value parameters 63, 64
See also supplied procedures

Qualified names 7, 110

RAISE procedure 50, 51, 52, 53, 60, 108
RAISES keyword 64
Range-checking 22
REAL type 17
Reals

literal 4
Record fields

See instead fields
RECORD type constructor 25
Records 25

WITH 13
constant 16
declarations 9
fields 26
import 11
tagless variant 93
tagless variants 26
variants 26

Redeclarations 111
REF type constructor 27
REFANY 45, 46, 84, 87
REF ANY type 18, 71
Refs 27

NEW 27, 59
NIL 27
constant 16
dereference 28
forward reference 10
open arrays 25
type-checking 84, 87

Relations 35
set 35
type-checking 85

Renaming 81
REPEAT statement 48, 49
Representation 89
RETURN statement 43, 46, 49, 63

SAFE keyword 22, 7 4
Scope

declarations 8
defined 7

Index

enumerations 9, 11
exceptions SO
fields 7, 8
forward reference 10
implementation modules 7, 69
import 11
imports 8
nested modules 14
procedures 7
qualified names 7
re-declarations 9
records 9, 11

Set relations
type-checking 85

SET type constructor 27
Sets 27

EXCL 58
INCL 58
constants 15
implementation restrictions 96
operators 35
relations 35
size 27
supplied procedures 58

Standard
See instead supplied, or Public Interfaces

Manual
Statements

classified 39
elementary 39
procedure call 64
sequence 39
structured 39
versus expressions 39

Step value
See instead BY-value

Storage allocation 107
DISPOSE 59
NEW 59
supplied procedures 59

Strings 4, 107
constants 15
escape sequences 4, 5
implementation restrictions 96
multi-line 4
null termination 5
type-checking 82, 84, 87

Style 108
Subranges 22, 111

classified 22
empty 22
range-checking 22

Subscripts 23, 24
open arrays 24
type-checking 23

Supplied
defined 1

Supplied procedures
ABS 56

ASSERT 60
CHR 57
DEC 56
DISPOSE 59
EXCL 58
FIRST 61
FLOAT 57
HALT 60
HIGH 61
INC 56
INCL 58
LONGFLOAT 57
LOOPHOLE 57
MAX 56
MIN 56
NARROW 57
NEW 59
NUMBER 61
ODD 56
ORD 57
RAISE 60
TRUNC 58
VAL 58
classified 55

169

control structures 60
conversions 57
numbers 56
sets 58
storage allocation 59
type deconstructors 61

Supplied types
classified 19
complete list 17
non-numeric types 19
non-ordinal types 19
numeric 17
numeric types 19
ordinal types 19

Symbols (of the language)
See instead tokens

System.Addresstype 84
System.Adr procedure 28
System.Byte 24
System.ByteSize procedure 16
System. Size procedure 16
System. TByteSize procedure 16
System.TSize procedure 16
System.Word 24

Tabs 3
Tag field 26
Tagless variant records 93
Text.T 5, 87
Thread.Acquire 50
Thread. Mutex 50
Thread.Release 50
Threads

initialization 74
Tokens of the language 3

170

TRUNC procedure 16, 58
TRY EXCEPT statement 46, 50, 51, 52, 53
TRY FINALLY statement 49, 51
TRY PASSING statement 53
Type constructors

ARRAYOFT 24
ARRAY Tl OF TI 23
POINTER TO 28
PROCEDURE 28
RECORD 25
REF 27
SET 27
complete list 21
enumeration 22
generative 21
procedure formals 25
subrange 22

Type deconstructors
FIRST 61
HIGH 61
NUMBER 61
supplied procedures 61

Type-checking 81
CARDINAL 81
NIL 29, 82, 84
assignments 87
basetype 81
case labels 44
compatibility 83, 84
constants 82
enumeration constants 82
expressions 83
floating-point constants 84
numbers 82
open array formals 24
operators 85, 86
pass-throughs 72
procedure call 87, 88
procedure types 84
procedures 29
relations 85
renaming 81
return types 86
same type 21, 81
set relations 85
strings 82
subscripts 23

TYPECASE statement 45, 46
Types

classified 29, 82
concrete 70
declarations 8, 21
declarations motivated 21
motivated 17
non-numeric types 29, 82
non-ordinal types 29, 82
numeric types 29, 82
opaque 70, 71
ordinal types 29, 82

procedures 63
See also supplied types

Unary operators 34
Underflow 34
UNSIGNED 87
UNSIGNED type 17, 84, 93

v AL procedure 16, 58, 111
Value parameter 65
Value parameters 63, 64
v AR parameter 64, 65, 88
v AR parameters 109
Variables

DISPOSE 59
NEW 59
declarations 8, 31
defined 28, 31
export 109
expressions 33
initialization 31, 92

Variant records 26
NEW 59
tagless 26
tagless 93

WHILE statement 48
WITH statement 13, 110

2.ero divide 34

	Table of Contents
	Introduction
	1. Tokens and Comments
	2. Names and Name Scope
	3. Constants and Constant Expressions
	4. Supplied Types
	5. Constructing Types
	6. Variables
	7. Expressions
	8. The Syntax of Statements
	9. Assignments
	10. Control Structures
	11. Supplied Procedures
	12. Procedures
	13. Modules
	14. Safety
	15. Type-Checking
	16. Representation Issues
	17. Mixing Modula-2+ with Other Languages
	18. Performance and Other Pragmatic Issues
	19. Programming Style
	20. Formatting Conventions
	21. Compatibility with Ordinary Modula-2
	22. Notes
	Appendixes
	I Syntax Cheat Sheet
	II Railroad Diagrams
	III The Compiler’s Error Messages
	IV Grot
	V Reserved Words and Standard Identifiers
	VI Wirth’s EBNF

	References
	Index

