
The Software Attic

The case for expansive collecting

Len Shustek

May 5, 2006

Why collect?1

• Our civilization runs on software

• No comprehensive and intentional activity

has yet been undertaken to preserve

software artifacts

• The authors are still alive, the objects are

still available

– Time is our enemy!

1From Grady Booch, at the Workshop on the Preservation of Classic

Software, Computer History Museum, October 16-17 2003

Open wide the software gates

• Collect with minimum censorship because

– We don’t know what will be important

– We have the space

– A large collection enables evolutionary and

statistical studies

– A large collection ensures diversity and

comprehensiveness of the collection

– It can be accomplished with a collaborative

community

• We don’t know what will be needed

– “The historical utility of original artifacts is that

they are available for interrogation in the light

of unforeseen enquiry” – Doron Swade

• Space is not an issue

– At most 300 GigaLines of source code have

been written by human beings

• 2M coders x 5K lines/yr x 30 years

– 10% (3M) of all the programs ever written

could be stored in a terabyte ($400 at Fry’s)

– Much of it is self-identifying

– Much of it is junk

Collect the source!

– A cultural artifact
• a form of literature (D. Gabriel)

• beautiful programs are works of art (D. Knuth)

– A view into the mind of the designer
• intentions, assumptions, abstractions, mistakes,

humor

• little of this gets captured in any written form

– This is the embryonic first 50 years of
millennia of software development

• The transition from cave painting to impressionism

– A voluminous source repository can be

analyzed to teach us about the evolution of

software engineering

• architectural evolution

• data structure design

• use of algorithms

• optimization (and premature
optimization)

• locality of function

• information hiding

• coding style and idioms

• defensive programming styles

• software redundancy

• failures and bugs

• module decomposition

• joint authorship

• programming language use

– The parlor is an unrepresentative sample

• Collect the binaries!

– For use on restored, reconstructed or

simulated old computers

• Collect the documentation!

– manuals, notes, papers, email

• Collect the stories

– interviews, reminiscences, websites

But also…

Other uses for the attic

• an archeological midden for future

additions to the Parlor

– now or later

• a legal resource for discovering and

documenting prior art for software patents

• an historical resource for establishing

credit and understanding influences

Tough issues

– copyright and ownership

– protecting trade secrets

– provenance

– reading and interpreting the bits (“transcoding”)

– insuring completeness

• libraries?

• program development environments?

– simulation difficulties

– permanence

• fueled by community contributions

– web-based submission

• filter to keep signal-to-noise ratio high

– panel of judges

• accessible to the limits of the law

– mechanism for escrow

• limited metadata, provided by submitters

– Depend on Google-like searches

• goal: 10,000 programs in two years

Proposal:

“Global Software Repository”

	Slide 1: The Software Attic The case for expansive collecting
	Slide 2: Why collect?1
	Slide 3: Open wide the software gates
	Slide 4
	Slide 5
	Slide 6: Collect the source!
	Slide 7
	Slide 8: But also…
	Slide 9: Other uses for the attic
	Slide 10: Tough issues
	Slide 11: Proposal: “Global Software Repository”

